Hot Sweep Gas Patents (Class 95/123)
  • Patent number: 7449049
    Abstract: The raw natural gas is deacidized and dehydrated in units DA and DH. The treated gas is then purified by adsorption of the mercaptans in first enclosure A1. Part of the purified gas is heated in E1, then fed into second enclosure A2 so as to discharge the water adsorbed by the adsorbent material contained in this second enclosure. A steam-rich stream is fed into third enclosure A3 containing a mercaptan-laden adsorbent material. In A3, the mercaptans are desorbed and replaced by the steam.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: November 11, 2008
    Assignee: Institute Francais du Petrole
    Inventors: Michel Thomas, Eszter Toth, Fabrice Lecomte, Peter Meyer, Jean-Louis Ambrosino
  • Patent number: 7442233
    Abstract: The present invention is directed to an improved integrated process for the removal of heavy hydrocarbons, carbon dioxide, hydrogen sulfide, and water from a raw natural gas feed stream. More specifically, the integrated process of the present invention comprises a three step process involving the adsorption of heavy hydrocarbons and water on an adsorbent bed selective for the same, a subsequent aqueous lean amine treatment for the absorptive removal of acid gases, such as carbon dioxide and hydrogen sulfide, and an adsorptive removal of water. The process of the present invention results in a highly purified natural gas product stream.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: October 28, 2008
    Assignee: BASF Catalysts LLC
    Inventor: Michael J. Mitariten
  • Patent number: 7396388
    Abstract: The present invention is directed to an improved integrated process for the removal of heavy hydrocarbons, carbon dioxide, hydrogen sulfide, and water from a raw natural gas feed stream. More specifically, the integrated process of the present invention comprises a three step process involving the adsorption of heavy hydrocarbons and water on an adsorbent bed selective for the same, a subsequent aqueous lean amine treatment for the absorptive removal of acid gases, such as carbon dioxide and hydrogen sulfide, and an adsorptive removal of water. The process of the present invention results in a highly purified dry natural gas product stream.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: July 8, 2008
    Assignee: BASF Catalysts LLC
    Inventor: Michael J. Mitariten
  • Patent number: 7338548
    Abstract: An apparatus and method of conditioning humidity and temperature in the process airstream of a desiccant dehumidifier used to dry moisture-laden spaces and structures by replacing moisture-laden air with dehumidified air to increase the rate of water evaporation within the affected areas. A heat-modulating dehumidifier comprises a dehumidification assembly having a desiccant rotor assembly, a post-process pre-reactivation heat exchanger assembly, a reactivation air bypass damper, a reactivation heater, and a control system. The apparatus regulates the temperature level of the dehumidified air exiting the apparatus by extracting heat from the dehumidified air prior to its ejection into an affected area, using a bypass damper that controls the amount of heat transfer from the dehumidified air to a second airstream entering the apparatus.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: March 4, 2008
    Inventor: Charles A. Boutall
  • Patent number: 7217313
    Abstract: A dehumidifying system supplies a gas free of organic substances. The dehumidifying system includes a holding case, and a rotor rotatably held in the holding case and bearing an adsorbent. The interior of the holding case is divided into an adsorbing zone and a regenerating zone by partition plates attached to the holding case. A process gas is supplied into the adsorbing zone. The process gas processed in the adsorbing zone is supplied into an objective space. A regenerating gas is supplied into the regenerating zone to eliminate moisture and organic substances adsorbed by the adsorbent in the adsorbing zone from the adsorbent.
    Type: Grant
    Filed: May 26, 2003
    Date of Patent: May 15, 2007
    Assignees: Tokyo Electron Limited, Nichias Corporation
    Inventors: Hiroshi Motono, Takashi Tanahashi, Masaji Kurosawa, Katsuhiro Yamashita
  • Patent number: 7185447
    Abstract: A drying device for drying a gas comprises parallel cooling branches, at least one of which is in its active state at any given time. A gas-coolant heat exchanger arranged in each of the cooling branches has a first channel through which the gas to be dried flows in the active state of this cooling branch and a second channel which, in the active state of this cooling branch, forms an evaporator for a coolant circulating in at least one coolant circuit. The drying device further comprises an ambient-air input line, an ambient-air output line and an ambient-air conveyor. In the passive state of a respective cooling branch, the ambient-air input line and the ambient-air output line are connected, at least for a time, with this cooling branch by the switching device and the ambient-air conveyor conveys ambient air through the first channel of the gas-coolant heat exchanger arranged in this cooling branch.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: March 6, 2007
    Inventor: Peter Arbeiter
  • Patent number: 7153344
    Abstract: A process for the separation and recovery of carbon dioxide from waste gases produced by combustible oxidation is described comprising the steps of feeding a flow of waste gas to a gas semipermeable material, separating a gaseous flow comprising high concentrated carbon dioxide from said flow of waste gas through the gas semipermeable material, and employing at least a portion of the gaseous flow comprising high concentrated carbon dioxide as feed raw material in an industrial production plant and/or stockpiling at least a portion of the gaseous flow comprising carbon dioxide.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: December 26, 2006
    Assignee: Ammonia Casale S.A.
    Inventors: Ermanno Filippi, Federico Zardi
  • Patent number: 7101415
    Abstract: A continuous method of producing a process fluid gas from a feed stream that includes the process fluid and impurities. The method includes: (a) providing a first and second vessel, each vessel containing one or more regenerable purifier materials for removing at least one of the impurities from the feed stream; (b) removing at least one of the impurities by passing the feed stream through one or the other of the vessels to provide a purified process fluid gas, with the vessel being maintained at a first temperature during the removal of impurities; and (c) regenerating the purifier materials in the vessels at a second temperature and during the time when it is not purifying the feed stream by flowing a portion of the purified process fluid or the feed stream or a separate source of the process fluid gas therethrough.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: September 5, 2006
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Robert Torres, Jr., Joseph Vivinski, David Lawrence
  • Patent number: 7066986
    Abstract: An adsorber vessel for use in the adsorption of a component from a gas and subsequent regeneration by thermally induced desorption of the component comprises an inlet for regeneration gas having an inlet nozzle containing at least one heater element, and an outlet for regeneration gas, the inlet and outlet for regeneration being separated by a flow path including a flow chamber containing a body of adsorbent, and wherein the body of adsorbent has a first end which is adjacent the inlet for regeneration gas and a second end which is remote from the inlet for regeneration gas, and the or each heater element is located so as not to penetrate through the first end of the body of adsorbent.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: June 27, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Christopher Richard Haben, Mohammad Ali Kalbassi, Declan Patrick O'Connor
  • Patent number: 7022159
    Abstract: A process and an apparatus related to the reduction of the level of a component in a feed gas such as air involving passing the gas to at least three parallel thermal swing adsorption zones charged with an adsorbent and operating according to an adsorption cycle, wherein the cycle of each zone is phased with respect to that of the other zones so that at any point during the cycle, the number of zones in the adsorption step is greater than the number of zones not in the adsorption step.
    Type: Grant
    Filed: July 16, 2003
    Date of Patent: April 4, 2006
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mohammad Ali Kalbassi, Paul Higginbotham
  • Patent number: 7014683
    Abstract: A method for the regeneration of humidity-laden drying cartridges includes heating to 220 to 300° C. and introducing it into a drying cartridge for regeneration. Subsequent cooling of the drying cartridge is achieved by a partial stream of air diverted from the dried process air. An arrangement suitable for carrying out the method is also disclosed.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: March 21, 2006
    Assignee: Wittmann Robot Systeme GmbH
    Inventor: Andreas Vierling
  • Patent number: 7000332
    Abstract: A gas drying apparatus is provided having at least two desiccant-containing towers which alternately receive moisture-saturated air from an inlet to be dried during a drying phase, and then receive dry air during a regeneration phase to regenerate the desiccant which had previously adsorbed moisture from saturated air during the drying phase. The apparatus diverts a portion of dry air flowing along one of two flow paths including a first flow path having a heater and a pulse purge regeneration control valve for selectively enabling delivery of heated dry air to the tower being regenerated, and a second flow path which bypasses the first flow path and includes a bypass valve for selectively permitting delivery of unheated dry air to the tower being generated so as to cool the desiccant therein. A temperature sensing arrangement is provided for monitoring and maintaining the internal temperature of heated dry air delivered into the tower being regenerated.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: February 21, 2006
    Assignee: Pneumatech, Inc.
    Inventors: Vincent P Fresch, Titus A. Mathews
  • Patent number: 6911066
    Abstract: A method for operating a typical cyclic adsorption unit that is easily implemented in both new and existing treatment plants, wherein fluctuations in the stream compositions due to the adsorption and regeneration phase transitions of the cycles are minimized.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: June 28, 2005
    Assignee: L'Air Liquide, Société Anonyme á Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventor: Christian Monereau
  • Patent number: 6866787
    Abstract: Process for drying wet F32, which comprises placing a stream of the said F32 in continuous contact with a feed stock of a composition comprising a molecular sieve chosen from a 3A type sieve, at a temperature of between 5 and 78° C. and at a pressure of between 0.5 and 25 atm.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: March 15, 2005
    Assignee: Arkema
    Inventor: Rene Bertocchio
  • Patent number: 6723155
    Abstract: A method for removing a first and a second minor component from a gas mixture comprising the first and second minor components and one or more major components. The method comprises providing a first adsorbent zone containing a first adsorbent material and a second adsorbent zone containing a second adsorbent material wherein the selectivity of the first adsorbent material for the first minor component relative to the second minor component is greater than the selectivity of the second adsorbent material for the first minor component relative to the second minor component. The average particle diameter of the first adsorbent material and the average particle diameter of the second adsorbent material preferably are substantially the same. The gas mixture is passed through the first adsorbent zone and subsequently through the second adsorbent zone. A purified gas containing the one or more major components and depleted in the first and second minor component is withdrawn from the second adsorbent zone.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: April 20, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Gregory Scott Weyrich, Shyam Ramchand Suchdeo, Christopher James Raiswell, Elizabeth Helen Salter
  • Patent number: 6719827
    Abstract: The present invention relates to a process and apparatus for the removal of nitrous oxide from a feed gas stream using an adsorbent having a nitrogen diffusion parameter of 0.12 sec−1 or higher and a nitrous oxide capacity of 79 mmol/g/atm or higher at 30° C.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: April 13, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Fred William Taylor, Elizabeth Helen Salter, Mohammad Ali Kalbassi, Christopher James Raiswell
  • Patent number: 6652628
    Abstract: Desiccants employed in dehumidifying moisturized air present within a water-damaged building are themselves dehumidified to liberate collected moisture through the use of ambient air drawn over and about a heat exchanger fired by diesel fuel.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: November 25, 2003
    Inventor: Spencer W. Hess
  • Patent number: 6599347
    Abstract: A method of operating a thermal swing adsorption process by determining a parameter relating to the water content of a feed gas, selecting process conditions for regeneration of the adsorbent in the thermal swing adsorption process based on the parameter and modifying the regeneration process conditions to accord with the selected process conditions for regeneration is disclosed. Apparatus for effecting this adsorption method and apparatus in which regeneration conditions are modified based on the actual ambient water content of the feed gas are also disclosed.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: July 29, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mohammad Ali Kalbassi, Nasim Hassan Malik
  • Patent number: 6572681
    Abstract: Carbon monoxide (CO) is removed from a nitrogen and CO containing gas stream such as feed air to an air separation process for recovery of a nitrogen product gas stream or a nitrogen product gas stream from an air separation process by adsorbing CO from said gas stream before or after separation of oxygen from said gas stream to produce a product gas stream containing less than 5 ppb of CO by contacting said gas stream With a solid adsorbent such as a Mn, Fe, Ni, Cu, Ag, Pd, Co, Pt or Au exchanged zeolite and periodically regenerating the adsorbent by desorption of CO therefrom under a flow of regenerating gas, and, if said gas stream is said feed air, separating oxygen therefrom to produce said nitrogen product.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: June 3, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Alexander Schwarz, Thomas Hsiao-Ling Hsiung, Fred William Taylor
  • Patent number: 6521020
    Abstract: A process for adsorbing hydrocarbons from an acid gas stream includes passing the acid gas stream through an adsorbent which selectively removes hydrocarbons, desorbing the hydrocarbons from the adsorbent and contacting the desorbed hydrocarbons with an acid gas removal solution to remove acid gases which have been coadsorbed with the hydrocarbons. The process is particularly useful in removing hydrocarbons from a hydrogen sulfide-containing stream which is being directed to Claus processing for conversion into elemental sulfur. Useful adsorbents include crystalline titanium silicate molecular sieves containing titania octahedral sites such as ETS-10 and similar materials, as well as high silica aluminosilicate zeolite.
    Type: Grant
    Filed: March 14, 2002
    Date of Patent: February 18, 2003
    Assignee: Engelhard Corporation
    Inventors: Kenneth F. Butwell, William B. Dolan, Steven M. Kuznicki
  • Publication number: 20030019359
    Abstract: A robust, relatively simple air quality control system that can control the air quality in buildings during both the heating and cooling seasons. In one illustrative embodiment, a first air stream is directed through an air treatment module and back into the inside space. A desiccant in the air treatment module adsorbs water, volatile organic compounds and/or particulate material from the first air stream. A second air stream is then directed through the air treatment module to a location outside of the inside space. The second air stream is preferably heated relative to the first air stream so that at least a portion of the adsorbed water, volatile organic compounds and/or particulate material are desorbed from the desiccant into the second air stream. The second air stream carries the desorbed water, volatile organic compounds and/or particulate material to a location outside the inside space.
    Type: Application
    Filed: June 5, 2002
    Publication date: January 30, 2003
    Inventors: Dipak J. Shah, Chin-Hsiung Chang, John D. Howard, Ronald P. Rohrbach, Peter D. Unger, Stephen F. Yates, Brian C. Krafthefer, Russell W. Johnson
  • Patent number: 6478855
    Abstract: A heat exchanger, perhaps a cross flow heat exchanger, has first and second passages. During dehumidification (adsorption of moisture) in the first passages, water is evaporated from the second passages. This water can be introduced to the second passages during reactivation (desorption of moisture) in the first passages or at another time. If the water is introduced to the second passages during reactivation, the first and second passages have therein first and second moisture adsorbents. During a first time period, air to be dehumidified is passed through the first passages of the heat exchanger and cooling air is passed through the second passages of the heat exchanger to remove heat generated in the first passages and to desorb moisture adsorbed by the second moisture adsorbent. During a second time period, a heating fluid is passed through the second passages of the heat exchanger to heat the first passages and supply moisture for adsorption to the second moisture adsorbent.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: November 12, 2002
    Assignee: Seibu Giken Co., Ltd.
    Inventor: Hiroshi Okano
  • Patent number: 6471749
    Abstract: The present invention relates to a gas purification method for adsorbing and removing impurities by PSA method combined with heating, capable of removing water vapor and carbon dioxide in an economical and effective way.
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: October 29, 2002
    Assignee: Nippon Sanso Corporation
    Inventors: Masato Kawai, Morimitsu Nakamura, Shigeo Tooyama
  • Publication number: 20020134234
    Abstract: A method of operating a thermal swing adsorption process by determining a parameter relating to the water content of a feed gas selecting process conditions for regeneration of the adsorbent in the thermal swing adsorption process based on the parameter and modifying the regeneration process conditions to accord with the selected process conditions for regeneration is disclosed. Apparatus for effecting this adsorption method and apparatus in which regeneration conditions are modified based on the actual ambient water content of the feed gas are also disclosed.
    Type: Application
    Filed: January 24, 2002
    Publication date: September 26, 2002
    Inventors: Mohammad Ali Kalbassi, Nasim Hassan Malik
  • Publication number: 20020124726
    Abstract: A robust, relatively simple air quality control system that can control the air quality in buildings during both the heating and cooling seasons. In one illustrative embodiment, a first air stream is directed through an air treatment module and back into the inside space. A desiccant in the air treatment module adsorbs water, volatile organic compounds and/or particulate material from the first air stream. A second air stream is then directed through the air treatment module to a location outside of the inside space. The second air stream is preferably heated relative to the first air stream so that at least a portion of the adsorbed water, volatile organic compounds and/or particulate material are desorbed from the desiccant into the second air stream. The second air stream carries the desorbed water, volatile organic compounds and/or particulate material to a location outside the inside space.
    Type: Application
    Filed: December 22, 2000
    Publication date: September 12, 2002
    Applicant: Honeywell International Inc.
    Inventors: Dipak J. Shah, Chin-Hsiung Chang, John D. Howard, Ronald P. Rohrbach, Peter D. Unger, Stephen F. Yates, Brian C. Krafthefer, Russell W. Johnson
  • Patent number: 6432171
    Abstract: The present invention provides for a thermal swing adsorption process for the removal of trace impurities such as oxides of nitrogen and hydrocarbons from air prior to its separation by cryogenic distillation. The process may utilize three adsorbent layers, the first primarily removes water; the second primarily removes carbon dioxide; and the third layer is a composite adsorbent layer which removes the oxides of nitrogen and hydrocarbons from the air stream. Another embodiment employs a two layer adsorbent system to remove the impurities. Additionally, a single layer of composite adsorbent may be used to remove water, carbon dioxide, oxides of nitrogen, and hydrocarbons from the air stream.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: August 13, 2002
    Assignee: The BOC Group, Inc.
    Inventors: Ravi Kumar, Madhusudhan Huggahalli, Martin Bülow
  • Patent number: 6428608
    Abstract: A robust, relatively simple air quality control system that can control the air quality in buildings during both the heating and cooling seasons. In one illustrative embodiment, a first air stream is directed through an air treatment module and back into the inside space. A desiccant in the air treatment module adsorbs water, volatile organic compounds and/or particulate material from the first air stream. A second air stream is then directed through the air treatment module to a location outside of the inside space. The second air stream is preferably heated relative to the first air stream so that at least a portion of the adsorbed water, volatile organic compounds and/or particulate material are desorbed from the desiccant into the second air stream. The second air stream carries the desorbed water, volatile organic compounds and/or particulate material to a location outside the inside space.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: August 6, 2002
    Assignee: Honeywell International Inc.
    Inventors: Dipak J. Shah, Chin-Hsiung Chang, John D. Howard, III, Ronald P. Rohrbach, Peter D. Unger, Stephen F. Yates, Brian C. Krafthefer, Russell W. Johnson
  • Patent number: 6422392
    Abstract: A process for removing ammonia from fly ash during processing on an inclined fluidized bed. The process begins by introducing a mixture of particulates having ammonia adsorbed therein into an inclined fluidized bed. Concurrently, a fluidizing gas is pre-heated and is also introduced into the fluidized bed. The mixture is then processed along the fluidized bed with the pre-heated fluidizing gas to achieve bubbling fluidization of the particles. This causes segregation by which a dense fraction settles downward and a light fraction rises upward in the bed. Ammonia in the particles is desorbed by the pre-heated fluidizing gas. The fluidizing gas is then scrubbed after the processing step to remove the desorbed ammonia. The process may also include the use of acoustic enhancement whereby an acoustic field is imposed on the fluidized bed to improve fluidization and segregation of the particles and to increase the efficacy of ammonia removal.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: July 23, 2002
    Inventor: Edward Kenneth Levy
  • Patent number: 6402809
    Abstract: A process and a system for purifying gas, such as air, before cryogenic distillation, in which at least one energy parameter, chosen from the flow rate of the regeneration gas entering and/or leaving at least one adsorber, the duration of the regeneration step and the regeneration temperature of the regeneration gas entering at least one adsorber, is controlled, modified and/or regulated depending on at least one operating condition chosen from the pressure of the gas to be purified entering and/or leaving at least one adsorber, the flow rate of the gas to be purified entering and/or leaving at least one adsorber, the temperature (Ta) of the gas to be purified entering at least one adsorber and the content of impurities contained in the gas to be purified entering at least one adsorber and depending on the thermal profile of the heat front output by at least one adsorber at the end of regeneration.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: June 11, 2002
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Christian Monereau, Didier Miniscloux, Alain Combier
  • Patent number: 6387161
    Abstract: Provided are a system and method for nitrous oxide purification, wherein the nitrous oxide product for use in semiconductor manufacturing. The system and process involve a first sub-system having a purification tank for holding a liquefied nitrous oxide, therein; a vaporizer in communication with the purification tank to receive, vaporize and convey a nitrous oxide vapor back to the purification tank; a distillation column disposed on a distal end of the purification tank to receive a nitrous oxide vapor; a condenser disposed on the distillation column, wherein light impurities are removed and wherein a nitrous oxide devoid of light impurities is conveyed and converted into vapor in the vaporizer. A second sub-system having a first dry bed vessel is disposed downstream of the vaporizer to receive the vapor and reacting the acid gas therein; a second dry bed vessel downstream of the first dry bed vessel for removing water and ammonia in the vapor.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 14, 2002
    Assignee: American Air Liquide, Inc.
    Inventors: Derong Zhou, John P. Borzio, Earle Kebbekus, David Miner
  • Patent number: 6387159
    Abstract: A process for adsorbing hydrocarbons from an acid gas stream includes passing the acid gas stream through an adsorbent which selectively removes hydrocarbons, desorbing the hydrocarbons from the adsorbent and contacting the desorbed hydrocarbons with an acid gas removal solution to remove acid gases which have been coadsorbed with the hydrocarbons. The process is particularly useful in removing hydrocarbons from a hydrogen sulfide-containing stream which is being directed to Claus processing for conversion into elemental sulfur. Useful adsorbents include crystalline titanium silicate molecular sieves containing titania octahedral sites such as ETS-10 and similar materials, as well as high silica aluminosilicate zeolite.
    Type: Grant
    Filed: June 26, 2000
    Date of Patent: May 14, 2002
    Assignee: Engelhard Corporation
    Inventors: Kenneth F. Butwell, William B. Dolan, Steven M. Kuznicki
  • Patent number: 6372018
    Abstract: A VOC removal or destruction system incorporates a regenerator/reactivator having a cylindrical ceramic tube for receiving contaminated adsorbent activated carbon. Electrodes are provided in the ceramic tube in contact with the activated carbon and a programmable logic controller is connected to control the voltage applied to the electrodes and the current flowing through the activated carbon within the tube. The temperature of the material in the tube is controlled by the programmable controller to maintain a temperature within one of two temperature ranges for regenerating the activated carbon and for reactivating the activated carbon. An inert gas is supplied through the tube in contact with the contaminated adsorbent material; the effluent gas including the stripped VOC's is supplied to an oxidizer for destruction. The oxidizer includes a stoichiometric burner providing combustion products for oxidizing the gaseous adsorbate and for providing carrier gas to the regenerator/reactivator.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: April 16, 2002
    Inventor: Harold R. Cowles
  • Patent number: 6235086
    Abstract: A novel method and apparatus to dehumidify air provides enhanced dehumidification efficiency over conventional dehumidification apparatuses. A reusable dehumidification element disk provides a disk section to strip water from an air stream. The disk is rotated so that the saturated disk section enters a separate chamber where the water can be stripped from the disk with a stream of regeneration air. The regeneration air stream is recycled and is not split from or mixed with the air stream requiring dehumidification. The result is a more efficient dehumidification than in apparatuses which require the influent air stream to be divided into separate streams for dehumidification and regeneration functions.
    Type: Grant
    Filed: March 13, 2000
    Date of Patent: May 22, 2001
    Assignee: Kankyo Co., Ltd.
    Inventor: Yasuyuki Fujimura
  • Patent number: 6083304
    Abstract: A novel method and apparatus to dehumidify air provides enhanced dehumidification efficiency over conventional dehumidification apparatuses. A reusable dehumidification element disk provides a disk section to strip water from an air stream. The disk is rotated so that the saturated disk section enters a separate chamber where the water can be stripped from the disk with a stream of regeneration air. The regeneration air stream is recycled and is not split from or mixed with the air stream requiring dehumidification. The result is a more efficient dehumidification than in apparatuses which require the influent air stream to be divided into separate streams for dehumidification and regeneration functions.
    Type: Grant
    Filed: January 28, 1998
    Date of Patent: July 4, 2000
    Assignee: Kankyo Co., Ltd.
    Inventor: Yasuyuki Fujimura
  • Patent number: 6027546
    Abstract: A compressed air drying apparatus employs a hollow fiber membrane dryer to provide a compressed air stream having a low dew point for outdoor use. Energy efficiency is obtained by purging water vapor from the hollow fiber membrane dryer with an adsorption-dried atmospheric air flow and by using a portion of the atmospheric air flow to regenerate the adsorption drying medium, preferably with heat from the compressor.
    Type: Grant
    Filed: February 12, 1998
    Date of Patent: February 22, 2000
    Assignee: Aquilo Gas Separation B.V.
    Inventors: Arnoldus Petrus Maria Kusters, Bob Van Den Hoogen
  • Patent number: 5997613
    Abstract: A gas phase adsorption process in which a gas phase containing water vapor or a basic gas is brought into contact with activated carbon fiber to adsorb the water vapor or basic gas. The activated carbon fiber comprises pitch-based oxidized activated carbon fiber having oxygen-containing functional groups and an oxygen content of 3-18% by weight, based on the weight of the fiber. The oxidized activated carbon fiber is prepared by oxidizing pitch-based activated carbon fiber having a specific surface area of 200-2500 m.sup.2 /g.
    Type: Grant
    Filed: May 21, 1992
    Date of Patent: December 7, 1999
    Assignee: Osaka Gas Company Limited
    Inventors: Katsumi Kaneko, Takeshi Maeda
  • Patent number: 5968234
    Abstract: The present invention relates to a thermally regenerable adsorptive process for the purification of a feed air, wherein the feed air is contacted with a solid adsorbent to remove at least water and carbon dioxide, wherein, periodically, the solid adsorbent is thermally regenerated by contacting the solid adsorbent with a regeneration gas stream which is essentially free of at least water and carbon dioxide, wherein the regeneration gas is a nitrogen-enriched stream removed from an elevated pressure air separation unit fed with the purified feed air, characterized in that the removed nitrogen-enriched stream is compressed in a multiple staged compressor and that the regeneration gas is a portion of the nitrogen-enriched stream which is removed from an interstage of the multiple stage compressor and then contacted with the solid adsorbent.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: October 19, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Dan Earl Midgett, II, David Miller Espie
  • Patent number: 5968235
    Abstract: A VOC (volatile organic compounds) adsorbent material is treated with a masking agent to reduce its affinity for VOC's to a level that the material can be regenerated at a predetermined low temperature which will not desorb the masking agent. Preferably, the adsorbent material is a water adsorbent desiccant which is treated with water vapor. The treated adsorbent material is used to adsorb VOC's from gas and is periodically regenerated with heated air. The desorbed VOC's may be destroyed by oxidizing, for example, with a catalyst.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: October 19, 1999
    Assignee: Ransburg Corporation
    Inventors: Thomas E. Grime, Andrew P. Gargac, Larry E. Campbell
  • Patent number: 5948142
    Abstract: A method is provided for separating one or more volatile contaminant components from a gas using a pressure and temperature swing adsorbent filtration filter bed system containing three or more layers of adsorbent materials characterized in that the layers comprise a first layer of adsorbent material, a second layer of dessicant material and a third layer of material capable of adsorbing contaminants that are not retained by the first layer. Preferably the third layer is capable of adsorbing contaminants of relatively low boiling point, e.g. of boiling point less than 50.degree. C., and preferably comprises a microporous adsorbent. The second layer of dessicant material preferably comprises a zeolite.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: September 7, 1999
    Assignee: The Secretary of State for Defense in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Northern Ireland
    Inventors: Richard J Holmes, David C Francis
  • Patent number: 5925169
    Abstract: Method for drying a gas which has been compressed by a compressor (1) wherein compressed gas (2) from the compressor is driven through an amount of drying agent (3) until a dried, compressed gas (4) is obtained. An amount of used drying agent (7) is regenerated by driving a part (5) of dried compressed gas (4), which is heated first by the compression heat of compressor (1), through used drying agent (7). Moisture is absorbed from used drying agent (7) by a part (5) of the dried compressed gas (4), which is then condensed and separated by cooling. Part (5) of dried compressed gas (4) is then mixed with compressed gas (2) from the compressor to be dried.
    Type: Grant
    Filed: April 1, 1997
    Date of Patent: July 20, 1999
    Assignee: Altas Copco Airpower, naamloze vennootschap
    Inventor: Danny Etienne Andree Vertriest
  • Patent number: 5897686
    Abstract: A process and apparatus for drying and removing carbon dioxide from a hydrogen and carbon monoxide containing synthesis gas by using adsorption vessels containing a first layer of 13 X-zeolite and a second layer of 3 A-zeolite in which the 3 A-zeolite precludes the formation of water of reaction when dry and carbon dioxide-free synthesis gas is used to regenerate the adsorption vessel countercurrent to feed flow of the synthesis gas.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: April 27, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, David Richard Barnes, Jr.
  • Patent number: 5879432
    Abstract: A process and device for scrubbing flows of gaseous effluents loaded with polluting substances, wherein the effluents are caused to circulate through a device including an array of scrubber units (4a to 4n) juxtaposed in an enclosure (3), each containing materials adsorbing the substances. When the adsorbing load thereof is saturated and for the scrubber units (4) to regain the scrubbing capacity thereof, they are selectively and successively isolated by a mobile collector (8) during the time required for their desorption by heating and for the substances to be transferred by an auxiliary fluid (a fraction of the circulating effluents for example or a gas delivered selectively to the inlet of the scrubber unit to be desorbed by an auxiliary circuit), and the substances mixed with the auxiliary fluid are possibly transferred towards a reactor (10) suited for removing them. The process can be applied for concentrating and scrubbing of polluting substances such as VOCs or gas dehumidification.
    Type: Grant
    Filed: May 7, 1997
    Date of Patent: March 9, 1999
    Assignees: Institut Francais du Petrole, Jacques Bourcier
    Inventors: Jean Morlec, Jacques Bourcier
  • Patent number: 5846295
    Abstract: Temperature swing adsorption to remove CO.sub.2 from a gas stream is conducted using alumina to adsorb all the water and at least most of the carbon dioxide from the gas stream. Optionally a downstream zone of zeolite may be provided to remove further carbon dioxide and hydrocarbons.
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: December 8, 1998
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Mohammed Ali Kalbassi, Rodney John Allam, Timothy Christopher Golden
  • Patent number: 5814132
    Abstract: A VOC (volatile organic compounds) adsorbent material such as an alumino-silicate gel desiccant is treated with a masking agent to reduce its affinity for VOC's to a level that the material can be regenerated at a predetermined low temperature which will not desorb the masking agent. The treated adsorbent material is used to adsorb VOC's and is periodically regenerated with heated air. The treated adsorbent material may be used to adsorb VOC's from recirculated spray booth air while spraying a coating on a workpiece. Subsequent to spraying, the spray booth air is heated to above the VOC regeneration temperature to regenerate the adsorbent material and optionally to cure the applied coating. As the heated spray booth air is circulated through the adsorbent material, the previously adsorbed VOC's are desorbed. The desorbed VOC's may be destroyed by oxidizing, for example, with a catalyst.
    Type: Grant
    Filed: March 10, 1997
    Date of Patent: September 29, 1998
    Assignee: Ransburg Corporation
    Inventors: Thomas E. Grime, Andrew P. Gargac, Larry E. Campbell
  • Patent number: 5797980
    Abstract: An air compressor (1) is cooled by a water circuit (5) which comprises a buffer tank (6) and an air cooled cooler (7) provided with a fan (8) of adjustable speed. The buffer tank is supplied by makeup water and includes a purge (16) which serves, when the ambient temperature is relatively high, to cool the preliminarily separated compressed air from cooling water. Application in processes for separation of air by adsorption or permeation.
    Type: Grant
    Filed: March 27, 1997
    Date of Patent: August 25, 1998
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Frederic Fillet
  • Patent number: 5788744
    Abstract: An improved rotary concentrator separates the desorption gas flow into two flow portions. The first flow portion is sent to a final processing system. The second portion is recycled to the rotary concentrator. In a first embodiment, gas is recycled to the process gas inlet. In a second embodiment, the recycled gas is reused as desorption inlet gas. Most preferably, the recirculated gas is relatively clean compared to the gas in the first portion which is sent to the final processing system. In this way, the improved rotary concentrator is more efficient and reduces the amount of gas which must be processed by the final processing system.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: August 4, 1998
    Assignee: Durr Industries, Inc.
    Inventors: Joseph M. Klobucar, Daniel Blundy
  • Patent number: 5746807
    Abstract: A mobile regeneration apparatus is provided for regenerating dryers. The regeneration apparatus may be used to regenerate single tower desiccant dryers located at natural gas vehicle refueling stations. For optimum performance, each dryer may be located upstream of a respective compressor.
    Type: Grant
    Filed: June 19, 1996
    Date of Patent: May 5, 1998
    Assignee: Pneumatic Products Corp.
    Inventors: John E. Thelen, Sundar R. Mylavarapu
  • Patent number: 5728198
    Abstract: An air prepurification system which includes vertically oriented adsorption vessels containing, from top to bottom, a layer of moisture-selective adsorbent, a first layer of carbon dioxide-selective adsorbent and a second layer of carbon dioxide-selective adsorbent wherein the particle size of carbon dioxide-selective adsorbent in the second layer of carbon dioxide-selective adsorbent is smaller than the particle size of both the moisture-selective adsorbent and the carbon dioxide-selective adsorbent in the first layer of carbon dioxide-selective adsorbent. The air purification system is designed for use in a temperature swing adsorption process in which air is passed downwardly through the adsorption vessels during the adsorption step and upwardly through the vessels during the adsorbent regeneration step.
    Type: Grant
    Filed: September 30, 1996
    Date of Patent: March 17, 1998
    Assignee: The BOC Group. Inc.
    Inventors: Divyanshu R. Acharya, Ravi Jain, James K. Tseng
  • Patent number: 5702505
    Abstract: A method for collecting volatile organic substances from an off-gas containing moisture and volatile organic substances. The organic substances are removed from the gas containing the organic substances and the moisture by introducing the gas into an adsorbing tower filled with the adsorbents and being in the adsorbing process under a relatively low temperature condition. The gas is discharged outside the system as the gas containing the moisture but from which the organic substances have been removed. The organic substances are desorbed under a relatively high temperature condition in the regenerating process for the regeneration. The moisture is removed from the desorbed gas discharged from the adsorbent regenerating process in a dehumidifying tower filled with the moisture absorbent by the temperature swing method or pressure swing method.
    Type: Grant
    Filed: May 8, 1996
    Date of Patent: December 30, 1997
    Assignee: Mitsubishi Jukogyo Kabushiki Kaisha
    Inventors: Jun Izumi, Akinori Yasutake, Hiroyuki Tsutaya, Takayuki Harada, Kenichi Hamada
  • Patent number: RE38893
    Abstract: A novel method and apparatus to dehumidify air provides enhanced dehumidification efficiency over conventional dehumidification apparatuses. A reusable dehumidification element disk provides a disk section to strip water from an air stream. The disk is rotated so that the saturated disk section enters a separate chamber where the water can be stripped from the disk with a stream of regeneration air. The regeneration air stream is recycled and is not split from or mixed with the air stream requiring dehumidification. The result is a more efficient dehumidification than in appara- tuses which require the influent air stream to be divided into separate streams for dehumidification and regeneration functions.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: November 29, 2005
    Assignee: Kankyo Co., Ltd.
    Inventor: Yasuyuki Fujimura