Combustion Engine (epo/jpo) Patents (Class 903/905)
  • Patent number: 11919400
    Abstract: A powertrain includes an engine; a driveline including a gearbox having an input shaft connected to the engine, an output shaft to be connected to driving wheels of the vehicle and a countershaft for transmitting a rotation of the input shaft to the output shaft which can be coupled to the input shaft; an electric machine; a gear reduction mechanism having a free wheel and at least three separate and rotatable junction elements, the rotational speeds of the junction elements being interdependent but not having a fixed ratio relative to one another: a first junction element that is connected to the electric machine; a second junction element that is connectable to the free wheel; a third junction element that is connected to the countershaft. The torque ratio between the third junction element and the first junction element can be selected from at least two different ratios.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: March 5, 2024
    Assignee: VOLVO TRUCK CORPORATION
    Inventor: Yann Boete
  • Patent number: 11884183
    Abstract: This patent application is directed to thermal management systems of vehicles with an electric powertrain. More specifically, the battery system and one or more powertrain components and/or cabin climate control components of a vehicle share the same thermal circuit as the battery module through which heat can be exchanged between the battery module and one or more powertrain or climate control components as needed.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: January 30, 2024
    Assignee: QUANTUMSCAPE BATTERY, INC.
    Inventors: Kevin Hettrich, Tomasz Wojcik, Weston Arthur Hermann
  • Patent number: 11872888
    Abstract: A drive system of a hybrid utility vehicle includes: an internal combustion engine including a crank shaft; a continuously variable transmission connected to the internal combustion engine; a drive train that connects an output shaft of the continuously variable transmission to a driving wheel; an electric motor; a branch train that connects the electric motor to the drive train such that power can be transmitted from the electric motor to the drive train; and an engine clutch that can cut transmission of rotational driving power, which has been input from the electric motor through the branch train to the drive train, to the internal combustion engine.
    Type: Grant
    Filed: June 3, 2022
    Date of Patent: January 16, 2024
    Assignee: KAWASAKI MOTORS, LTD.
    Inventor: Yasuhiro Kuji
  • Patent number: 11855470
    Abstract: A system includes a first charger connected to one of an aircraft, a watercraft, and a vehicle having at least one vehicle battery, a second charger connected to an on board battery pack, and at least one programmable logic controller (PLC) to: manage communication between the at least one vehicle battery and the first charger to ensure that the at least one vehicle battery reaches a preset state of charge (SOC), manage communication between the on board battery pack and the second charger to ensure that the on board battery pack reaches the preset SOC, and manage transfer of energy from the on board battery pack to the at least one vehicle battery.
    Type: Grant
    Filed: September 22, 2022
    Date of Patent: December 26, 2023
    Assignee: Fluidity Power LLC
    Inventor: Jeffrey James Ricketts
  • Patent number: 11807216
    Abstract: A controller and a control method for a hybrid electric vehicle are provided. An internal combustion engine and a first rotating electric machine are capable of applying power to a driven wheel via a power split device. A deactivating process deactivates combustion control in a deactivated cylinder that corresponds to one or more of cylinders of the internal combustion engine. A first compensation process sets, when the deactivating process is executed, torque of the first rotating electric machine to be larger than torque of the first rotating electric machine obtained prior to starting the deactivating process so as to compensate for at least some of a decrease amount of torque of the internal combustion engine resulting from the deactivating process.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: November 7, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Nose, Yuto Ikeda, Suguru Kumazawa, Takanobu Gotoh
  • Patent number: 11787387
    Abstract: A thermal management system for an energy storage container includes an enclosed compartment containing an energy storage unit, an air temperature control unit configured to cool an interior of the enclosed compartment, and at least one inverter connected to a coolant circuit, which is separate from the air temperature control unit, and configured to be cooled by a coolant in the coolant circuit. The thermal management system also includes a radiator located outside of the enclosed compartment, the radiator being connected to the coolant circuit, wherein the coolant in the coolant circuit flows through the radiator, and at least one fan located alongside the radiator, outside of the enclosed compartment, the at least one fan being configured to blow air across the radiator to cool the coolant flowing through the radiator.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: October 17, 2023
    Assignee: Caterpillar Inc.
    Inventors: Umakanth Sakaray, John M. Tanner, Marvin Baer, Nirag Sheth, Christopher Derham, Jeremiah Raveling
  • Patent number: 11780317
    Abstract: A drive unit (100) is provided with a first electric machine (110), a second electric machine (120), a first shaft (130) and an output shaft (140). A rotor (111) of the first electric machine (110) is rotationally fixed to the first shaft (130), and a rotor (121) of the second electric machine (120) is rotationally fixed to the output shaft (140). The drive unit (100) also includes a separating clutch (150) and a connection element (230) for the rotationally fixed connecting of an internal combustion engine, and a first gear ratio step (142) is arranged between the connection element (230) and the shafts (130, 140) with a gear ration i<1. The drive unit (100) has an electro-mechanical parking lock unit (1) with which a rotational movement of the output of the first gear ratio step (142) can be blocked.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: October 10, 2023
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventors: Andreas Trinkenschuh, Steffen Lehmann, Peter Greb, Laszlo Man
  • Patent number: 11772813
    Abstract: A method of managing risks and alerts for a system. The system includes source modules and auxiliary modules for identifying actual or potential risks of failures or of malfunctions of the system. A central module of the system serves to determine actual or potential risks of failures or of malfunctions of the system and actual or potential risks associated with parameters external to the system and that might have impacts on operation of the system. Then, an overall risk level is determined by combining the various actual or potential risks and their effects on the system, and then an action and information interface may be controlled as a function of the overall risk level, e.g. for modifying a display of information relating to the system and/or to its environment, or indeed for automatically performing an action on the system.
    Type: Grant
    Filed: March 14, 2021
    Date of Patent: October 3, 2023
    Assignee: AIRBUS HELICOPTERS
    Inventors: Jean-Louis Quintana, Herve Rouat, Jean-Marc Quiot, Marc Greiller
  • Patent number: 11760208
    Abstract: A method and system for controlling high voltage power of an electric vehicle to efficiently control outputs of power control object parts by controlling low-level controllers provided in the power control object parts through a high-level controller having various types of vehicle information, may include a power state monitoring step in which a high-level controller detects power variations in power control object parts through low-level controllers provided in the power control object parts, a power state determination step in which the high-level controller determines a stable power supply state and an unstable power supply state for the power control object parts on the basis of a preset power reference value, and a load output control step in which the high-level controller controls all load outputs for the power control object parts according to the stable power supply state and the unstable power supply state.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: September 19, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Mun Soon Kwon
  • Patent number: 11698131
    Abstract: An actuating device for actuating gear shifting units of a manual transmission has deflectable transmission elements assigned to a respective gear shift unit for changing the gear ratio, a movable actuating element, and gear shift elements assigned thereto. The gear shift elements are movable together with the actuating element and are arranged in two gear shift groups. Dependent on a selecting position of the actuating element, the gear shift elements are coupled with coupling means for deflecting the transmission elements by means of a shifting movement. The shifting movement is independent of the selecting movement. The selecting position can be changed in selecting steps that are delimited by a selecting step length. At least one first gear shift element has an interconnected first gear shift length which is greater than the selecting step length.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: July 11, 2023
    Assignee: Schaeffler Technologies AG & Co. KG
    Inventor: Dominik Hans
  • Patent number: 11674489
    Abstract: A system for operating a vehicle, which has an internal combustion engine, an electric machine, a front axle with front wheels, a rear axle with rear wheels and a battery. The system is provided that the electric machine is in a direct force-acting relationship to the rear axle. The system includes at least one primary clutch arrangement, via which the electric machine can be connected to the wheels of at least one axle, and a secondary clutch arrangement via which the electric machine can be connected to the internal combustion engine. For starting the internal combustion engine, the electric machine is to be separated from the wheels of the at least one axle via the at least one primary clutch arrangement and is to be connected to the internal combustion engine via the secondary clutch arrangement.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: June 13, 2023
    Assignee: AUDI AG
    Inventor: Henning Nieβing
  • Patent number: 11654885
    Abstract: A coasting regeneration control method of a vehicle equipped with a continuously variable valve duration (CVVD) engine includes: determining, by an engine control unit (ECU), whether a current state of the vehicle satisfies coasting regeneration conditions; and entering, by the ECU, a coasting regeneration mode and performing regenerative braking when the current state of the vehicle satisfies the coasting regeneration conditions, in which when the coasting regeneration mode is entered, a throttle valve is fully opened so that the amount of intake air of the engine is maximized, a CVVD target duration is controlled to be maximized, and a closing time of an intake valve is delayed after a start point of time of a compression stroke, thereby decreasing pumping loss of the engine.
    Type: Grant
    Filed: June 30, 2021
    Date of Patent: May 23, 2023
    Assignee: Hyundai Kefico Corporation
    Inventors: Young Ho Jun, Jung Min Yoon
  • Patent number: 11654887
    Abstract: A hybrid vehicle control method for a hybrid vehicle is provided for a drive system including an internal combustion engine, a generator that is driven by the internal combustion engine, and a battery that is charged with electric power generated by the generator. A target power generated by the generator is set and the target engine output is calculated for the internal combustion engine according to the target generated power. The air density in the environment in which the vehicle travels is detected. The target engine output is corrected based on the detected air density with respect to the decrease in air density, and the generated power of the generator is made to follow the target generated power. The execution of air density correction is permitted or stopped depending on an operating state of the drive system.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: May 23, 2023
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Hidekatsu Akiyama
  • Patent number: 11634114
    Abstract: An apparatus and a method for controlling a hybrid vehicle are provided. The apparatus includes an engine that generates power by combusting fuel and a drive motor that supplements the power from the engine and operates selectively as an electric generator to produce electrical energy. A clutch is disposed between the engine and the drive motor and a battery supplies electrical energy to the drive motor and is charged with the electrical energy produced by the drive motor. Multiple electric superchargers are installed in multiple intake lines through which outside air to be supplied into a combustion chamber of the engine flows. A controller determines an operation mode of the multiple electric superchargers based on required power of a driver and a state of charge (SOC) of the battery and adjusts the power output from the engine and the power output from the drive motor.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: April 25, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Yong Kak Choi, Hyun Woo Lim, Buhm Joo Suh, Jinkuk Cho, Kwanhee Lee, Sungchan Na, Yeongseop Park, Jihyun Park, Seungwoo Hong, Dong Hee Han, Hyunjin Kang
  • Patent number: 11618429
    Abstract: A thermal management system for an energy storage container includes an enclosed compartment containing an energy storage unit, an air temperature control unit configured to cool an interior of the enclosed compartment, and at least one inverter connected to a coolant circuit, which is separate from the air temperature control unit, and configured to be cooled by a coolant in the coolant circuit. The thermal management system also includes a radiator located outside of the enclosed compartment, the radiator being connected to the coolant circuit, wherein the coolant in the coolant circuit flows through the radiator, and at least one fan located alongside the radiator, outside of the enclosed compartment, the at least one fan being configured to blow air across the radiator to cool the coolant flowing through the radiator.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: April 4, 2023
    Assignee: Caterpillar Inc.
    Inventors: Umakanth Sakaray, John M. Tanner, Marvin Baer, Nirag Sheth, Christopher Derham, Jeremiah Raveling
  • Patent number: 11573092
    Abstract: A control system for a hybrid vehicle includes: an electric heater configured to heat a catalyst of an internal combustion engine; a position determination unit configured to determine whether the hybrid vehicle is located in an exit area of a low emission zone where operation of the internal combustion engine is supposed to be restricted, the exit area being an area adjacent to a boundary of the low emission zone; and a heater control unit configured to turn on the electric heater when the position determination unit determines that the hybrid vehicle is located in the exit area.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: February 7, 2023
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yoshiyuki Kageura, Daiki Yokoyama, Kosuke Yamamoto, Hideto Wakabayashi, Yoshifumi Hayashi
  • Patent number: 11571959
    Abstract: A power transmission device for a hybrid vehicle may include: an engine part; a transfer part configured to transfer power of the engine part; a motor part configured to provide power to the transfer part, and driven when power is applied thereto; and a plurality of torsion damper parts disposed between the engine part and the motor part, and connected in series.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 7, 2023
    Assignee: Hyundai Transys Inc.
    Inventor: Tae Hoon Kim
  • Patent number: 11566533
    Abstract: An electrical machine includes a stator assembly coupled to an engine stator component of a propulsion engine. The stator assembly includes a stator support assembly fixedly attached to the engine stator component and a stator disposed on the stator support structure. An electrical machine shaft is coupled to an end of a shaft of the propulsion engine via an intermediate shaft member extending axially between the end of the shaft and the electrical machine shaft. A bearing support frame extends from the propulsion engine, the bearing support frame defining a bearing cavity in conjunction with the electrical machine shaft. Electrical machine bearings radially extend from the bearing support frame to rotatably contact the electrical machine shaft. A rotor attached to a rotor support structure attached to the electrical machine shaft. The rotor rotates in conjunction with the electrical machine shaft to exchange energy with the shaft of the propulsion engine.
    Type: Grant
    Filed: February 8, 2021
    Date of Patent: January 31, 2023
    Assignees: General Electric Company, General Electric Company Polska sp. z o.o., General Electric Deutschland Holding GmbH
    Inventors: Miroslaw Czarnik, Adam Tomasz Pazinski, Bartłomiej Drozd, Darek Zatorski, Maciej Krzysztof Grunwald, Mohamed Osama, John R. Yagielski
  • Patent number: 11563225
    Abstract: A method of controlling an air compressor motor for a fuel cell vehicle is provide. The method includes calculating a counter electromotive force constant of the air compressor motor based on a voltage and a current of the air compressor motor for the fuel cell vehicle supplying air to a fuel cell stack and a rotation speed of the air compressor motor. The method additionally includes determining whether a permanent magnet of the air compressor motor is demagnetized based on a result of comparison between the calculated counter electromotive force constant value and a pre-set counter electromotive force constant design value.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: January 24, 2023
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sung Do Kim, Min Su Kang, Chang Seok You, Dong Hun Lee
  • Patent number: 11554875
    Abstract: A method of electrically powering a non-voltage-regulated electricity network, and also to an electrical architecture. The electrical architecture comprises: a plurality of sources of electrical energy including both at least one rechargeable electrical energy storage device and also an electrical power generation device a main electricity network electrically connected directly to the sources of electrical energy; and pieces of electrical equipment electrically powered by the main electricity network. The method comprises both a first powering step for electrically powering the main electricity network by the rechargeable electrical energy storage device and also a second powering step for electrically powering the main electricity network by the electrical power generation device, followed by a regulating step for regulating an internal voltage of the electrical power generation device as a function of the first power delivered by the rechargeable electrical energy storage device.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: January 17, 2023
    Assignee: AIRBUS HELICOPTERS
    Inventors: Marc Gazzino, Christophe Mouton
  • Patent number: 11548519
    Abstract: The disclosure relates to a method for calibrating a drive system for an axle of a motor vehicle; wherein the drive system includes at least one electric machine as the drive unit, a drive shaft driven by the drive unit, a first output shaft and a second output shaft, as well as a first clutch connecting the drive shaft to the first output shaft and a second clutch connecting the drive shaft to the second output shaft.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: January 10, 2023
    Assignee: GKN Automotive Ltd.
    Inventors: Volker Rene Ruiters, Andreas Langhanki
  • Patent number: 11325455
    Abstract: A hybrid powertrain for a vehicle includes a first input shaft connected to an engine, a second input shaft connected to the engine and coaxially mounted with the first input shaft, a motor input shaft coaxially mounted with the first input shaft and connected to a motor, first and second output shafts mounted in parallel to the first input shaft and the second input shaft, first and second drive gears connected to the motor input shaft, a first driven gear engaged with the first drive gear, a second driven gear engaged with the second drive gear, a complex synchronizer to couple and separate the first input shaft and the motor input shaft and to couple and separate the first drive gear and the motor input shaft, a third clutch to couple and separate the second drive gear and the motor input shaft, and a plurality of external gear pairs configured to respectively define different gear ratios.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: May 10, 2022
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventor: Jong Yun Park
  • Patent number: 9043065
    Abstract: A vehicle is supplied by a first electrical energy storage unit on board the vehicle, and a ground electrical network providing an energy supply by application of a supply voltage through electrical distribution. The first energy storage unit is controllable under a generator regime or a receiver regime. The supply voltage is adjusted, in the generator regime, by applying an algebraically additive supply voltage originating from the first electrical storage unit to the distribution, to maintain a supply voltage above a minimum threshold. In the receiver regime, if a surplus of supply voltage originating at least partially from a second storage unit in the generator regime is detected above the minimum threshold, this surplus is channeled energetically to the first energy storage unit of the vehicle if it is required for operating the vehicle and enables maintaining the supply voltage below a maximum threshold and above the minimum threshold.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: May 26, 2015
    Assignee: Siemens S.A.S.
    Inventors: Xavier Bavard, Eric Chattot, Jean-Noël Verhille
  • Publication number: 20150128589
    Abstract: A turbocharger system may include an air storage tank provided in a vehicle so as to supply compressed air to an intake manifold of the vehicle provided with a turbocharger, a compressor connected to the air storage tank to supply compressed air to the air storage tank, and a compressed air guidance device connected to the air storage tank and provided in the intake manifold to guide mixing of the compressed air of the air storage tank with introduced atmospheric air.
    Type: Application
    Filed: March 27, 2014
    Publication date: May 14, 2015
    Applicant: Hyundai Motor Company
    Inventor: Seung-Gi KIM
  • Patent number: 9031726
    Abstract: A method and a device are provided for operating a pre-lubrication system for an internal combustion engine of a hybrid electrical vehicle after vehicle start up, wherein the hybrid electrical vehicle also comprises. The electric engine is turned on at vehicle start up and the internal combustion engine is turned on at vehicle start up or after a period of time after vehicle start up. The pre-lubrication system comprises an engine control function for controlling the internal combustion engine, monitoring the torque requested by a driver and storing information regarding when the driver requests torque equal to or higher than a predetermined torque threshold. The cranking operation of the internal combustion engine, in order to build up oil pressure and fill the oil circuit with oil, is initiated based on the stored information or when the electrical hybrid vehicle reaches a predetermined vehicle speed threshold.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: May 12, 2015
    Assignee: Volvo Car Corporation
    Inventors: Rob J. Otterspeer, Ingvar Akesson
  • Publication number: 20150113980
    Abstract: A system and method for operating an engine turbocharger is described. In one example, the turbocharger is rotated in different directions in response to operating conditions. The system and method may reduce engine emissions.
    Type: Application
    Filed: January 6, 2015
    Publication date: April 30, 2015
    Inventors: William Charles Ruona, Kevin Durand Byrd, Keith Michael Plagens
  • Patent number: 9020670
    Abstract: A torque management strategy for an HEV having an engine operating with a fixed throttle position to better manage NVH while the vehicle is stationary or decelerating and the engine is generating more torque than a requested torque uses excess engine torque to charge the battery until the requested torque is below a torque loss threshold. Partial fuel injector cut off is avoided to reduce or eliminate associated NVH by adjusting a misfire torque limit to the expected or estimated engine torque produced during operation at the fixed throttle position until the requested torque results in complete fuel cut off to all cylinders.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: April 28, 2015
    Assignee: Ford Global Technologies, LLC
    Inventors: Osama A. Abihana, Douglas Raymond Martin
  • Patent number: 9020734
    Abstract: An apparatus for selecting operating conditions of a genset, the apparatus including a processor circuit configured to select a set of operating points from a plurality of operating points of the genset each comprising an engine speed in a generator electrical output value and a plurality of cost values associated with operating the genset at respective operating points such that the sum of the cost values associated with the operating points in said set is minimized and such that the engine speed increases or decreases monotonically with monotonically increasing or decreasing electrical power output values.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: April 28, 2015
    Assignee: GE Hybrid Technologies, LLC
    Inventors: Wei Liu, Nicolas Louis Bouchon
  • Patent number: 9002553
    Abstract: Upon starting an internal combustion engine for a hybrid vehicle, when the motor revolution speed, transmitted to an engagement device, is equal to or lower than the idle revolution speed of the internal combustion engine, if an engagement ratio is less than 1, the lower the engagement ratio is, the larger the engagement capacity is set, and if the engagement ratio is 1 or more, the engagement capacity is set to 0, wherein the engagement ratio is defined by a ratio of the internal combustion engine revolution speed with respect to the motor revolution speed. When the motor revolution speed is greater than the idle revolution speed, if an idle revolution ratio is less than 1, the lower the idle revolution ratio is, the larger the engagement capacity is set, and if the idle revolution ratio is 1 or more, the engagement capacity is set to 0.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: April 7, 2015
    Assignee: Honda Motor Co., Ltd.
    Inventor: Toru Kamoshida
  • Publication number: 20150089943
    Abstract: Systems and methods for operating an engine that includes an exhaust gas heat recovery system are described. The system may selectively or contemporaneously supply energy from engine exhaust gas to generate electricity or warm the engine. In one example, exhaust gas energy raises a temperature of a heat transfer medium and the heat transfer medium is routed to an engine coolant heat exchanger or an expander via a bypass valve.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Quazi Ehtesham Hussain, David Richens Brigham, Mark John Jennings
  • Publication number: 20150090213
    Abstract: A starter arrangement for starting a motor vehicle engine, having a starter ring for connecting to a drive shaft, a starter unit for introducing a starter torque into the starter ring via a starter pinion acting on the starter ring, and a clutch connected to the starter ring for coupling the drive shaft to at least one transmission input shaft of a transmission. The clutch is spaced apart in the axial direction from the starter ring by an axial distance s, a forming reserved installation space for positioning an electric machine for a hybrid drive. The starter unit is positioned at least partially, preferably in large part, within the reserved installation space. A smaller installation space requirement for positioning a drive train in a motor vehicle body is possible by the sharing of the reserved installation space provided for the electric machine.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 2, 2015
    Inventors: Klaus Gausrab, Hannes Christian Bartz, Jochen PflĂĽger, Ronny Brodersen, Werner Seider, Klaus Peter KrĂĽger
  • Publication number: 20150057867
    Abstract: A method and a corresponding apparatus for carrying out a reference measurement on a sensor of an internal combustion engine of a motor vehicle during an overrun phase of the internal combustion engine, in order to detect measurement errors of the sensor. Provision is made that future overrun phases of the internal combustion engine, and the duration of the overrun phases, are predicted on the basis of route data; and that a reference measurement on the sensor is carried out only when the predicted duration of the overrun phase is long enough to carry out the reference measurement completely. With the method and apparatus presented, the functioning of sensors can be monitored during an overrun phase of a motor vehicle having an internal combustion engine.
    Type: Application
    Filed: August 18, 2014
    Publication date: February 26, 2015
    Applicant: Robert Bosch GmbH
    Inventor: Thomas KIRSTAETTER
  • Publication number: 20150051821
    Abstract: A method of controlling a tandem solenoid starter for an automotive system is disclosed. The automotive system includes an internal combustion engine and a controller. The controller is configured to automatically stop and start the internal combustion engine. If a start of the internal combustion engine is initiated and the engine speed is higher than zero, an engagement between a pinion of the tandem solenoid starter and an engine flywheel gear is operated on the basis of an estimation of the engine speed at the time of engagement. The engine speed estimation is a function of a current engine speed and a current angular position of a crankshaft of the engine.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 19, 2015
    Inventor: Matteo Presot
  • Publication number: 20150051772
    Abstract: A drive control device for a hybrid vehicle is provided with a differential device including four rotary elements; and an engine, a first electric motor, a second electric motor and an output rotary member which are respectively connected to the four rotary elements. One of the four rotary elements is constituted by a rotary component of a first differential mechanism and a rotary component of a second differential mechanism selectively connected through a clutch, and one of the rotary components is selectively fixed to a stationary member through a brake. The drive control device comprises: an engine drive control portion configured to temporarily change an output torque of the engine when operating states of the clutch and the brake are changed in respective opposite directions to switch a vehicle drive mode from one of drive modes to another.
    Type: Application
    Filed: March 26, 2012
    Publication date: February 19, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroaki Kiyokami
  • Publication number: 20150051773
    Abstract: A drive control device for a hybrid vehicle is provided with a differential device including four rotary elements; and an engine, first and second electric motors and an output rotary member which are respectively connected to the four rotary elements. One of the four rotary elements is constituted by a rotary component of a first differential mechanism and a rotary component of a second differential mechanism selectively connected through a clutch, and one of the rotary components is selectively fixed to a stationary member through a brake. The drive control device comprises: an engine stop control portion configured to reduce a speed of the engine with the first electric motor, and then initiate an engaging action of at least one of the clutch and the brake, to stop a rotary motion of the engine, when the engine is required to be stopped.
    Type: Application
    Filed: March 26, 2012
    Publication date: February 19, 2015
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Hayashi, Hiroyasu Harada, Tomohito Ono, Hiroyuki Ishii
  • Publication number: 20150046070
    Abstract: Systems and methods for improving operation of a start/stop vehicle are presented. One method includes deactivating an engine start/stop mode in response to an electrical load of a trailer coupled to a vehicle. By deactivating the engine start/stop mode, it may be possible to conserve consumption of electrical energy and maintain state of battery charge to ensure the vehicle has sufficient electrical energy to restart the engine.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 12, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Ahmed Awadi, Mark Douglas Malone, William Najib Mansur
  • Publication number: 20150025722
    Abstract: Methods and systems for fuel system leak detection are disclosed. In one example approach, a method comprises, during an engine-on condition, delivering fuel from a fuel tank to one or more cylinders of the engine while the fuel tank is sealed off from atmosphere, and indicating a leak based on pressure in the fuel tank. For example, a leak may be indicated in response to a pressure decrease in the fuel tank greater than an expected pressure decrease, where the expected pressure decrease is based on a fuel level in the fuel tank.
    Type: Application
    Filed: July 18, 2013
    Publication date: January 22, 2015
    Applicant: Ford Global Technologies, LLC
    Inventors: Russell Randall Pearce, Scott A. Bohr, Aed M. Dudar, Dennis Seung-Man Yang
  • Patent number: 8925660
    Abstract: A power generation system is disclosed. The power generation system includes an electrical converting device and a repowered portion connected to the electrical converting device. The repowered portion includes a reciprocating internal combustion engine and a gearbox. The reciprocating internal combustion engine is connected to the gearbox by a first connecting structure. The gearbox is connected to the electrical converting device by a second connecting structure.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: January 6, 2015
    Assignee: MTU America Inc.
    Inventors: Mark Daniel Bowdich, Douglas Edwin Berry, Bruce Ernest Richard Wolff, Gerhard Kramer, Scott Daniel Woodruff
  • Publication number: 20150005997
    Abstract: Methods and systems are provided for closed-loop adjusting a laser intensity of a laser ignition device of a hybrid vehicle. The laser intensity applied over consecutive laser ignition events is decreased until a flame quality is degraded for a threshold number of cylinder combustion events. The laser intensity is then increased to improve flame quality and the closed-loop adjustment is reiterated.
    Type: Application
    Filed: June 28, 2013
    Publication date: January 1, 2015
    Inventors: Douglas Raymond Martin, Kenneth James Miller
  • Patent number: 8909403
    Abstract: A powertrain includes: an engine provided with a plurality of cylinders; a first motor generator coupled to an output shaft of the engine; and an ECU for controlling them. When misfire in the engine is detected, the output shaft of the engine is rotated by driving the first motor generator with ignition and supply of fuel to the engine being suspended.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: December 9, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshimitsu Yokouchi, Kenji Miyasaka, Tetsuo Hori, Hideto Watanabe
  • Patent number: 8903582
    Abstract: A method of controlling a hybrid automobile is provided. Only a drive force of the motor is outputted to wheels by stopping the engine while operating the motor when a required drive force is below a predetermined switch value, and at least a drive force of the engine is outputted to the wheels by operating at least the engine when the required drive force is above the switch value. The method includes estimating, when the required drive force is below the switch value, a switching possibility of the required drive force increasing above the switch value, operating the engine so that a temperature of a catalyst becomes a first temperature when the estimated switching possibility is above a predetermined level, and operating the engine so that the temperature of the catalyst becomes a second temperature lower than the first temperature when the estimated switching possibility is below the predetermined level.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: December 2, 2014
    Assignee: Mazda Motor Corporation
    Inventors: Kiyotaka Mamiya, Tadayoshi Kaide, Minji Sakaki, Taizo Shoya, Kanichi Yamaguchi, Tetsuya Tateishi
  • Publication number: 20140318504
    Abstract: Methods and systems for purging a hydrocarbon trap in an engine intake in a vehicle are disclosed. In one example approach, a method comprises during an engine off condition, operating a pump in a purge line coupled to a fuel vapor canister in an emission control system to deliver fuel stored in a hydrocarbon trap in an intake of the engine to the fuel vapor canister.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Russell Randall Pearce, Aed M. Dudar, Dennis Seung-Man Yang
  • Patent number: 8868269
    Abstract: A method is provided for controlling a hybrid electric vehicle that includes an internal combustion engine having a cylinder with first and second intake valves and a piston configured to rotate the engine's crankshaft. The method includes determining whether deceleration of the vehicle is desired and ceasing supply of fuel to the cylinder when such condition is satisfied. The method also includes closing the first intake valve at a first predetermined instance and closing the second intake valve at a second predetermined instance via a specifically configured device when the fuel supply has been ceased. The second predetermined instance is after the first predetermined instance relative to rotational position of the crankshaft and magnitude of compression pulses in the cylinder during deceleration is reduced relative to when the cylinder is being fueled. A system for controlling the hybrid vehicle and a vehicle employing such a system are also provided.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: October 21, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Scot A. Douglas, Craig D. Marriott
  • Publication number: 20140297166
    Abstract: An engine controller includes: a warm-up control unit that performs warm-up operation for letting the engine continuously operate until an integration value of air intake of the engine comes to a predetermined integration value in order to warm up a catalyst provided in an exhaust system when the engine is first started after start-up of the vehicle; and a continuation control unit that lets the engine continuously operate for a predetermined period subsequent to an end of the warm-up operation. The continuation control unit takes an output value of the engine as a request output value when the request output value of the engine is a predetermined idling output value or more that is smaller than the predetermined warm-up output value and takes the output value as the warm-up output value when the request output value is less than the predetermined idling output value.
    Type: Application
    Filed: March 25, 2014
    Publication date: October 2, 2014
    Applicant: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Jun AIZAWA, Wataru MATSUMURA, Shingo SONODA
  • Patent number: 8826877
    Abstract: A mounting system for powertrain components requiring axial installation and radial removal thereof is provided. A mounting flange is integrally cast with a powertrain component and extends outwardly therefrom. An opening extends through the mounting flange defining a mounting flange axis and axially receives a portion of a powertrain component for support therein, and by the mounting flange. A separation line extends diametrically across the mounting flange to define a separated portion and a remaining portion of the mounting flange. Fasteners are configured to removeably attach the separated portion to the remaining portion to thereby facilitate removal of the powertrain component from the powertrain assembly in a radial direction.
    Type: Grant
    Filed: October 15, 2009
    Date of Patent: September 9, 2014
    Assignee: GM Global Technology Operations LLC
    Inventor: James C. Minneker, Jr.
  • Publication number: 20140247009
    Abstract: A motor vehicle includes at least one electric motor for driving the motor vehicle, at least one electrical energy storage device via which the electric motor can be supplied with electrical current, and a charging device having at least one coil via which electrical energy can be inductively transmitted for charging the electrical energy storage device. An internal combustion engine of the motor vehicle includes a reservoir in which lubricant for lubricating the internal combustion engine can be received and on which the coil, and optionally at least one electronics component associated with the coil, is arranged.
    Type: Application
    Filed: May 16, 2014
    Publication date: September 4, 2014
    Applicant: Bayerische Motoren Werke Aktiengesellschaft
    Inventor: Hubertus DOEPKE
  • Publication number: 20140236408
    Abstract: A method and a device are provided for operating a pre-lubrication system for an internal combustion engine of a hybrid electrical vehicle after vehicle start up, wherein the hybrid electrical vehicle also comprises. The electric engine is turned on at vehicle start up and the internal combustion engine is turned on at vehicle start up or after a period of time after vehicle start up. The pre-lubrication system comprises an engine control function for controlling the internal combustion engine, monitoring the torque requested by a driver and storing information regarding when the driver requests torque equal to or higher than a predetermined torque threshold. The cranking operation of the internal combustion engine, in order to build up oil pressure and fill the oil circuit with oil, is initiated based on the stored information or when the electrical hybrid vehicle reaches a predetermined vehicle speed threshold.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 21, 2014
    Applicant: VOLVO CAR CORPORATION
    Inventors: Rob J. OTTERSPEER, Ingvar AKESSON
  • Publication number: 20140229047
    Abstract: A system and method for recuperating energy from a motor vehicle is described in which during an engine overrun period kinetic energy from the slowing motor vehicle is used to drive a high pressure fuel pump at a high demand level so as to store fuel at high pressure in a fuel accumulator for later use by an engine of the motor vehicle.
    Type: Application
    Filed: January 23, 2014
    Publication date: August 14, 2014
    Applicant: Ford Global Technologies, LLC
    Inventors: Donatus Andreas Josephine Kees, Stuart Alexander Lane
  • Publication number: 20140229091
    Abstract: A diesel fuel control system is provided for a hybrid electric vehicle. The system may include a control unit and an ambient air temperature sensor connected to the control unit. The control unit may be arranged to store information about a cold filter plugging point temperature of fuel. The system may include a connection from a velocity sensor of the vehicle to the control unit and a connection from a diesel temperature sensor. The control unit may be arranged to calculate the temperature of fuel in a fuel filter based on information from the temperature sensors and the velocity sensor, and may be arranged in connection with an engine control unit such that an internal combustion engine is arranged to start if the calculated temperature of the fuel is below the cold filter plugging point.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 14, 2014
    Applicant: VOLVO CAR CORPORATION
    Inventors: Daniel LARSSON, Victor HOFMEIJER
  • Publication number: 20140174059
    Abstract: In a vehicle including an EHC containing a catalyst base material and an insulator insulating the EHC from the outside, an ECU estimates a temperature of the catalyst base material and a temperature of the insulator immediately after a state of the vehicle is switched from a Ready-OFF state to a Ready-ON state, as a base material temperature for determination THcpost and an insulator temperature for determination THipost, respectively. Then, when base material temperature for determination THcpost is lower than a base material threshold temperature THcth and when insulator temperature for determination THipost is lower than an insulator threshold temperature THith, the ECU allows EHC power feed, and otherwise it does not allow but prohibits EHC power feed.
    Type: Application
    Filed: September 1, 2011
    Publication date: June 26, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Hiroshi Katsuta