Nitrogen Sorbed Patents (Class 95/130)
  • Patent number: 6913636
    Abstract: An inerting system provides air with reduced oxygen content by flowing and directing air through an air separation module. Optimal working pressure for the air separation module is obtained with two compressors. A first compressor elevates air from the aircraft cabin to a second pressure. The second pressure is at an intermediate level below the working pressure of the air separation module. A second compressor elevates air from the second pressure to the working pressure. The second compressor is driven by air that is exhausted through a turbine. The pressure difference between air at the working pressure and air required by the fuel distribution system is used to power the turbine and drive the second compressor.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: July 5, 2005
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Gregory Defrancesco, Thomas Zywiak, Harold W. Hipsky
  • Patent number: 6893483
    Abstract: A gas adsorption composite a high density adsorbent including a high density layer having a first density of at least 0.3 g/cc; and a low density adsorbent having a low density layer having a second density of less than 0.3 g/cc, wherein the high density adsorbent is in substantially contiguous contact with the low density adsorbent and each of the high density adsorbent and the low density adsorbent has an adsorbent surface area of at least 500 m2/g. A pressure swing adsorption process for recovering a product gas from a feed gas, the process including supplying a pressure swing adsorption apparatus including a gas adsorption composite, feeding a feed gas into the pressure swing adsorption apparatus during a feed period not exceeding 100 seconds and recovering the product gas from the pressure swing adsorption apparatus.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: May 17, 2005
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Catherine Marie Anne Golden, Timothy Christopher Golden, Paula Jean Battavio
  • Patent number: 6878186
    Abstract: A pure vacuum swing adsorption/desorption system and method, wherein supplied air feedstock gas is consistently separated to obtain a high-purity oxygen end-product gas mixture, is described. The system and method separate high-purity oxygen product from air by sequenced adsorption and desorption operations occurring exclusively under vacuum pressure conditions. This allows for greatly reduced kilowatt-hours of electric-oxygen power consumption per oxygen ton produced.
    Type: Grant
    Filed: September 9, 2003
    Date of Patent: April 12, 2005
    Inventor: David Lloyd Neary
  • Patent number: 6858065
    Abstract: A pressure swing adsorption process including the step of separating a gas mixture by absorbing a gas component in adsorbent beds provided within vessels, where the separating step has at least a two-stage pressure equalization and is performed with no more than five valves per vessel of the plurality of vessels. The process includes an adsorption step, a first pressure equalization step having at least two stages where the pressure decreases, a purge step, and a second pressure equalization step having at least two stages where the pressure increases. A pressure swing adsorption system is provided with vessels each having a first opening connected to a source manifold via a first valve and connected to a waste manifold via a second valve, and a second opening connected to a product manifold via a third valve and connected to an equalization conduit via a fourth valve and a fifth valve.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: February 22, 2005
    Assignee: H2Gen Innovations, Inc.
    Inventor: Franklin D. Lomax, Jr.
  • Patent number: 6849106
    Abstract: Conducting a PSA process for the purification of gaseous hydrogen contaminated at least with CO and N2 of the H1 where the gas stream to be purified is passed through an adsorption region comprising at least one adsorbent based on zeolite 5A and one adsorbent based on zeolite X exchanged with calcium.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: February 1, 2005
    Assignee: CECA S.A.
    Inventor: Remi Le Bec
  • Patent number: 6846347
    Abstract: A method of operating a life support system for an aircraft, the system including a plurality of oxygen supply apparatus, each of which in use is operable to supply product gas, which may be pure oxygen or oxygen enriched gas, to a breathing gas supply apparatus, at least one of the oxygen supply apparatus being a main oxygen supply apparatus and the remainder of the oxygen supply apparatus being auxiliary oxygen supply apparatus, the main oxygen supply apparatus being operable independently of the auxiliary oxygen supply apparatus, characterized in that the method includes operating the main oxygen supply apparatus and supplying product gas to each of the auxiliary oxygen supply apparatus.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: January 25, 2005
    Assignee: Honeywell Normaliar-Garrett (Holdings) Limited
    Inventors: Robert John Phillips, Adrian Simons, Norman Francis Charles Barns
  • Patent number: 6824590
    Abstract: A process for separating a feed gas into at least one product gas includes: (a) providing a gas separation apparatus with at least one adsorption layer including a lithium-exchanged FAU adsorbent having water desorption characteristics, defined by drying curves, similar to those for the corresponding fully sodium-exchanged FAU, a heat of adsorption for carbon dioxide equal to or lower than that for the corresponding fully sodium-exchanged FAU at high loadings of carbon dioxide, and onto which the adsorption layer water and/or carbon dioxide adsorb; (b) feeding into the gas separation apparatus a feed gas including nitrogen, oxygen, and at least one of water and carbon dioxide; and (c) collecting from a product end of the gas separation apparatus at least one product gas containing oxygen.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: November 30, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Douglas Paul Dee, Robert Ling Chiang, Gregory John Gondecki, Roger Dean Whitley, Jane Elizabeth Ostroski
  • Patent number: 6811590
    Abstract: A gas concentrating method and apparatus is provided in which equalization is accomplished below two sieve beds, to thereby save compression energy, to reduce exit noise, and to obtain a gas whose gas purity with respect to an amount of flow has been enhanced. The gas concentrating method makes two sieve beds communicate with each other at their bottoms when a pressure difference between a pressurized pressure and a decompressed pressure is maximized in the multi-bed type sieve beds which alternately operate between pressurization and decompression, to equalize an internal pressure in the sieve beds. The gas concentrating apparatus includes a compressor (50), sieve beds (60-1, 60-2), solenoid valves (40-1, 40-2), an orifice (90), check valves (90-1, 90-2), a storage tank (100), a pressure controller (70), a flow meter (80), a controller (110), and a muffler (20).
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: November 2, 2004
    Assignee: Oxus Co., Ltd.
    Inventors: Tae Soo Lee, Yoon Sun Choi
  • Patent number: 6806219
    Abstract: The present invention relates to zeolites X, most of the exchangeable sites of which are occupied by lithium and di- and/or trivalent cations, having an improved thermal stability and an improved crystallinity with respect to zeolites of the prior art with the same degree of exchange of lithium and of di- and/or trivalent cations. The zeolites of the present invention are particularly effective as adsorbents of the nitrogen present in various gas mixtures and are well suited to the noncryogenic separation of the gases of the air.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: October 19, 2004
    Assignee: Ceca, S.A.
    Inventors: Jean-Jacques Masini, Dominique Plee
  • Patent number: 6802889
    Abstract: Rapid cycle pressure swing adsorption processes, systems and apparatus for the separation of a multi-component feed gas mixture by selectively adsorbing at least one more readily adsorbable component in a bed of adsorbent material are provided.
    Type: Grant
    Filed: December 5, 2002
    Date of Patent: October 12, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David Ross Graham, James Michael Occhialini, Pushpinder Singh Puri
  • Patent number: 6793719
    Abstract: A concentrating chamber in an oxygen concentrating apparatus is provided, in which a process for adsorbing nitrogen to concentrate oxygen is performed in a single case. The concentrating chamber in an oxygen concentrating apparatus includes: a casing having upper and lower openings; an adsorption unit for performing an oxygen concentration through a compressed air and counter-flowing the stored oxygen to perform a nitrogen rinsing in the casing; a check valve operating according to a predetermined pressure, for supplying the oxygen concentrated in the adsorption unit and rinsing the nitrogen adsorbed in the adsorption unit; and upper and lower manifolds for supplying the concentrated oxygen through the upper and lower ends of the casing, or supplying the compressed air and simultaneously exhausting the rinsed nitrogen, through the upper and lower ends of the casing. The concentrating chamber in an oxygen concentrating apparatus includes at least two casings.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: September 21, 2004
    Assignee: Oxus Co., Ltd.
    Inventors: Min Jung Kim, Tae Soo Lee
  • Patent number: 6790260
    Abstract: High product recovery and low BSF are achieved for fast-cycle shallow adsorbers in VPSA gas separation enabled by the coupled effects of high intrinsic adsorption rate and proper particle size selection.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: September 14, 2004
    Assignee: Praxair Technology, Inc.
    Inventors: Mark William Ackley, James Smolarek
  • Patent number: 6770120
    Abstract: An apparatus includes a vessel and a radial adsorption bed within the vessel and either an axial adsorption bed for a storage tank within the inner diameter of the radial adsorption bed. In one example, the radial adsorption bed surrounds an axial adsorption bed. A process that can be conducted in the vessel includes directing a gas mixture across the radial adsorption bed, thereby causing adsorption of at least a portion of a gas component present in the gas mixture and producing partially purified product. The partially purified gas is directed through the axial adsorption bed, thereby causing further purification of the partially purified gas and producing product gas. In another example, the radial adsorption bed surrounds a storage tank. The storage tank can be employed to store a gas generated or used in a separation process conducted in the radial adsorption bed. For instance, the storage tank can be employed to store product gas or void gas generated in a vacuum/pressure swing adsorption process.
    Type: Grant
    Filed: May 1, 2002
    Date of Patent: August 3, 2004
    Assignee: Praxair Technology, Inc.
    Inventors: Bernard Thomas Neu, James Smolarek, Mark Thomas Emley
  • Patent number: 6761754
    Abstract: A nitrogen selective adsorbent comprises a zeolite of a faujasite crystalline structure containing Li+ and at least one of NH+ and H+ as essential cations, and has a nitrogen adsorption characteristic represented by specific correlation between the number of associated Li+ ions per unit lattice of a zeolite crystal and the amount of adsorbed nitrogen per unit lattice of the zeolite crystal. An air separation method employs the aforesaid nitrogen selective adsorbent for separation between nitrogen and oxygen by selective adsorption of nitrogen in air.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 13, 2004
    Assignee: Air Water, Inc.
    Inventors: Jin-Bae Kim, Hisanao Jo, Haruo Yoshioka, Hiromi Kiyama
  • Patent number: 6755895
    Abstract: A pressure swing adsorption system including a pressure vessel having an opening and a valve manifold including a body having a first cavity fluidly connected to the opening. The body further includes a passage and a channel, such that the passage connects the channel to the cavity. The valve manifold further includes a valve provided within the passage. The valve is configured to selectively permit and restrict flow between the channel and the cavity via the passage.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: June 29, 2004
    Assignee: H2GEN Innovations, Inc.
    Inventors: Franklin D. Lomax, Jr, Michael S. Streeks
  • Publication number: 20040118278
    Abstract: An object of the present invention to provide a method and a system for separating gas based on a PSA method, in which a plurality of components contained in a gas mixture can be separated and recovered with high purities at the same time, the system is simple, the system cost is low, and the operation is easy.
    Type: Application
    Filed: October 8, 2003
    Publication date: June 24, 2004
    Inventors: Masato Kawai, Akihiro Nakamura, Tatsuya Hidano
  • Patent number: 6752851
    Abstract: The gas separation and purification process can recover efficiently a valuable gas such as krypton and xenon to be used as an atmospheric gas in a semiconductor manufacturing equipment etc. by means of PSA process. In the process for separating a valuable gas in the form of purified product from a mixed gas, used as a raw gas, containing the valuable gas by means of pressure swing adsorption process, the valuable gas is separated and purified by using as the pressure swing adsorption process a combination of equilibrium pressure swing adsorption process for separating gas components based on the difference in equilibrium adsorption and rate-dependent pressure swing adsorption process for separating the gas components based on the difference in adsorption rates.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: June 22, 2004
    Assignee: Nippon Sanso Corporation
    Inventors: Masato Kawai, Akihiro Nakamura, Tooru Nagasaka, Shigeru Hayashida
  • Patent number: 6740146
    Abstract: This invention includes a pair of chambers each containing a piston which is reciprocated slowly by a computer controlled reversible fluid pressure pump between an advanced position for moving room air through a molecular sieve bed to strip nitrogen from the air and deliver oxygen enriched air to a patient, and a retracted position to back-flush the sieve bed with oxygen enriched air and exhaust the nitrogen rich air to the atmosphere. The pistons may be moved by piston rods or by a rack and pinion drive. In a third embodiment a single cylinder forms a pair of chambers separated by a central exhaust chamber, and expandable bellows in the chambers extend and retract either alternatively or simultaneously. In a fourth embodiment a single cylinder containing a single piston forms a pair of chambers one on each side of the piston and a molecular sieve bed communicates with each chamber.
    Type: Grant
    Filed: September 12, 2002
    Date of Patent: May 25, 2004
    Inventor: Edward L. Simonds
  • Patent number: 6712087
    Abstract: The present invention relates to a rotary valve assembly for a pressure swing adsorption system. The rotary valve assembly includes a first valve member and a second valve member relatively rotatable about a common center of rotation to provide valving action for selectively transferring fluids therethrough. The second valve member has a first fluid section with at least one aperture adapted for transferring a first fluid of a first pressure and composition therethrough and a second fluid section with at least one aperture adapted for transferring a second fluid of a second pressure and composition therethrough. The first valve member has a first fluid section with at least one passage for transferring the first fluid in the valve assembly and a second fluid section with at least one passage for transferring the second fluid in the valve assembly.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: March 30, 2004
    Assignees: SeQual Technologies, Inc., Teijin Limited
    Inventors: Theodore B. Hill, Charles C. Hill, Adam C. Hansen
  • Patent number: 6712877
    Abstract: An oxygen concentrator system includes at least one oxygen concentrator sub-system and a plenum subsystem. The at least one oxygen concentrator sub-system produces oxygen-enriched air which is outputted to both the oxygen concentrator system output and to a plenum chamber within the plenum subsystem. The plenum chamber is trickle charged with the oxygen-enriched air when the at least one oxygen concentrator sub-system produces an excess amount of oxygen-enriched air. Should the demand for oxygen-enriched air exceed the capability of the at least one oxygen concentrator sub-system, additional oxygen-enriched air is provided by the plenum chamber until such time that the capability of the at least one oxygen concentrator sub-system exceeds the demand of oxygen-enriched air. At that time, oxygen-enriched air is no longer provided by the plenum chamber but rather the plenum chamber is again trickle charged.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: March 30, 2004
    Assignee: Litton Systems, Inc.
    Inventors: Tuan Q. Cao, Gary Byrd, Lyle Berkenbosch, Craig Schledewitz
  • Patent number: 6712876
    Abstract: An oxygen concentrator system with altitude compensation includes at least one oxygen concentrator sub-system and a plenum subsystem. The at least one oxygen concentrator sub-system produces oxygen enriched product which is outputted to both the oxygen concentrator system output and to a plenum chamber within the plenum subsystem. The plenum chamber is trickle charged with the oxygen enriched product when the at least one oxygen concentrator sub-system produces an excess amount of oxygen enriched product. Should the demand for oxygen enriched product exceed the capability of the at least one oxygen concentrator sub-system, additional oxygen enriched product is provided by the plenum chamber until such time that the capability of the at least one oxygen concentrator sub-system exceeds the demand for oxygen enriched product. At that time, oxygen enriched product is no longer provided by the plenum chamber but rather the plenum chamber is again trickle charged.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: March 30, 2004
    Assignee: Litton Systems, Inc.
    Inventors: Tuan Q. Cao, Gary Byrd
  • Patent number: 6699307
    Abstract: A pressure swing adsorption process including the step of separating a gas mixture by absorbing a gas component in adsorbent beds provided within vessels, where the separating step has at least a two-stage pressure equalization and is performed with no more than five valves per vessel of the plurality of vessels. The process includes an adsorption step, a first pressure equalization step having at least two stages where the pressure decreases, a purge step, and a second pressure equalization step having at least two stages where the pressure increases. A pressure swing adsorption system is provided with vessels each having a first opening connected to a source manifold via a fist valve and connected to a waste manifold via a second valve, and a second opening connected to a product manifold via a third valve and connected to an equalization conduit via a fourth valve and a fifth valve.
    Type: Grant
    Filed: October 11, 2002
    Date of Patent: March 2, 2004
    Assignee: H2gen Innovations, Inc.
    Inventor: Franklin D. Lomax, Jr.
  • Patent number: 6676732
    Abstract: The present invention relates to new crystalline zeolite SSZ-50 prepared using a quaternary ammonium cation templating agent having the structure where X− is an anion which is not detrimental to the formation of the SSZ-50. SSZ-50 is useful in catalysts for hydrocarbon conversion reactions.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: January 13, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Gregory S. Lee, Stacey I. Zones
  • Patent number: 6663691
    Abstract: A process is provided for recovering oxygen-rich gas by enriching gaseous oxygen contained in crude gas by a single-tank PSA process which utilizes a single adsorption tower loaded with an adsorbent. A cycle is repeated including introducing crude gas into the adsorption tower, desorbing unnecessary components from the adsorbent, introducing washing gas into the adsorption tower for discharging the remaining gas from the adsorption tower, and raising the internal pressure of the adsorption tower. The desorbing includes recovering semi-enriched oxygen gas existing in the adsorption tower after finishing of the adsorption for retention in a recovery tank. The introduction of washing gas includes introducing part of the semi-enriched oxygen gas existing in the recovery tank into the adsorption tower as the washing gas. Raising the internal pressure includes introducing the rest of the semi-enriched oxygen gas retained in the recovery tank into the adsorption tower.
    Type: Grant
    Filed: August 13, 2002
    Date of Patent: December 16, 2003
    Assignee: Sumitomo Seika Chemicals Co., Ltd.
    Inventors: Morihiko Yamamoto, Hiroaki Sasano, Kazuo Haruna
  • Patent number: 6660065
    Abstract: The present invention includes two beds of activated alumina or similar material, which can remove moisture during a PSA cycle. One bed is placed in series in each drive air line for the pressure intensifier or boost pump. The beds are sized such that there is sufficient material to adsorb the moisture contained in the volume of gas required to move the drive piston through a complete stroke.
    Type: Grant
    Filed: May 6, 2002
    Date of Patent: December 9, 2003
    Assignee: Litton Systems, Inc.
    Inventors: Gary N. Byrd, Timothy C. Phillis
  • Patent number: 6660064
    Abstract: A pressure swing adsorption process for recovering a product gas from a feed gas, includes: supplying a pressure swing adsorption apparatus including an adsorbent composition containing activated carbon as a major ingredient, wherein the adsorbent composition and the apparatus are substantially free of zeolite adsorbents; feeding a feed gas into the pressure swing adsorption apparatus during a feed period not exceeding 20 seconds; and recovering the product gas from the pressure swing adsorption apparatus. The process and apparatus are particularly suitable for use with fuel cells and other applications requiring compact, rapid cycling systems for producing high purity hydrogen.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: December 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist
  • Patent number: 6652626
    Abstract: A description is given of agglomerates of faujasite X with an Si/Al ratio of 1, the inert binder of which, on the one hand, has been converted to active zeolite by conversion to zeolite in an alkaline liquor, and which have been subjected, on the other hand, to an exhaustive lithium exchange. These adsorbents develop a nitrogen adsorption capacity (1 bar/25° C.) of at least 26 cm3/g, which makes them excellent adsorbents for the non-cryogenic separation of gases from air and for the purification of hydrogen.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: November 25, 2003
    Assignee: CECA, S.A.
    Inventor: Dominique Plee
  • Publication number: 20030205133
    Abstract: The present invention relates to new crystalline zeolite SSZ-50 prepared using a quaternary ammonium cation templating agent having the structure 1
    Type: Application
    Filed: April 30, 2003
    Publication date: November 6, 2003
    Inventors: Gregory S. Lee, Stacey I. Zones
  • Patent number: 6641645
    Abstract: A gas transfer segment of a vacuum swing adsorption process cycle utilizing multiple parallel adsorbent beds which undergo cyclic process steps to separate the components of a feed gas mixture, each bed having a feed end and a product end, wherein the gas transfer segment comprises a step of withdrawing a waste gas stream from the feed end of a first bed, withdrawing a transfer gas from the product end of the first bed and introducing the transfer gas into the product end of a second bed, and withdrawing a waste gas stream from the feed end of the second bed.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: November 4, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Sang Kook Lee, Justin David Bukowski
  • Patent number: 6641644
    Abstract: The present invention is a gas separator for separating a gas mixture into a product gas. The gas separator has an adsorbent bed including a separation chamber with first and second ports and a molecular sieve material contained in the separation chamber. A first pumping chamber is connected to the first port. A first valve regulates a flow of the gas mixture between the first port and the first pumping chamber. A first piston is located in the first pumping chamber. A second pumping chamber is connected to the second port. A second valve regulates a flow of the product gas between the second port and the second pumping chamber. A second piston is located in the second pumping chamber. A drive system coordinates operation of the first and second pistons and the first and second valves in a cycle including a pressurization stage, a gas shift stage, and a depressurization stage.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: November 4, 2003
    Assignee: VBOX, Incorporated
    Inventors: Theodore W. Jagger, Alexander E. Van Brunt, Nicholas P. Van Brunt
  • Publication number: 20030172808
    Abstract: The present invention relates to a process for the purification of gaseous hydrogen contaminated at least with CO and N2 of the H2 PSA type, where the gas stream to be purified is passed through an adsorption region comprising at least one adsorbent based on zeolite 5A and one adsorbent based on zeolite X exchanged with calcium.
    Type: Application
    Filed: May 19, 2003
    Publication date: September 18, 2003
    Inventor: Remi Le Bec
  • Patent number: 6610124
    Abstract: A pressure swing adsorption process for the separation of impurities such as nitrogen and carbon dioxide and recovery of hydrocarbons from a natural gas stream utilizes two separate adsorption systems, the first containing an adsorbent selective for nitrogen, carbon dioxide or both and the second containing a hydrocarbon-selective adsorbent. In the process, the natural gas stream is passed through a first adsorbent to form a product stream enriched with methane and to adsorb nitrogen and/or carbon dioxide and which further co-adsorbs at least a portion of the hydrocarbons contained in the feed stream. The hydrocarbons are recovered by passing a low pressure waste stream from the first pressure swing adsorption stage which contains co-adsorbed nitrogen and/or carbon dioxide and hydrocarbons and directing the waste stream to the second pressure swing adsorption stage to adsorb the hydrocarbons and produce a product stream enriched in nitrogen and/or carbon dioxide.
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: August 26, 2003
    Assignee: Engelhard Corporation
    Inventors: William Bachop Dolan, Michael J. Mitariten
  • Patent number: 6607584
    Abstract: A formed adsorbent material includes an adsorbent solid phase and a gas phase ensuring transport of the gaseous components right to the adsorbent, being such that the constants for the transport kinetics of the components adsorbable in the gas phase and in the solid phase are in a ratio of between 0.1 and 10 defined for a gas discharge velocity of 0.2 m/s measured on air at 1 bar and 20° C. or in a ratio of between 0.1 and 10, defined for a gas discharge velocity of 0.01 m/s measured on hydrogen at 30 bar and 40° C.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: August 19, 2003
    Assignee: L'Air Liquide-Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Serge Moreau, Xavier Badiche
  • Patent number: 6605136
    Abstract: A pressure swing adsorption process which comprises introducing a feed gas mixture into an inlet of an adsorber vessel during a feed period, wherein the feed gas mixture contains a more strongly adsorbable component and a less strongly adsorbable component and the adsorber vessel contains a bed of adsorbent material which selectively adsorbs the more strongly adsorbable component, and withdrawing a product gas enriched in the less strongly adsorbable component from an outlet of the adsorber vessel during at least a portion of the feed period, wherein a dimensionless cycle-compensated mass transfer coefficient defined as K tfeedVads/Vfeed is maintained in the range of about 23 to about 250.
    Type: Grant
    Filed: July 10, 2002
    Date of Patent: August 12, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: David Ross Graham, Roger Dean Whitley, Robert Ling Chiang, Edward Landis Weist, Jr., Timothy Christopher Golden, Matthew James Labuda
  • Patent number: 6596054
    Abstract: A method and system for retrofitting an integrated scrubber to provide maximum oxygen content in a controlled decomposition oxidation (CDO) abatement process. The system includes a thermal/wet integrated scrubber, and a compressed air supply for supplying air to an oxygen separation device that separates the air into a nitrogen-enriched component and an oxygen-enriched component. The oxygen separation device utilizes a ceramic, metallic, carbonaceous or polymeric material to separate from the supplied air an oxygen-enriched component for introduction into the integrated scrubber. The integrated scrubber is equipped with a mechanical scraping device for continuous or intermittent removal of combustion deposits formed during the controlled decomposition oxidation process.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 22, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Belynda G. Flippo, Robbert Vermuellen, Daniel O. Clark
  • Patent number: 6585804
    Abstract: A method for operating a pressure swing adsorption process at turndown conditions by adding selected steps to the normal design operation of the process. The selected steps include the extension of a make product/no feed step and the addition of idle steps at specific points in the process cycle during depressurization and repressurization. The average volumetric flow ratio of the pressurized feed gas to the final product gas during design operation and during turndown operation may be essentially equal. The average oxygen concentration in the final product gas during design operation and during turndown operation also may be essentially equal.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 1, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: William Thomas Kleinberg, Mark Robert Pillarella, David Edward Guro
  • Patent number: 6565627
    Abstract: A rapid pressure swing adsorption (RPSA) process includes the use of an adsorbent fabric. The fabric can be self-supporting, have an average pore diameter greater than 5 Å and/or have a carbon dioxide mass transfer coefficient of at least 0.5 sec−1. Activated carbon cloths can be suitable for use as the adsorbent fabric. The process can be used to prepare high purity hydrogen and other products. Systems including the adsorbent fabric outperform systems lacking such fabrics in RPSA applications.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: May 20, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Catherine Marie Anne Golden, Daniel Patrick Zwilling
  • Patent number: 6565628
    Abstract: A method to reduce the cycle time in a pressure swing adsorption process by reducing the required pressure equalization time in a cycle, thereby reducing the overall cycle time and increasing product recovery per unit of adsorbent used. This reduces the amount of adsorbent required in the beds for a given feed rate while continuing to provide product at an acceptable product purity, and has the desirable effect of reducing the capital cost of the process equipment required for a given volumetric production rate.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: May 20, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Jianguo Xu, David Lester Rarig, Tracey Ann Cook, Kuo-Kuang Hsu, Michelle Schoonover, Rakesh Agrawal
  • Patent number: 6558451
    Abstract: A compact multiple bed pressure swing adsorption apparatus to produce a high concentration of oxygen efficiently and at minimum noise levels by using inactive pressurized adsorber beds to purge adsorbed nitrogen.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: May 6, 2003
    Assignee: AirSep Corporation
    Inventors: Norman R. McCombs, Robert E. Casey
  • Patent number: 6551384
    Abstract: An advanced medical concentrator process and system is provided using fast cycle and advanced adsorbent. Significant improvements achieved results in a smaller, lighter and more efficient system in comparison with the current commercial stationary concentrators. Integrated with a conserver, a small portable concentrator is achieved.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: April 22, 2003
    Assignee: Praxair Technology, Inc.
    Inventors: Mark William Ackley, Guoming Zhong
  • Patent number: 6551381
    Abstract: A method and system for retrofitting an integrated scrubber to provide maximum oxygen content in a controlled decomposition oxidation (CDO) abatement process. The system includes a thermal/wet integrated scrubber, and a compressed air supply for supplying air to an oxygen separation device that separates the air into a nitrogen-enriched component and an oxygen-enriched component. The oxygen separation device utilizes a ceramic oxide or polymeric material to separate from the supplied air an oxygen-enriched component for introduction into the integrated scrubber. The integrated scrubber is equipped with a mechanical scraping device for continuous or intermittent removal of combustion deposits formed during the controlled decomposition oxidation process.
    Type: Grant
    Filed: July 23, 2001
    Date of Patent: April 22, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Belynda G. Flippo, Robbert Vermuellen, Daniel O. Clark
  • Publication number: 20030070546
    Abstract: A method for the separation of a gas mixture comprises (a) obtaining a feed gas mixture comprising nitrogen and at least one hydrocarbon having two to six carbon atoms; (b) introducing the feed gas mixture at a temperature of about 60° F. to about 105° F. into an adsorbent bed containing adsorbent material which selectively adsorbs the hydrocarbon, and withdrawing from the adsorbent bed an effluent gas enriched in nitrogen; (c) discontinuing the flow of the feed gas mixture into the adsorbent bed and depressurizing the adsorbent bed by withdrawing depressurization gas therefrom; (d) purging the adsorbent bed by introducing a purge gas into the bed and withdrawing therefrom an effluent gas comprising the hydrocarbon, wherein the purge gas contains nitrogen at a concentration higher than that of the nitrogen in the feed gas mixture; (e) pressurizing the adsorbent bed by introducing pressurization gas into the bed; and (f) repeating (b) through (e) in a cyclic manner.
    Type: Application
    Filed: October 12, 2001
    Publication date: April 17, 2003
    Inventors: Daniel Patrick Zwilling, Timothy Christopher Golden, Edward Landis Weist, Keith Alan Ludwig
  • Patent number: 6547851
    Abstract: A component gas concentrator includes an air compressor, an air-tight first container containing a molecular sieve bed, the first container in fluid communication with the compressor through a first gas conduit, and an air-tight second container in fluid communication with the first container through a second gas conduit. A gas flow controller such as PLC controls actuation of valves mounted to the gas conduits.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: April 15, 2003
    Assignee: Wearair Oxygen Inc.
    Inventor: John Lee Warren
  • Patent number: 6544318
    Abstract: Pressure swing adsorption process for the recovery of high purity oxygen from a feed gas comprising oxygen, nitrogen, and argon. The process includes a forward flow stage which comprises (a) passing the feed gas into a first adsorption zone containing an adsorbent selective for the adsorption of nitrogen over oxygen and argon, and withdrawing therefrom a nitrogen-depleted intermediate gas; (b) passing the nitrogen-depleted intermediate gas into a second adsorption zone containing an adsorbent which is selective for the adsorption of nitrogen over argon and selective for the adsorption of argon over oxygen; (c) withdrawing an oxygen-enriched product gas from the second adsorption zone; and (d) terminating the passing of feed gas into the first adsorption zone and withdrawing an oxygen-enriched depressurization gas from the second adsorption zone in the same flow direction as (c).
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: April 8, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Douglas Paul Dee, Robert Ling Chiang, Edwin John Miller, Roger Dean Whitley
  • Patent number: 6534034
    Abstract: A zeolite may be synthesized having the framework topology of tschörtnerite (TSC) and an empirical formula of mA2/nO:Al2O3:ySiO2 where A is a cation such as lithium. It is anticipated that the synthetic TSC is usable in processes for separating mixtures of molecular species. The lithium analog should be useful for air separation.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: March 18, 2003
    Assignee: UOP LLC
    Inventors: John J. Low, Gregory J. Lewis
  • Patent number: 6527828
    Abstract: A method and system for retrofitting an integrated scrubber to provide maximum oxygen content in a controlled decomposition oxidation (CDO) abatement process including a thermal/wet integrated scrubber, and a compressed air supply for supplying air to an oxygen separation device that separates the air into a nitrogen-enriched component and an oxygen-enriched component. The oxygen separation device includes a module, such as a vessel containing ceramic-materials arranged in an adsorbent bed or coated on a substrate. The present invention uses a ceramic oxide material through which only oxygen can diffuse. The composition of the ceramic oxide adsorbent material is such that a significant number of oxygen vacancies exist in the material. By placing either a voltage potential or a pressure gradient across the membrane, oxygen is selectively diffused in and through the oxide material to separate the air supply into an oxygen component for introduction into the integrated scrubber.
    Type: Grant
    Filed: March 19, 2001
    Date of Patent: March 4, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Belynda G. Flippo, Keith Karrup, Robbert Vermeulen, Daniel O. Clark
  • Patent number: 6527830
    Abstract: A pressure swing adsorption process for recovery of a more readily adsorbable component, such as nitrogen, and a larger amount of a less readily adsorbable component, such as oxygen, from a feed gas mixture, such as air, wherein the ratio of nitrogen to oxygen is less than about 3:1 and the ratio of the co-purge:feed gas of the process is maintained at less than about 1.15:1.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: March 4, 2003
    Assignee: Praxair Technology, Inc.
    Inventors: Bernard T. Neu, James Smolarek, Andrew C. Rosinski, Mark William Ackley
  • Patent number: 6527831
    Abstract: A pressure swing process and system for purifying a first gas, preferably argon, from a crude feed gas stream containing the first gas and second gas(es) utilizes two adsorption beds and continuously promotes the crude feed gas to the bed during the process and simultaneous equalization of pressure in the two beds in top-to-top end and bottom-to-bottom end equalizations in each bed following purging of each bed.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: March 4, 2003
    Assignee: Praxair Technology, Inc.
    Inventors: Mohamed Safdar Allie Baksh, Alan Barnard Stewart
  • Patent number: 6524370
    Abstract: A two bed vacuum swing adsorption process for the production of oxygen is disclosed. Efficient use of air blowers and vacuum pumps maximizes the machine utilization and product gas purges in low flow and high flow modes to increase productivity while lessening power consumption.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: February 25, 2003
    Assignee: The BOC Group, Inc.
    Inventors: Apurva Maheshwary, Baechen Benson Wang, John Robert Ambriano, Timothy P. Thomson
  • Patent number: RE38493
    Abstract: Pressure swing adsorption (PSA) separation of a gas mixture is performed in an apparatus with a plurality of adsorbent beds. The invention provides rotary multiport distributor valves to control the timing sequence of the PSA cycle steps between the beds, with flow controls cooperating with the rotary distributor valves to control the volume rates of gas flows to and from the adsorbent beds in blowdown, purge, equalization and repressurization steps.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: April 13, 2004
    Assignee: QuestAir Technologies Inc.
    Inventors: Bowie G. Keefer, David G. Doman