Flow Of Fluid Mixture To Sorber Stopped Or Diverted To Other Equipment, Or Sorbent Regenerated Patents (Class 95/11)
  • Patent number: 8506675
    Abstract: A composite desiccant material is formed by a porous, absorbent substrate of PVA foam or non-woven fibrous sheet is soaked in a solution of a hygroscopic desiccant such as CaCl2. The desiccant is held in pores or fibrous entraining areas sized ranging from 50 microns to 1000 microns. Thin sheets are arranged in a stack in a multi-chamber system, while in an absorption state, uses this stack in a main chamber to absorb H20 from atmospheric gas flowing through that chamber. In a regeneration state atmospheric flow is stopped and low-grade energy releases the H20 from the desiccant into that chamber. Fans circulate moist air through the main chamber and into an adjacent chamber for H20 transfer through or past a partially permeable barrier into a cooling/condensing area. Both H20 and dry gas may be produced.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: August 13, 2013
    Inventor: Joseph Ellsworth
  • Patent number: 8475564
    Abstract: The present invention provides a biomass dryer/burner having an air cleaning apparatus adapted to accept emissions from the biomass dryer/burner and to convert said emissions to clean air to meet government emission standards. The biomass dryer/burner unit includes a dryer adapted to dry biomass, such as demolition waste or cut trees. The biomass dryer/burner unit optionally including a burner adapted to burn biomass. The biomass dryer/burner further producing emissions requiring cleaning before exhausting to the atmosphere. The air cleaning apparatus including a spray scrubber fluidly connected to the biomass dryer/burner adapted to moisten emissions, a recirculation tank in fluid communication with a collection tank, and the recirculation tank further having a sensor adapted to measure contaminant levels contained within the recirculation air filtration system. The sensor contained within the recirculation tank measures levels of carbon monoxide.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: July 2, 2013
    Inventor: Peter Valente
  • Patent number: 8475563
    Abstract: In a method of treating a gas stream, an aqueous scrubbing liquor is circulated through an essentially closed loop (20) comprising an electrochemical unit (48) for reducing the acidity of the liquor. A portion of the circulating liquor is diverted away from the closed loop (20) to a gas scrubbing unit (10). The gas stream enters the scrubbing unit (10), wherein an acid, for example HF and solid particulates, for example SiO2 particulates, within the gas stream dissolve in the diverted liquor. The diverted liquor is subsequently returned to the closed loop (20), and is replenished in the scrubbing unit (10) by fresh liquor diverted from the closed loop (20). A device (46) is provided for monitoring the acidity of the liquor at a location within the closed loop (20). The reduction in the acidity of the liquor by the electrochemical cell (48) is controlled depending on the monitored concentration.
    Type: Grant
    Filed: November 28, 2007
    Date of Patent: July 2, 2013
    Assignee: Edwards Limited
    Inventors: Philip Chandler, Christopher Peter Jones, Patrick Fletcher, Christopher Germain
  • Patent number: 8465569
    Abstract: A gas separation unit 102, 200, 300 for permeating a gas out from a pressurized feed mixture includes an input manifold 104, 204, an exhaust manifold, 106, 206 and a permeate assembly 108, 208, 303. The permeate assembly supports one or more permselective foils 130, 132, 218, 232, 318 over a hollow cavity 134, 272, 306 supported by a microscreen element 142, 144, 228, 230, 326. The microscreen element includes non-porous perimeter walls 190, 192, 278 supported on a frame surface and a porous central area 194, 280 supported over the hollow cavity. A porous spacer 138, 140, 174, 234 disposed inside the hollow cavity structurally supports the entire microscreen surface spanning the hollow cavity while also providing a void volume for receiving fluid passing through the porous central area and for conveying the fluid through the hollow cavity.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: June 18, 2013
    Assignee: Protonex Technology Corporation
    Inventors: David Edlund, Paul Osenar, Nathan Palumbo, Ronald Rezac, Matt Steinbroner
  • Patent number: 8409520
    Abstract: Provided is an ozone concentrator including an ozone generator (3), adsorption/desorption columns (4) in which silica gel (6) cooled with a certain-temperature refrigerant (25) for concentrating ozone generated by the ozone generator (3) is packed, a refrigerating machine (23) for cooling the refrigerant (25), a vacuum pump (20) for enhancing a concentration of the ozone in one of the adsorption/desorption columns (4) by discharging mainly oxygen from the silica gel (6) adsorbing the ozone, a plurality of valves (8) to (13) for air pressure operations, for switching passages of gas that is allowed to flow in or flow out with respect to the adsorption/desorption columns (4), and ozone concentration meters (28, 29) for measuring the concentration of the ozone enhanced by the vacuum pump (20), in which a discharge line of the vacuum pump (20) is connected to another one of the adsorption/desorption columns (4), whereby the ozone is allowed to pass through another one of the adsorption/desorption columns again.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: April 2, 2013
    Assignees: Mitsubishi Electric Corporation, Toshiba Mitsubishi-Electric Industrial Systems Corporation
    Inventors: Koji Ota, Yasuhiro Tanimura, Yoichiro Tabata, Yujiro Okihara, Tetsuya Saitsu, Noriyuki Nakamura, Ryohei Ueda
  • Publication number: 20130074689
    Abstract: A device for adsorption treatment of a fluid or fluid stream, comprising a container for receiving adsorber material, wherein the container has a fluid inlet opening and a fluid outlet opening, and two fluid connection devices, wherein one of the fluid connection devices is provided at the fluid inlet opening and the other one of the fluid connection devices is provided at the fluid outlet opening, wherein the fluid connection devices are locked in a fluid-tight manner and are designed in such a way that they can each be connected to a fluid line connector and unlocked and, if they are connected to the respective fluid line connector they can be unlocked or are unlocked.
    Type: Application
    Filed: April 13, 2011
    Publication date: March 28, 2013
    Applicant: Clariant Produkte (Deutschland) GmbH
    Inventors: Hans-Georg Anfang, Christian Hamel, Norbert Modl
  • Patent number: 8394171
    Abstract: Embodiments of methods for controlling impurity buildup on adsorbent for a pressure swing adsorption (PSA) process are provided. The method comprises the steps of operating the PSA process including performing (a) a first depressurizing equalization step, and (b) a providing purge step. Impurities are sensed in an effluent from the PSA process. If the impurities sensed in the effluent have reached a predetermined upper impurity level, then the PSA process is operated including performing (b) and not (a).
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: March 12, 2013
    Assignee: UOP LLC
    Inventors: Wim Frans Elseviers, Stephan Laux
  • Patent number: 8366803
    Abstract: The invention relates to an air cleaner, and more particularly to an air cleaner which includes a regenerative deodorizing filter to purify and treat gaseous substances contained in air, thus enabling efficient regeneration of the regenerative deodorizing filter, and a method of regenerating the filter of the air cleaner.
    Type: Grant
    Filed: April 23, 2008
    Date of Patent: February 5, 2013
    Assignee: Enbion Inc.
    Inventor: Hyun Jae Lee
  • Patent number: 8337585
    Abstract: A counter flow scrubber column and method for removing volatile organic compounds from a fluid stream using a packed column, a columns with trays and a biodiesel or a biomass and allowing a user to view the status of the cleaned vapor using an executive dashboard 24 hours a day, 7 days a week.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: December 25, 2012
    Assignee: Vapor Point, LLC
    Inventors: Jefferey St. Amant, Kenneth R. Matheson
  • Patent number: 8313555
    Abstract: A method and system for automated control of the operating temperature setpoint of a circulating fluidized bed (CFB) scrubber within a pre-determined range of approach temperatures to the adiabatic saturation temperature of the CFB scrubber exhaust stream to maintain an optimal operating temperature, thereby reducing low temperature sulfuric acid corrosion and deposition of wet materials, and high temperature excess reagent use. A Dewcon® Moisture Analyzer (or equivalent) is connected in the exhaust stream of the CFB scrubber. The Dewcon® Moisture Analyzer transmits adiabatic saturation temperature data of the exhaust stream to the CFB scrubber system controller. Based on pre-programmed parameters, the system controller adjusts the CFB scrubber temperature setpoint.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: November 20, 2012
    Assignee: Allied Environmental Solutions, Inc.
    Inventor: Paul E. Petty
  • Publication number: 20120234165
    Abstract: Embodiments of methods for controlling impurity buildup on adsorbent for a pressure swing adsorption (PSA) process are provided. The method comprises the steps of operating the PSA process including performing (a) a first depressurizing equalization step, and (b) a providing purge step. Impurities are sensed in an effluent from the PSA process. If the impurities sensed in the effluent have reached a predetermined upper impurity level, then the PSA process is operated including performing (b) and not (a).
    Type: Application
    Filed: March 17, 2011
    Publication date: September 20, 2012
    Applicant: UOP LLC
    Inventors: Wim Frans Elseviers, Stephan Laux
  • Patent number: 8231706
    Abstract: A method for separating methane and carbon dioxide from biogas and a device are intended for purifying biogas, wherein carbon dioxide is separated off from the biogas. The method is distinguished by an energetically favorable mode of operation. The biogas is passed under atmospheric pressure and standard temperature into an absorption column. While the biogas ascends through a packed bed, which has a surface area of 600 to 1200 m2/m3, and at a space velocity of 5 to 40 Nm3/m3h, carbon dioxide present in the biogas is bound in a wash liquid by chemosorption. The purified methane gas is taken off at the top of the absorption column at a defined flow velocity. Carbon dioxide bound in the wash liquid is removed by desorption at a relatively high pressure of 2 to 30 bar and a temperature of at least 120° C. Biogas may be separated into methane and CO2.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: July 31, 2012
    Assignee: MT-Biomethan GmbH
    Inventor: Lothar Günther
  • Patent number: 8202351
    Abstract: A process for gas purification or separation intended to produce a gas mixture containing mainly hydrogen and, to a minor extent CO, it being imperative for the CO content to remain below a set value is presented. This invention particularly relates to adsorption processes and even more particularly to processes of the PSA (“Pressure Swing Adsorption”) type.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: June 19, 2012
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude Et l'Exploitation des Procedes Georges Claude
    Inventors: Christian Monereau, Pluton Pullumbi, Guillaume Rodrigues
  • Publication number: 20120103186
    Abstract: The invention relates to a method for producing gaseous oxygen by adsorption from compressed air, comprising: a) using at least one adsorption unit for generating gaseous oxygen having a purity greater than or equal to a predetermined purity threshold value (VPS) and according to a variable production flow rate (Dp); b) recovering the gaseous oxygen produced in a); c) measuring the purity of the gaseous oxygen (Pp) produced in step a) and comparing same with a preset purity threshold value (VPS); and d) adjusting the oxygen production flow rate (Dp) on the basis of the comparison of step c) such that: i) reducing the oxygen production flow rate (Dp) when the oxygen purity (Pp) measured in step c) is such that VPS>Pp; or ii) increasing the production flow rate (Dp) when the oxygen purity determined in step c) is such that VPS<Pp in order to obtain a gaseous oxygen purity (Pp) such that VPS=Pp+X, with X<0.5%, X being the standard deviation.
    Type: Application
    Filed: June 7, 2010
    Publication date: May 3, 2012
    Applicant: L'Air Liquide Societe Anonyme Pour L'Ftude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Joseph Pierquin, Sylvain Fourage, Olivier Roy
  • Publication number: 20120103185
    Abstract: Methods for removing sulfur from a gas stream prior to sending the gas stream to a gas separation membrane system are provided. Two schemes are available. When the sulfur content is high or flow is relatively high, a scheme including two columns where one tower is regenerated if the sulfur concentration exceeds a preset value can be used. When the sulfur content is low or flow is relatively low, a scheme including one column and an absorption bed.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 3, 2012
    Applicant: Saudi Arabian Oil Company
    Inventors: Milind M. Vaidya, Jean-Pierre R. Ballaguet, Sebastien A. Duval, Anwar H. Khawajah
  • Publication number: 20120024150
    Abstract: The present invention provides a system and process for the automatic conditioning of biogas to remove a wide range of contaminants including, for example, moisture, hydrogen sulfide, mercaptans, and NMOCs all in a single step. The biogas is passed through one or more vessels containing at least three different types of physical adsorbents. Contaminants in the biogas are removed from the biogas via physical adsorption onto the surfaces of the various media. Multiple media types are used in each vessel as different contaminants adsorb more or less onto various adsorbent media. The final proportions and types of media used are based on each particular biogas range of contaminants. Multiple vessels are used such that one or more vessels are always on-line and conditioning biogas, while one or more vessels is always off-line and either being reactivated or in standby service mode.
    Type: Application
    Filed: January 18, 2011
    Publication date: February 2, 2012
    Inventor: David Moniot
  • Publication number: 20120027655
    Abstract: A feed gas comprising CO2, H2S and H2 is treated to produce an H2-enriched product and an H2S-lean, CO2 product. The feed gas is separated to provide the H2-enriched product and a stream of sour gas. The stream of sour gas is divided into two parts, one of which is processed in an H2S removal system to form one or more streams of sweetened gas, and the other of which bypasses the H2S removal system, the stream(s) of sweetened gas and the sour gas bypassing the H2S removal system then being recombined to form the H2S-lean, CO2 product gas. The division of the sour gas between being sent to and bypassing the H2S removal system is adjusted responsive to changes in the H2S content of the sour gas, so as to dampen or cancel the effects of said changes on the H2S content of the H2S-lean, CO2 product gas.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 2, 2012
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Charles Linford Schaffer, Andrew David Wright, Kevin Boyle Fogash, Jeffrey William Kloosterman, Jeffrey Raymond Hufton
  • Publication number: 20120006193
    Abstract: An apparatus and process for thermally-linked adsorption-desorption. The process involves (a) at least one pair of adjacent sorbent beds, referenced herein as first and second sorbent beds, each pair of adjacent beds being thermally-linked one to the other through a thermally conductive wall; wherein each sorbent bed comprises a heat conductive foam, such as a reticulated metallic foam or sponge, having a sorbent coated thereon; then (b) alternating a flowstream between the beds such that at least one bed operates in adsorption cycle to remove target compound(s) from the flowstream with generation of heat of adsorption, which is conductively transferred away from the first bed towards the second bed, while operating the second bed in desorption cycle to remove the adsorbed target compound(s).
    Type: Application
    Filed: July 8, 2011
    Publication date: January 12, 2012
    Inventors: Subir Roychoudhury, Christian Junaedi, James Knox
  • Patent number: 8075667
    Abstract: A carbon canister to adsorb hydrocarbons from a hydrocarbon air mixture in a UST system to prevent fugitive emissions due to overpressurization. The carbon canister has an inlet port at one end coupled to the UST system. An outlet port on the opposite end of the canister is connected to a flow-limiting orifice with a known calibrated flow rate that vents in a controlled fashion to the atmosphere. When UST pressure rises slightly above ambient pressure, fuel vapors and air from the UST system enters, via the inlet port, into the canister, where hydrocarbons are adsorbed onto the surface of the activated carbon. The cleansed air vents through the controlled flow outlet port to atmosphere, thereby preventing excessive positive pressure from occurring in the UST system. The activated carbon is purged of hydrocarbons by means of reverse air flow caused by negative UST pressures that occur during periods of ORVR vehicle refueling.
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: December 13, 2011
    Assignee: Veeder-Root Company
    Inventors: Robert P. Hart, Kent Reid
  • Publication number: 20110296872
    Abstract: A method and a system capable of removing carbon dioxide directly from ambient air, and obtaining relatively pure CO2. The method comprises the steps of generating usable and process heat from a primary production process; applying the process heat from said primary process to water to co-generate substantially saturated steam, alternately repeatedly exposing a sorbent to removal and to capture and regeneration system phases, wherein said sorbent is alternately exposed to a flow of ambient air during said removal phase, thereby enabling said sorbent to sorb, and therefore remove, carbon dioxide from said ambient air, and to a flow of the co-generated steam during the regeneration and capture phase, after the sorbent has adsorbed the carbon dioxide, thereby enabling regeneration of such sorbent, and the resultant capture in relatively pure form of the adsorbed carbon dioxide.
    Type: Application
    Filed: April 29, 2011
    Publication date: December 8, 2011
    Inventor: Peter Eisenberger
  • Patent number: 8065870
    Abstract: Method and device for reduction of a gas component in an exhaust gas flow of a combustion engine (1) that is adapted for operation by a lean air/fuel mixture. An exhaust pipe (21) is included for transport of the exhaust gas flow from the engine (1). A separation unit (22) is also included that is arranged along the exhaust pipe (21), which separation unit (22) has a wall structure (32) of a material which provides separation of the gas component from the exhaust gas flow by means of a selective passage of the gas component before other gas components in the exhaust gas flow. The method provides for a reduction and a separation unit that is intended to be utilized during such a reduction. An improved reduction of in particular NOx compounds from a so-called “lean-burn” engine is also provided.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: November 29, 2011
    Assignee: Volvo Technology Corporation
    Inventors: Edward Jobson, Lennart Cider, Goran Wirmark
  • Publication number: 20110197760
    Abstract: A method of removing mercury from a process gas by means of a sorbent and a filter (10) involves applying said sorbent to at least one filtering surface (12) of the filter (10). A first parameter, which is indicative of the amount of mercury that needs to be removed in said filter (10), and a second parameter, which is indicative of the amount of material that has been collected on said filtering surface (12), are measured. A measured value of said first parameter is compared to a mercury set point. When said measured value of said first parameter is higher than said mercury set point, the cleaning of said filtering surface (12) is delayed, compared to the point in time suggested by a measured value of said second parameter.
    Type: Application
    Filed: October 16, 2009
    Publication date: August 18, 2011
    Inventor: Leif A.V. Lindau
  • Publication number: 20110100210
    Abstract: A method is provided for diagnosing the operability of fuel vapor intermediate stores (4), in particular of activated carbon filters, in tank-venting systems with at least one tank (3) and at least one fuel vapor intermediate store (4). In this case an actual change degree of filling of the fuel vapor intermediate store (4) is determined as a consequence of absorption or desorption processes of gaseous hydrocarbons in the fuel vapor intermediate store (4). The actual change in degree of filling is compared with a desired change in degree of filling and, from the comparison, a conclusion about the operability of the fuel vapor intermediate store (4) is drawn.
    Type: Application
    Filed: November 28, 2008
    Publication date: May 5, 2011
    Applicant: Robert Bosch GMBH
    Inventors: Martin Streib, Andreas Pape, Andreas Baumann, Werner Haeming
  • Publication number: 20110100209
    Abstract: During the conventional temperature swing adsorption (TSA) process, NF3 co-adsorbed with the impurities is vented during regeneration. This invention is a novel TSA cycle in which the co-adsorbed NF3 is recovered. In this novel TSA cycle, a control scheme is used to stop the adsorption prior to the saturation of the adsorber with impurities and use a recovery purge gas (either co-current or counter-current) to release the co-adsorbed NF3 off the saturated adsorber. The effluent of the inert purge gas can be combined with the effluent of the on-stream vessel or can be recycled to the feed of the on-stream vessel. 10%-100% of the co-adsorbed NF3 is recovered and made available as product in this novel TSA cycle. Thus the overall process yield of NF3 is increased. The removing of the co-adsorbed NF3 from the adsorber also prevents adsorber degradation thus prolonging the useful life of the adsorber.
    Type: Application
    Filed: April 15, 2010
    Publication date: May 5, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Philip Bruce Henderson, Patrick Michael Colleran, Forrest Eli Hulbert
  • Patent number: 7905947
    Abstract: A filter assembly comprising a housing having an air inlet and an air outlet and a filter chamber disposed between the inlet and the outlet, the housing having an air flow path there through. A filter element having a first surface area maybe located within the filter chamber and oriented such that the first surface area is angled with respect to the air flow path. The filter element may comprise a filter media adapted to remove contaminants from the air. A drain may be associated with the housing and adapted to remove contaminants filtered out of the air.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: March 15, 2011
    Assignee: L.C. Eldridge Sales Co., Ltd.
    Inventors: Gary T. Leseman, Joseph B. Davis
  • Patent number: 7879135
    Abstract: Contemplated plants include an acid gas enrichment unit in which acid gas unsuitable for feeding into a Claus plant from an upstream acid gas removal unit is separated into a concentrated hydrogen sulfide stream that is fed to the Claus plant and a carbon dioxide stream that is compressed in a compressor before sequestration, further purification, and/or recycling to a gasification unit.
    Type: Grant
    Filed: April 20, 2006
    Date of Patent: February 1, 2011
    Assignee: Fluor Technologies Corporation
    Inventors: Ravi Ravikumar, Gordon Sims, Harold Sandler
  • Publication number: 20100326272
    Abstract: Aspects of the invention include a method and apparatus for reversibly sorbing a target gas. In one embodiment, an apparatus for reversibly sorbing a target gas is disclosed. The apparatus includes an inlet, a multi-channel monolith coupled to the inlet, the multi-channel monolith including a plurality of channels, each one of the plurality of channels includes one or more walls, wherein at least one of the one or more walls of at least one of the plurality of channels is porous and wherein one or more of the plurality of channels contain a sorbent and an outlet coupled to the multi-channel monolith.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 30, 2010
    Inventors: MARIANNA F. ASARO, Yigal Blum
  • Publication number: 20100319531
    Abstract: A CO2 recovering apparatus includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbent to reduce the CO2 contained in the flue gas; a regenerator that reduces CO2 contained in rich solvent that has absorbed CO2 in the CO2 absorber to regenerate the rich solvent, so that the CO2 absorbent that is lean solvent having CO2 reduced in the regenerator is reused in the CO2 absorber; and a controller that controls to detect the absorbent concentration in the CO2 absorbent, to increase the volume of CO2 absorbent to be circulated based on a decrease in the absorbent concentration, and to adjust the volume of steam to be supplied in the regenerator based on the volume of the CO2 absorbent to be circulated.
    Type: Application
    Filed: December 30, 2009
    Publication date: December 23, 2010
    Applicants: MITSUBISHI HEAVY INDUSTRIES, LTD., THE KANSAI ELECTRIC POWER CO., INC.
    Inventors: Masaki Iijima, Hiroshi Tanaka, Yoshiki Sorimachi, Masahiko Tatsumi, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 7846237
    Abstract: The concentration of adsorbate in the feed gas to an on-stream bed of a cyclical swing adsorption process is monitored and the data processed to predict the time required to complete the on-stream mode of that bed and the purge flow rate and/or other regeneration mode operating condition of the concurrently off-stream bed is modified in response to changes in said predicted time whereby the regeneration mode of the off-steam bed is completed at the same time as the on-stream mode of the concurrent on-stream bed.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: December 7, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Andrew David Wright, Mohammad Ali Kalbassi, Timothy Christopher Golden, Christopher James Raiswell
  • Publication number: 20100294127
    Abstract: The present system is an adsorption system for separating air into a concentrated gas component, which has an air supply, a compressor for receiving and compressing the air supply, providing a compressed air supply, and molecular sieve material for separating the compressed air supply into a concentrated gas component. The adsorption system delivers at least 5 liters per minute (LPM) of concentrated gas component from the molecular sieve material in which the system has a specific total weight per LPM <9 lbs/LPM. Additionally, an output quantity of the concentrated gas is delivered by the adsorption system and a purging quantity of the concentrated gas is dispensed into a sieve chamber of the adsorption system undergoing a purge cycle. The purging quantity has a value equal to or less than the difference between the maximum quantity and the output quantity, and the purging quantity is controlled based on the output quantity.
    Type: Application
    Filed: July 15, 2010
    Publication date: November 25, 2010
    Applicant: RIC INVESTMENTS, LLC
    Inventor: Joseph T. DOLENSKY
  • Patent number: 7824479
    Abstract: An apparatus for sampling air in an aircraft cabin comprises: a sensor 2 for detecting air contaminants, a processor 4, a data logger 6, means 8 for detecting when the apparatus is airborne, a control unit 10, a manual trigger 12, at least one adsorbent tube 18, valves 14, 16 or other means for isolating the adsorbent tube from contamination and a pump 20 for drawing air through the adsorbent tube. An alternative apparatus uses a Tedlar® bag. Methods of sampling air and uses of the apparatus are also disclosed.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: November 2, 2010
    Assignee: Building Research Establishment Ltd.
    Inventors: John Arthur Rowley, Derrick Robert Crump, Andrew Charles Dengel
  • Patent number: 7785406
    Abstract: It is intended to provide a volatile organic compound treatment apparatus having: an absorption treatment chamber in which absorption frames having absorbents for absorbing volatile organic compounds are aligned in a direction of a gas flow; an absorbent recovery treatment chamber that is provided with a discharge unit having a high voltage electrode, a ground electrode, and a dielectric; and a transfer mechanism for transferring the absorption frames present in an upstream of the gas flow to the absorbent recovery treatment chamber and transferring the absorption frames in the absorbent recovery treatment chamber to a downstream of the gas flow. The volatile organic compound treatment apparatus is capable of decomposing VOC without generating a large amount of harmful NOx and reduced in apparatus cost.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: August 31, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kouji Ota, Yasutaka Inanaga, Yasuhiro Tanimura, Masaki Kuzumoto, Hajime Nakatani, Hideo Ichimura, Akio Masuda, Shigeki Maekawa, Masaharu Moriyasu
  • Patent number: 7771508
    Abstract: A method and system for the treatment of air, in particular for pneumatic brake systems of utility vehicles, is described. The method includes feeding compressed air to a compressed air storage tank through an air dryer, initiating a regeneration of the air dryer using regeneration air from the compressed air storage tank through the air dryer and discharged via a discharge valve, and calculating a theoretically required regeneration air quantity QReg,th. If a presence of condensate is not detected in a region downstream of the air dryer, a regeneration using the theoretically required regeneration air quantity QReg,th, is carried out. If the presence of condensate is detected, a regeneration is carried out using a corrected required regeneration air quantity QReg,corr, the corrected required regeneration air quantity QReg,corr being greater than the theoretically required regeneration air quantity QReg,th.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: August 10, 2010
    Assignee: Knorr-Bremse Systeme fuer Nutzfahrzeuge GmbH
    Inventor: Eduard Hilberer
  • Publication number: 20100192769
    Abstract: Disclosed herein, without limitation, are activated carbon honeycomb catalyst beds and systems for removing mercury and other toxic metals from a process stream, i.e, from flue gas of a coal combustion system. The activated carbon honeycomb can for example remove greater than 90% mercury from flue gas with a simple design and without adding material to the flue gas. Also disclosed herein, and without limitation, are methods for manufacturing and using the disclosed honeycomb catalyst beds and systems.
    Type: Application
    Filed: April 12, 2010
    Publication date: August 5, 2010
    Inventors: Kishor Purushottam Gadkaree, Lin He, Youchun Shi
  • Patent number: 7749314
    Abstract: A particulate matter accumulation amount detection apparatus includes a filter pressure loss detecting section, an incombustible component amount estimating section, an incombustible component accumulation state estimating section, and a particulate accumulation amount detecting section. The filter pressure loss detecting section is configured to detect an upstream-downstream differential pressure of an exhaust gas purification filter having a plurality of substrate walls. The incombustible component amount estimating section is configured to estimate an amount of an incombustible component. The incombustible component accumulation state estimating section is configured to estimate an accumulation state of the incombustible component on the substrate walls based on the engine operating state and the amount of the incombustible component.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: July 6, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Terunori Kondou
  • Patent number: 7749312
    Abstract: An air conditioning system comprising a gas-impermeable wall defining a space for air conditioning, and a selective separating member disposed in the wall as a part of the wall, having a function of allowing preferential permeation of oxygen and carbon dioxide and at the same time, blocking the permeation of hydrocarbon, nitrogen oxide, sulfur oxide and a fine solid component, in which the selective separating member comprises an organic polymer and satisfies the relationship of P1/P2>10 wherein P1 is the permeation coefficient of oxygen and carbon dioxide and P2 is the permeation coefficient of hydrocarbon, nitrogen oxide, sulfur oxide and a fine solid component.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 6, 2010
    Assignee: Denso Corporation
    Inventors: Kenji Takigawa, Tetsuo Toyama, Hitoshi Hayashi
  • Patent number: 7722701
    Abstract: The subject of the invention is method and envelope structure for handling gas diffusion of airships and other balloons to significantly decrease, respectively fully eliminate envelope diffusion of gases through envelopes of airships and other balloons. During the method according to the invention the gases diffused through the envelope (8, 9) of airships and other balloons are collected into a separator space (2). These gases are separated from the mixture of this separator space by physical and/or chemical action and forwarded back to their sources. The invention is further an envelope structure for handling gas diffusion of airships and other balloons for applying methods according to the invention.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 25, 2010
    Inventor: Imre Nehez
  • Publication number: 20100024639
    Abstract: A method of operating a filtration system that filters flue gas, which includes particulate matter and a gaseous pollutant. The filtration system may include a fabric filter, which is cleaned with periodic pulse cleanings, a discharge electrode upstream of the fabric filter, which imparts an electric charge to at least some of the particulate matter before the particulate matter collects on the fabric filter, a sorbent, which is injected into the flue gas upstream of the fabric filter and absorbs at least some of the gaseous pollutant, and a fan, which draws the flue gas through the fabric filter. The filtration system may have a pulse cleaning interval setting that may be manipulated by an operator of the filtration system. The pulse cleaning interval setting may be the time between the pulse cleanings.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Inventor: Robert W. Taylor
  • Publication number: 20090293879
    Abstract: The invention relates to a medical device for producing oxygen, wherein the device comprises means for providing first conditions, and means for changing said first conditions to second conditions, the device being configured to during a charging phase extract oxygen from air by, under said first conditions, bringing said air (A) into contact with an agent (SfF) constituted by a reversibly oxygen-fixating agent, i.e. an oxygen selective material, such that the oxygen of the air is adsorbed by said agent, and to remove nitrogen under said first conditions, and configured to during a discharging phase release the oxygen from the agent by means of changing said first conditions to said second conditions. The invention also relates to a method for producing oxygen for individual medical purposes.
    Type: Application
    Filed: October 17, 2006
    Publication date: December 3, 2009
    Applicant: Inhalox Technology AB
    Inventor: Oskar Frånberg
  • Patent number: 7608131
    Abstract: An air separation system and method wherein the outlet of a primary air separation module (one or more modules or bundles of fiber membranes) is split into two flow paths, a low flow path and a high flow path. The outlet of a secondary air separation module (one or more modules or bundles of fiber membranes) is split into two flow paths, a mid flow path and a high flow path, the latter being joined with the high flow of the primary air separation module. Flow along the primary low flow passes through a low-flow orifice, flow along the secondary mid-flow path passes through a mid-flow orifice, and flow along the high flow paths of both the primary and secondary air separation modules is joined together for passage through a shutoff valve and a high flow orifice. This configuration allows for three different flow modes of operation.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: October 27, 2009
    Assignee: Parker-Hannifin Corporation
    Inventor: Bryan D. Jensen
  • Publication number: 20090260518
    Abstract: The concentration of adsorbate in the feed gas to an on-stream bed of a cyclical swing adsorption process is monitored and the data processed to predict the time required to complete the on-stream mode of that bed and the purge flow rate and/or other regeneration mode operating condition of the concurrently off-stream bed is modified in response to changes in said predicted time whereby the regeneration mode of the off-steam bed is completed at the same time as the on-stream mode of the concurrent on-stream bed.
    Type: Application
    Filed: April 21, 2008
    Publication date: October 22, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Andrew David Wright, Mohammad Ali Kalbassi, Timothy Christopher Golden, Christopher James Raiswell
  • Patent number: 7597742
    Abstract: The invention provides a process for treating a loaded solvent stream having a time-varying contaminant concentration, the process comprising the steps of: (a) providing a plurality of hold-up tanks; (b) feeding the loaded solvent stream in dependence on its contaminant concentration to one or more of the hold-up tanks and; (c) allowing lowed solvent to flow from the plurality of hold-up tanks to obtain a smoothed loaded solvent stream having a reduced time-varying contaminant concentration. The invention further provides a treating unit comprising a circuit for circulating a solvent stream, which circuit includes a device for smoothing contaminant peak concentrations, said device comprising a plurality of hold-up tanks each hold-up tank having at least one inlet and an outlet equipped with an outlet valve, the device further comprising an inlet distributor allowing the control of solvent flow to one or more of the hold-up tanks.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: October 6, 2009
    Assignee: Shell Oil Company
    Inventors: Anders Carlsson, Gijsbert Jan Van Heeringen, Thijme Last
  • Publication number: 20090120284
    Abstract: An active adsorbent pollutant reducing system includes a canister containing activated carbon, a pump and a series of valves connected to the canister and the pump. The valves and pump of the system are controlled so that vapor/air in the ullage of a gasoline storage tank is pumped to the canister/adsorbent material when tank pressure reaches a first level with vapor being adsorbed and air being discharged to atmosphere. When a second tank pressure level, lower than the first tank pressure level, is achieved, the valves are controlled to reconfigure the pump and canister so that continued pump operation pulls a vacuum on the canister resulting in adsorbed gasoline vapor being purged from the adsorbent material and returned to the storage tank. Tank pressure, HC content in the vapor flow and canister weight can be used for control of the system.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 14, 2009
    Inventor: Rodger P. Grantham
  • Publication number: 20090095153
    Abstract: The present invention is a method and system for recovering natural gas used to operate a diaphragm pump in a gas production unit (GPU) at or near a natural gas well. A system embodiment may include a back pressure valve installed on a natural gas line between an exhaust port of heat trace diaphragm pump and a vent to atmosphere, the back pressure valve configured for selectively blocking flow of natural gas to the vent. The system may further include a return line connected between the natural gas line and a burner system fuel line for redirecting the natural gas to a burner system. An embodiment of a method of recovering natural gas expelled from a heat trace diaphragm pump exhaust port may include preventing the natural gas from exhausting to atmosphere and redirecting the natural gas to a natural gas supply system.
    Type: Application
    Filed: October 12, 2007
    Publication date: April 16, 2009
    Inventors: Paul Roper, John Fredrickson
  • Patent number: 7468091
    Abstract: The invention relates to a method for dehumidifying air and to an air dehumidifier. To this end, a filter element is provided that is filled with granular material that can be regenerated by baking out. For effecting this baking out, a heating device is provided that is only actuated when both a humidity sensor indicates that a humidity limit value has been exceeded as well as a relative pressure sensor or a comparable technical means indicates that, at the moment, no flow toward the oil expansion tank is recorded.
    Type: Grant
    Filed: December 3, 2004
    Date of Patent: December 23, 2008
    Assignee: Maschinefabrik Reinhausen GmbH
    Inventors: Karsten Viereck, Dieter Dohnal, Ansgar Hinz, Reiner Brill
  • Publication number: 20080293976
    Abstract: The invention relates to regenerative, supported amine sorbents that includes an amine or an amine/polyol composition deposited on a nano-structured support such as nanosilica. The sorbent provides structural integrity, as well as high selectivity and increased capacity for efficiently capturing carbon dioxide from gas mixtures, including the air. The sorbent is regenerative, and can be used through multiple operations of absorption-desorption cycles.
    Type: Application
    Filed: July 19, 2007
    Publication date: November 27, 2008
    Inventors: George A. Olah, Alain Goepert, Sergio Meth, G.K. Surya Prakash
  • Publication number: 20080282880
    Abstract: A portable oxygen concentrator includes a pair of sieve beds, a compressor for delivering air to the sieve beds, a reservoir receiving oxygen-enriched gas from the sieve beds, and an air manifold attached to the first ends of the sieve beds. A set of valves operate under the control of a controller for selectively opening and closing the valves to alternately charge and purge the sieve beds to deliver oxygen-enriched gas into the reservoir. In addition, an exhaust passage communicates with the plurality of sieve beds to deliver a flow of nitrogen evacuated from the sieve beds such that the flow of the nitrogen is directed at or across the controller to cool the controller.
    Type: Application
    Filed: February 4, 2008
    Publication date: November 20, 2008
    Applicant: Respironics Oxytec, Inc.
    Inventors: Peter L. Bliss, Charles R. Atlas, JR., Scott Cameron Halperin
  • Publication number: 20080264250
    Abstract: A flue gas desulfurization process in which a SO2-containing flue gas stream is contacted with a recirculating stream of an aqueous medium containing concentrated sulfuric acid and hydrogen peroxide, to yield a desulfurized flue gas stream and to produce additional sulfuric acid in the aqueous medium. A portion of the recirculating aqueous sulfuric acid stream is diverted for recovery of the additional sulfuric acid as gypsum in a neutralization step, and the process parameters are adjusted so that the heat of reaction generated during the neutralization step is sufficient to evaporate the free water that is present and yield a gypsum product that is substantially dry.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 30, 2008
    Applicant: FMC Corporation
    Inventors: Henry A. Pfeffer, William C. Copenhafer
  • Publication number: 20080229924
    Abstract: The invention provides a process for treating a loaded solvent stream having a time-varying contaminant concentration, the process comprising the steps of: (a) providing a plurality of hold-up tanks; (h) feeding the loaded solvent stream in dependence on its contaminant concentration to one or more of the hold-up tanks and; (c) allowing lowed solvent to flow from the plurality of hold-up tanks to obtain a smoothed loaded solvent stream having a reduced time-varying contaminant concentration. The invention further provides a treating unit comprising a circuit for circulating a solvent stream, which circuit includes a device for smoothing contaminant peak concentrations, said device comprising a plurality of hold-up tanks each hold-up tank having at least one inlet and an outlet equipped with an outlet valve, the device further comprising an inlet distributor allowing the control of solvent flow to one or more of the hold-up tanks.
    Type: Application
    Filed: March 16, 2005
    Publication date: September 25, 2008
    Applicant: Shell Oil Company
    Inventors: Anders Carlsson, Gijsbert Jan Van Heeringen, Thijme Last
  • Patent number: RE42058
    Abstract: A dehydrator breather is provided that includes automatic purging of accumulated moisture by detecting absorbed moisture in the breather, and closing an intake air channel, while opening an exit moisture channel. Adjustment of a default time-based purging cycle is adjusted to account for fluctuations in the detected moisture. An external communication capability is provided to enable off-site monitoring of the breather or the tank the breather is attached to.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: January 25, 2011
    Assignee: Waukesha Electric Systems, Inc.
    Inventors: Thomas M. Golner, Shirish P. Mehta