Stepped Shift (epo/jpo) Patents (Class 903/919)
-
Patent number: 9031727Abstract: A vehicle running control device in a vehicle includes a power connecting/disconnecting device interrupting power transmission between an engine and drive wheels, the vehicle running control device providing free-run control of interrupting the power transmission with the power connecting/disconnecting device and stopping the engine during inertia running, the vehicle running control device being configured to determine a target vehicle deceleration at the start of the free-run control based on a vehicle speed and to estimate an estimated vehicle deceleration when the free-run control is started, before starting the free-run control, and when the estimated vehicle deceleration is closer to the target vehicle deceleration at the start of the free-run control, the free-run control being more easily provided.Type: GrantFiled: February 21, 2014Date of Patent: May 12, 2015Assignee: Toyota Jidosha Kabushiki KaishaInventors: Terufumi Miyazaki, Yukihiko Ideshio, Toshihiko Kamiya, Shingo Eto, Hironori Asaoka, Yasuyuki Kato
-
Publication number: 20150080162Abstract: A center distance D1 from a motor shaft connected to an electric motor and a generator shaft connected to a generator to a clutch shaft including a wet multiple disc clutch is set longer than a distance Dm from the axial center of the electric motor, that is, the axial center of the motor shaft to the outermost circumference of a housing, which houses the electric motor.Type: ApplicationFiled: August 11, 2014Publication date: March 19, 2015Inventor: Sumio MOTOYAMA
-
Publication number: 20150021110Abstract: A driving device for a hybrid vehicle including a power transmission mechanism (10) that is connected to an engine (1) and transmits a rotation of the engine; a differential mechanism (20) that connects the power transmission mechanism to driving wheels (32); and a switching device (CL1, BK1) that performs speed change of the power transmission mechanism, wherein the differential mechanism includes a first rotary element (24) that is connected to an output element (13) of the power transmission mechanism, a second rotary element (21) that is connected to a first rotating electrical machine (MG1) and a third rotary element (23) that is connected to the second rotating electrical machine (MG2) and the driving wheels, and wherein the rotation of the output element of the power transmission mechanism is limited by the switching device.Type: ApplicationFiled: February 1, 2012Publication date: January 22, 2015Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHAInventors: Tomohito Ono, Yuji Iwase, Makoto Funahashi, Atsushi Tabata, Tooru Matsubara, Tatsuya Imamura, Koichi Okuda, Hideaki Komada
-
Patent number: 8795115Abstract: A hybrid dual configuration transmission for a vehicle having an electric motor, planetary gear set and a plurality of gear meshes is disclosed herein. The hybrid dual configuration transmission provides for a plurality of electrically variable transmission operating modes and a plurality of fixed gear operating modes. The hybrid dual configuration transmission may be operated utilizing exclusively the electric motor, exclusively an engine, or any combination of the electric motor and engine.Type: GrantFiled: February 13, 2012Date of Patent: August 5, 2014Assignee: Chrysler Group LLCInventor: Dumitru Puiu
-
Patent number: 8634987Abstract: A creep travel capability of an electric vehicle is secured when an abnormality occurs in a brake sensor. When an accelerator operation amount reaches 0% in a low vehicle speed region, a target creep torque is set, whereupon a motor-generator is controlled toward the target creep torque. The target creep torque is reduced as a brake pedal is depressed in order to suppress heat generation and the like in the motor-generator during vehicle braking. Hence, in an electric vehicle in which the target creep torque is varied in accordance with the brake operation amount, when an abnormality occurs (step S11) in a brake sensor for detecting a brake operation amount, a preset prescribed creep torque is employed as the target creep torque regardless of the brake operation amount (step S15). The prescribed creep torque is set at a required magnitude for securing the creep travel capability.Type: GrantFiled: February 24, 2010Date of Patent: January 21, 2014Assignee: Fuji Jukogyo Kabushiki KaishaInventors: Itaru Seta, Yosuke Ohtomo
-
Patent number: 8523736Abstract: A control apparatus for a vehicular power transmitting system includes a shifting-point changing portion configured to change a shifting point at which a determination to perform a shifting action of a transmission portion is made, such that a shifting portion is changed according to a shifting response of the transmission portion. Alternatively, the control apparatus includes a shift-control start-point changing portion configured to change a shift-control start point at which the determination to perform the shifting action is made, such that the shift-control start point is changed according to the shifting response of the transmission portion, and a compulsory shift-control starting portion configured to make the determination when an operating point of a differential portion electric motor has reached the shift-control start point.Type: GrantFiled: July 20, 2012Date of Patent: September 3, 2013Assignee: Toyota Jidosha Kabushiki KaishaInventors: Tatsuya Imamura, Yuji Iwase, Atsushi Tabata, Kenta Kumazaki, Tooru Matsubara
-
Publication number: 20120214634Abstract: A transmission is provided having an input member, an output member, four planetary gear sets, a plurality of coupling members and a plurality of torque transmitting devices. Each of the planetary gear sets includes first, second and third members. The torque transmitting devices may include clutches and brakes.Type: ApplicationFiled: December 7, 2011Publication date: August 23, 2012Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Edward W. Mellet, James B. Borgerson, James M. Hart
-
Publication number: 20120196713Abstract: A kinetic hybrid device and method for a vehicle may include a planetary gear system configured as a continuously variable transmission comprised of three or four ports. The kinetic hybrid device and method may include a flywheel connected to a first port of the system, a final drive connected to a second port of the system, and the variator for the flywheel connected to a third or fourth port of the system. The prime mover and/or other power sources may share a port with the flywheel, but do not share a port with the final drive.Type: ApplicationFiled: January 31, 2012Publication date: August 2, 2012Inventors: Jing He, Hongping He
-
Publication number: 20120178568Abstract: An electric motor damping module includes an electric motor, a motor damper continuously interconnected with the electric motor, and an input member continuously interconnected with the motor damper. A transmission includes these elements, plus an output member, first, second, and third planetary gear sets each having first, second and third members, a first interconnecting member continuously interconnecting the third member of the first planetary gear set with the second member of the second planetary gear set, a second interconnecting member continuously interconnecting the second member of the first planetary gear set and the output member with the third member of the third planetary gear set, and a third interconnecting member continuously interconnecting the third member of the second planetary gear set with the second member of the third planetary gear set. The transmission also includes six torque transmitting mechanisms and a hydraulic pump. A sealing assembly is also provided.Type: ApplicationFiled: December 14, 2011Publication date: July 12, 2012Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLCInventors: Norman Schoenek, Shawn H. Swales, Min-Joong Kim, Leonid Basin
-
Patent number: 8099179Abstract: A dual-redundant propulsion-by-wire control architecture with robust monitoring is presented to increase system availability without compromising safety. The dual-redundant controllers are able to cross-monitor and self-monitor. Self monitoring is effected at the application level and built-in system tests are performed. The monitor functions are set as high priority tasks. The first controller controls operation of a first propulsion system, monitors operation of a second controller, and, self-monitors. The second controller controls operation of a second propulsion system, monitors operation of the first controller, and, self-monitors. Each controller is operable to identify faults occurring in the first and the second controller, and implement an alternate operating control scheme for the respective propulsion system when a fault is identified. The first controller is signally connected to the second controller by substantially redundant communications buses.Type: GrantFiled: September 9, 2005Date of Patent: January 17, 2012Assignee: GM Global Technology Operations LLCInventors: Sanjeev M. Naik, Pradyumna K. Mishra, Soila M. Pertet
-
Publication number: 20110306463Abstract: An automated manual transmission system (1) including an input shaft (4), a clutch, an output shaft (6), and a gear-box enabling selection of different transmission ratios between the input shaft and the output shaft (6). An actuation mechanism (10) is operatively connected to the clutch and the gearbox to effect disengagement and re-engagement of the clutch and coordinated selection of the transmission ratios. A hybrid motor (14) is operably connected to the output shaft (6) and a control system (16) is operable to regulate the actuating mechanism in response to control inputs, to effect automatic gear changes. The hybrid motor (14) is responsive to the control system (16) to provide supplementary torque to the vehicle driveline when the clutch is disengaged, to reduce torque interruption in the driveline.Type: ApplicationFiled: December 17, 2009Publication date: December 15, 2011Applicant: NT CONSULTING INTERNATIONAL PTY, LTD.Inventors: Richard Terrence Tamba, Simon Fitzgerald
-
Patent number: 7957856Abstract: An ECU calculates a drive torque request value Td0 (S102) when a creep torque generation condition is satisfied (YES in S100), calculates a creep torque reflection rate Kcrp using a gear rattle prevention map instead of an ordinary map (S110) when a vehicle speed V is substantially zero and an engine is in a load drive state (YES in S106 and NO in S108) while a forward drive range is being selected (YES in S104), and calculates a product of Td0 and Kcrp as a creep torque request value Tp (S114). The ordinary map is a map decreasing Kcrp to 0 with increase in brake torque, and the gear rattle prevention map is a map decreasing Kcrp to a predetermined value larger than 0 with increase in brake torque.Type: GrantFiled: September 14, 2009Date of Patent: June 7, 2011Assignee: Toyota Jidosha Kabushiki KaishaInventor: Takao Itoh
-
Patent number: 7693637Abstract: A vehicle control system is comprised of a controller which is arranged to select an optimal mode adapted to a driving point of a vehicle from an optimal mode map of defining a plurality of running modes of the vehicle, to detect a generation of a mode transition in the optimal mode map, and to hold a current running mode selected before the transition for a holding time period when the generation of the mode transition is detected.Type: GrantFiled: July 1, 2005Date of Patent: April 6, 2010Assignee: Nissan Motor Co., Ltd.Inventors: Michel Mensler, Shinichiro Joe
-
Patent number: 7611433Abstract: A dual-clutch transmission for use in a motor vehicle having an engine and a driveline includes an output shaft adapted for connection to the driveline and a planetary gearset in constant driving engagement with the output shaft. An input shaft is driven by the engine. A first constant mesh gearset is in selective driving communication with a first member of the planetary gearset. A second constant mesh gearset is in selective driving communication with a second member of the planetary gearset. A first clutch is operable for establishing a releasable drive connection between the input shaft and the first constant mesh gearset. A second clutch is operable for establishing a releasable drive connection between the input shaft and the second constant mesh gearset. A motor is selectively drivingly coupled to a third member of the planetary gearset.Type: GrantFiled: April 17, 2007Date of Patent: November 3, 2009Assignee: Magna Powertrain USA, Inc.Inventor: John R. Forsyth
-
Publication number: 20090250273Abstract: An automotive drive system includes a transmission comprising a plurality of gears, an electric motor having a rotor and being coupled to the transmission such that operation of the electric motor causes actuation of the gears, and a sensor assembly coupled to and located on the exterior of at least one of the transmission and the electric motor, the sensor assembly being configured to detect movement of at least one of the rotor and the plurality of gears and generate a signal representative thereof.Type: ApplicationFiled: March 31, 2009Publication date: October 8, 2009Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.Inventors: WILLIAM S. REED, DAN H. NGUY, CHRISTOPHER J. BOWES
-
Patent number: 7529607Abstract: A method for controlling selection of an automatic transmission gear ratio with staged ratios or constant variation for a vehicle including a control for preventing/allowing extension of the gear ratio or for controlling a shortening the transmission gear ratio if, at a current engine speed, the power is insufficient for maintaining the vehicle speed. The method prevents extension of the transmission gear ratio if the power available after the extension is insufficient for maintaining the vehicle speed; otherwise allowing extension of the transmission gear ratio.Type: GrantFiled: November 18, 2003Date of Patent: May 5, 2009Assignee: Renault S.A.S.Inventor: Olivier Aubert
-
Patent number: 7191859Abstract: A driving apparatus comprises an electric generator driven by an engine and a motor for driving driving-wheels by using electric power from the electric generator, wherein an engine-side input axle is linked to a crankshaft and an motor-side input axle is linked to a motor rotor and these input axles are linked to an output axle for transmitting power to the driving-wheels. In an engine-power transfer channel constituted by the engine-side input axle 18 and the output axle, there is provided a transmission for changing a revolution speed of the engine-power transfer channel to a plurality shift ranges. When a vehicle is engine-driven, the revolution speed of the engine-power transfer channel is changed, thereby allowing a drive force of the vehicle to be changed.Type: GrantFiled: January 13, 2004Date of Patent: March 20, 2007Assignee: Fuji Jukogyo Kabushiki KaishaInventor: Takenori Hashimoto