Hydrocarbon Sorbed Patents (Class 95/143)
  • Patent number: 10352311
    Abstract: The cryogenic trapping system traps organic arsenicals within a centrally-positioned cryotrap body and allows inorganic arsenical to flow through the cryotrap body. As a hydride gas is directed into the central cryotrap body, the gas is cooled by a pair of Peltier units that sandwich the cryotrap body so that the cold side of each of the Peltier units abuts the cryotrap body. The hot side of each Peltier unit abuts a heat exchanger—which cools the Peltier unit. In the preferred embodiment, organic arsenicals are trapped in a sorbent bed within the cryotrap body.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: July 16, 2019
    Assignee: The United States of America, as represented by The Secretary of Agriculture
    Inventors: Guoying Chen, Bun Hong Lai
  • Patent number: 10183222
    Abstract: Systems and methods are provided in which a character possessing a weapon is displayed in a scene along with first and second affordances. Responsive to first affordance user contact, scene orientation is changed. Responsive to second affordance user contact with a first status of the weapon, a firing process is performed in which the weapon is fired and the weapon status is updated. When (i) the first and second affordances are user contact free or (ii) the second affordance is presently in user contact and there is a second weapon status, firing is terminated. Alternatively, when the second affordance is presently in user contact and there is a first weapon status, the firing is repeated. Alternatively still, with (i) present first affordance user contact, (ii) a first weapon status, and (iii) no present second affordance user contact, the firing is repeated upon second affordance user contact.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: January 22, 2019
    Assignee: Glu Mobile Inc.
    Inventors: Wai Shek Tsui, Ankur Anand
  • Patent number: 10029204
    Abstract: A system and process for regenerating sieve materials in a gas processing system. The process can include circulating a cooling gas through sieve material of a first bed, the cooling gas having a first concentration of carbon dioxide (CO2) suitable for liquefaction into a liquid natural gas (LNG) product. The process can also include circulating a regenerating gas through sieve material of a second bed, the regenerating gas having a second concentration of carbon dioxide (CO2) that is greater than the first concentration of carbon dioxide (CO2) of the cooling gas.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: July 24, 2018
    Assignee: GE Oil & Gas, Inc.
    Inventors: David Allen Kennedy, John Raymond Zigtema
  • Patent number: 10011796
    Abstract: A method is disclosed for the separation of ethane and heavier hydrocarbons or propane and heavier hydrocarbons from natural gas to provide a methane-rich natural gas stream and less volatile natural gas liquids (NGLs). This method provides for passing a natural gas feedstream though a regenerable adsorbent media which adsorbs the NGLs to provides the methane rich natural gas product. The regenerable adsorbent media of the present invention is a cross-linked macroporous polymeric adsorbent media.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: July 3, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Scott T. Matteucci, H. Robert Goltz, Ajay N. Badhwar
  • Patent number: 9976091
    Abstract: Disclosed is a method of sequentially separating and recovering one or more NGLs (129, 229) from a natural gas feedstream (3). Specifically, a raw natural gas feedstream (3) is passed through two or more NGLs separation unit (100, 200) wherein each separation unit removes one or more NGLs from the natural gas feedstream to provide a methane-rich natural gas supply (205). Each separation unit employs an adsorption media and has an adsorption step and a media regeneration step wherein the regeneration step may be operated as a batch process, a semi-continuous process, or a continuous process. One embodiment of this method provides for the use of a different regenerable adsorbent media in each separation unit.
    Type: Grant
    Filed: August 5, 2014
    Date of Patent: May 22, 2018
    Assignee: Dow Global Technologies LLC
    Inventors: Scott T. Matteucci, H. Robert Goltz, Ajay N. Badhwar, Nicholas J. Shurgott, Jonathan W. Leister
  • Patent number: 9878279
    Abstract: Entrained metal hydride particle are removed from a flow of hydrogen from a Mg-based hydride storage unit using not only a particle filter but improvements for reducing or eliminating drastic changes in flow. In addition to or alternative to removal of entrained metal hydride particles, methane produced by reaction of hydrogen with steel in a metal hydride system preferably operated above 350° C. is removed downstream of the Mg-based hydride storage unit using an adsorption cartridge, preferably containing activated carbon.
    Type: Grant
    Filed: April 30, 2016
    Date of Patent: January 30, 2018
    Assignee: L'AIR LIQUIDE SOCIÉTÉ ANONYME POUR L'ÉTUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventors: Pascal Tessier, Philippe Coignet, Benjamin Jurcik, Ryan Adelman
  • Patent number: 9878278
    Abstract: Entrained metal hydride particle are removed from a flow of hydrogen from a Mg-based hydride storage unit using not only a particle filter but improvements for reducing or eliminating drastic changes in flow. In addition to or alternative to removal of entrained metal hydride particles, methane produced by reaction of hydrogen with steel in a metal hydride system preferably operated above 350° C. is removed downstream of the Mg-based hydride storage unit using an adsorption cartridge, preferably containing activated carbon.
    Type: Grant
    Filed: April 30, 2016
    Date of Patent: January 30, 2018
    Assignee: L'AIR LIQUIDE SOCIÉTÉ ANONYME POUR L'ÉTUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventors: Pascal Tessier, Philippe Coignet, Benjamin Jurcik, Ryan Adelman
  • Patent number: 9514464
    Abstract: Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of about 350-950 BTU/cubic foot is introduced to a pipeline system at a combination point that is downstream of natural gas in the pipeline system having a heating value of at least about 950 BTU/cubic foot. This produces a mixed gas downstream of the combination point. At least a portion of the mixed gas downstream of the combination point is withdrawn for use by a user that combusts the mixed gas to generate heat and/or electricity. A corresponding amount of natural gas is withdrawn at an upstream location for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: December 6, 2016
    Assignee: Iogen Corporation
    Inventor: Patrick J. Foody
  • Patent number: 9508085
    Abstract: Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of less than about 925 BTU/cubic foot is introduced to a pipeline system that is connected to at least one source of natural gas having a heating value of at least about 950 BTU/cubic foot. The gas comprising biomethane combines with natural gas in the pipeline system to produce a mixed gas having a heating value below about 925 BTU/cubic foot. An amount of natural gas at least equal to the amount of gas comprising biomethane is withdrawn from the pipeline system for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation and/or reductions in life cycle greenhouse gas emissions.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: November 29, 2016
    Assignee: Iogen Corporation
    Inventor: Patrick J. Foody
  • Patent number: 9447353
    Abstract: Embodiments of the invention provide a process in which a gas comprising biomethane having a heating value of less than about 925 BTU/cubic foot is introduced to a pipeline system that is connected to at least one source of natural gas having a heating value of at least about 950 BTU/cubic foot. The gas comprising biomethane combines with natural gas in the pipeline system to produce a mixed gas having a heating value below about 925 BTU/cubic foot. An amount of natural gas at least equal to the amount of gas comprising biomethane is withdrawn from the pipeline system for use as a transportation fuel, a fuel intermediate or as a feedstock for producing a fuel. The process can enable fuel credit generation and/or reductions in life cycle greenhouse gas emissions.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: September 20, 2016
    Assignee: Iogen Corporation
    Inventor: Patrick J. Foody
  • Patent number: 9415996
    Abstract: A method and system for filling gas storage vessels from a source operates by cooling a sorbent, opening a valve to transfer gas by physisorption, regulating the sorbent temperature to achieve the desired degree of filling, closing the valve connecting to the gas source, and warming the tank, sorbent, and gas to provide a predetermined pressure at room temperature.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: August 16, 2016
    Assignee: BlackPak, Inc.
    Inventors: Peter Haaland, Dylan Bethel
  • Patent number: 9339747
    Abstract: The present invention relates to a process for making metal impregnated bound Carbon block filters. In particular the present invention to a process for preparing a moulded Carbon block filter impregnated with a metal selected from Silver, Copper or Zinc, with relatively low level of variation in metal content across the blocks, relatively lower deviation from the theoretical metal content, and where the leach-rate of metal from the block during use is relatively low.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: May 17, 2016
    Assignee: Conopco, Inc.
    Inventors: Parthiv Ripudaman Dave, Debasis Mukherjee, Madalasa Srivastava
  • Patent number: 9227886
    Abstract: The present invention relates to a polymerization process of producing ethylene-alpha-olefin polymer. The polymerization process comprises supplying at a feed temperature a feed containing ethylene, at least one alpha-olefin and optionally, a diene in a solvent, the solvent is supplied at a solvent feed rate; supplying at a catalyst feed rate a catalyst to a reactor, and contacting the feed with the catalyst to produce a reaction mixture containing the polymer. The present invention also relates to processes for improving the energy utilization of polymerization processes, wherein the process comprises decreasing the feed temperature, decreasing the solvent feed rate, and decreasing the catalyst feed rate.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: January 5, 2016
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Periagaram S. Ravishankar, Aaron H. Reed
  • Publication number: 20150114225
    Abstract: A flue gas is cleaned by feeding same to a filtering separator. The filtering separator is accommodated in a housing, and the housing has a pre-filter side ahead of the filtering separator and a clean side following the filtering separator in the flue gas flow direction. A filter element has an adsorbent formed of dust-free spheroidal charcoal on the clean side of the housing. The flue gas flows through the adsorbent in the filter element. Harmful substances from the group including mercury and/or dioxin and/or furan and/or further heavy metals are thereby removed from the flue gas.
    Type: Application
    Filed: January 5, 2015
    Publication date: April 30, 2015
    Inventors: JUERGEN WALLER, RAINER BERTLING
  • Publication number: 20150068974
    Abstract: Provided in one embodiment is a method of making an aerogel, comprising: (A) subjecting a suspension or a solution comprising a concentration of at least one chemical reactant to at least one of a hydrothermal and a solvothermal process for at least a reaction time to form an in-situ hydrogel, wherein the hydrogel comprises particulates having an asymmetric geometry, and (B) removing a liquid from the hydrogel to form an aerogel.
    Type: Application
    Filed: September 6, 2013
    Publication date: March 12, 2015
    Applicant: The Massachusetts Institute Technology
    Inventors: Jing Kong, Sung Mi Jung
  • Patent number: 8974575
    Abstract: Disclosed is a method for enriching combustible gas, which suppresses the deterioration and pulverization of an adsorbent without extending a period for pressure equalization. The pressure equalization is effected by opening a pressure equalization passage opening/closing valve incorporated in a pressure equalization passage, after completion of adsorption in a first adsorption tower and after completion of desorption in a second adsorption tower connected to the first adsorption tower via the pressure equalization passage.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: March 10, 2015
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Takahisa Utaki, Tamotsu Kotani
  • Publication number: 20150047505
    Abstract: The present invention relates to a metal organic framework comprising of a metal ion (M) and an organic ligand wherein more than one hydroxy ligand are present about the metal ion. Also provided is a method for synthesising the metal-organic frameworks and their application in areas including scrubbing exhaust gas streams of acidic gases, scrubbing natural gas of acidic gases by separation or sequestration and separating C2Ha or other VOC gases from other gas mixtures.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 19, 2015
    Inventors: Martin Schroder, Sihai Yang
  • Publication number: 20150038756
    Abstract: The present invention refers to a microporous crystalline material, to the method for the production thereof and to the use of same, the material having a composition: x X2O3:z ZO2:y YO2 in which: X is a trivalent element such as Al, B, Fe, In, Ga, Cr, or mixtures thereof, where (y+z)/x can have values of between 9 and infinity; Z corresponds to a tetravalent element selected from Si, Ge or mixtures thereof; and Y corresponds to a tetravalent element such as Ti, Sn, Zr, V or mixtures thereof, where z/y can have values of between 10 and infinity.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Avelino CORMA CANÓS, Fernando REY GARCÍA, Manuel HERNÁNDEZ RODRIGUEZ, José Luis JORDÁ MORET
  • Publication number: 20150027309
    Abstract: Embodiments include selective adsorbents having a structure of Formula (I) where a connection to X represents a connection to a structure of Formula (II), and a connection to Y represents a connection to a structure of Formula (III), where each R1 is independently selected from the group consisting of fluorine, chlorine, bromine, and iodine, and each R2 is independently selected from the group consisting of a hydrogen, an alkyl, an aryl, and a trisubstitutedsilyl group.
    Type: Application
    Filed: March 15, 2013
    Publication date: January 29, 2015
    Applicant: Northwestern University
    Inventors: Chang Y. Lee, Omar K. Farha, SonBinh T. Nguyen, Joseph T. Hupp, Randall Q. Snurr, Youn-Sang Bae
  • Patent number: 8940077
    Abstract: A method for indirectly monitoring and controlling an electrically resistive adsorption system. Adsorption of a predetermined adsorbate is conducted while indirectly monitoring electrical resistance of a unified adsorbent element. Breakthrough is predicted based upon the indirectly monitored electrical resistance and a previously measured mass loading relationship between the resistance of the unified adsorbent element and the loading of the unified resistance element with the predetermined adsorbate. Adsorption, regeneration and cooling cycles are controlled by a controller without any direct measurement of temperature or resistance of the element and characterizations of mass loading and temperature. Systems of the invention can have no sensors that contact the element, are in an adsorption vessel, and/or are downstream adsorption vessel.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: January 27, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Mark J. Rood, David Johnsen
  • Patent number: 8932478
    Abstract: To absorb a volatile substance from a gas phase in a liquid absorbent, the gas phase is brought into contact with a film of an absorbent which comprises an ionic liquid and a wetting-promoting additive. The process can be used in absorption refrigerating machines.
    Type: Grant
    Filed: December 3, 2008
    Date of Patent: January 13, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Matthias Seiler, Bernd Glöckler, Peter Schwab, Stefan Kempka
  • Patent number: 8931262
    Abstract: A method for controlling the effective heat transfer from a storage unit (1). During gas release from storage material (3) in the storage unit the storage material is heated by a heater (2). During re-saturation of the storage material (3) with gas the heater is off. Controlling of the effective heat transfer from the storage unit (1) is performed, during gas release, by ceasing convection of a convection gas and, during re-saturation, by performing or enabling convection of a convection gas to cool the storage unit (1).
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: January 13, 2015
    Assignee: Amminex Emissions Technology A/S
    Inventors: Ulrich Joachim Quaade, Tue Johannessen, Jacob Hjerrild Zeuthen, Henning Schmidt
  • Patent number: 8926736
    Abstract: The present invention relates to reducible porous crystalline solids, constituted of a metal-organic framework (MOF), for the separation of mixtures of molecules having different unsaturation degrees and/or a different number of unsaturations with a selectivity that can be adjusted by controlling the reduction of the MOF. The MOF solids of the present invention, after reduction, have a strong affinity for molecules containing at least one unsaturation. They can be used in various separation processes, especially those relating to hydrocarbons.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: January 6, 2015
    Assignees: Centre National de la Recherche Scientifique -CNRS-, Universite de Caen-Basse Normandie, Universite de Versailles—Saint Quentin en Yvelines, Korea Research Institute of Chemical & Technology (KRICT)
    Inventors: Christian Serre, Alexandre Vimont, Philip Llewellyn, Jong-San Chang, Patricia Horcajada-Cortes, Gérard Ferey, Marco Daturi, Young-Kyu Hwang
  • Patent number: 8808428
    Abstract: A fuel vapor removal method includes removing fuel vapor from ullage of a fuel tank of a vehicle, adsorbing the fuel vapor removed from the ullage onto adsorption media on the vehicle, and desorbing the fuel vapor from the adsorption media while on the vehicle. A fuel vapor removal method includes purging fuel vapor from ullage of a fuel tank using air added into the ullage, reducing a fuel-air ratio in the ullage using the air purging, and adsorbing the purged fuel vapor onto adsorption media. A fuel vapor removal system includes a fuel tank having ullage, an adsorption system including fuel vapor adsorption media fluidically connected to the ullage and to an ullage purging system, and a controller. The controller includes a flammability determination system and is configured to start fuel vapor removal by the purging system from the ullage onto the adsorption media before the ullage exhibits flammability.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: August 19, 2014
    Assignee: The Boeing Company
    Inventor: Alankar Gupta
  • Patent number: 8808426
    Abstract: The invention relates to an increased efficiency high-capacity pressure and/or temperature swing adsorption process comprising: contacting a feedstream at a rate of more than 75 MSCFD with an adsorbent material under conditions sufficient for the adsorbent material to selectively adsorb at least one of the component gases in the feedstream, so as to form a first effluent; and selectively desorbing the adsorbed gas from the adsorption material, so as to form a second effluent The adsorption module can contain rotary valves both on the feed end and on the product end and a rotational member defining a central rotational axis, with the adsorption bed(s) oriented circumferentially thereto. The adsorption bed walls can be angled, the feed end cross-sectional area of the adsorption bed(s) can be larger than the product end, and/or the feed end rotary valve diameter of the module(s) can be larger than the product end.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: August 19, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Narasimhan Sundaram
  • Publication number: 20140208650
    Abstract: The present invention relates to extruded shaped bodies containing at least one metal-organic framework (MOF), methods for their preparation and their use.
    Type: Application
    Filed: January 31, 2014
    Publication date: July 31, 2014
    Applicant: BASF SE
    Inventors: Manuela Gaab, Christian Eichholz, Milan Kostur, Ulrich Müller, Stefan Maurer
  • Patent number: 8784535
    Abstract: The present invention relates to a pressure-temperature swing adsorption process wherein gaseous components that have been adsorbed can be recovered from the adsorbent bed at elevated pressures. In particular, the present invention relates to a pressure-temperature swing adsorption process for the separation of C2+ hydrocarbons (hydrocarbons with at least 2 carbon atoms) from natural gas streams to obtain a high purity methane product stream. In more preferred embodiments of the present processes, the processes may be used to obtain multiple, high purity hydrocarbon product streams from natural gas stream feeds resulting in a chromatographic-like fractionation with recovery of high purity individual gaseous component streams.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Peter I. Ravikovitch, Robert A. Johnson, Harry W. Deckman, Thomas N. Anderson
  • Patent number: 8778061
    Abstract: The reaction exhaust gas from which chlorosilanes and hydrogen chloride have been removed in a hydrogen chloride absorption unit (30) is introduced to an adsorption unit (50) to recover a purified hydrogen (S105). Activated carbon is packed in the adsorption unit (50), the gas, which is mainly composed of hydrogen, is passed through the activated carbon-packed layer during which unseparated chlorosilanes, hydrogen chloride, nitrogen, carbon monoxide, methane, and monosilane contained in the gas are adsorbed on the activated carbon and removed from the gas, and thereby the purified hydrogen is obtained. Nitrogen, carbon monoxide, methane and monosilane are a compressed gas in the state of adsorption, whereas hydrogen chloride and chlorosilanes are a liquid in the state of adsorption, and require a vaporization heat during desorption. Using these properties, the separation of hydrogen chloride and chlorosilanes from other impurity components is possible merely by separating the pathways for the desorbed gas.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: July 15, 2014
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Yasushi Kurosawa
  • Patent number: 8778050
    Abstract: A process for removing heavy hydrocarbons from a natural gas stream comprises passing the natural gas stream thought a TSA adsorbent unit to adsorb heavy hydrocarbons, regenerating the TSA adsorbent by heating to form a contaminant-containing gas phase, cooling the contaminated gas phase to separate water and heavy hydrocarbon liquids to form a third gas phase and directing the third gas phase to a PSA unit to adsorb heavy hydrocarbons from the third gas phase. The product from the PSA unit can be sent to pipeline or recycled to the TSA unit for further hydrocarbon removal and recovery.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: July 15, 2014
    Assignee: BASF Corporation
    Inventors: William Bachop Dolan, Roger Wyatt
  • Patent number: 8753430
    Abstract: Rotary valves are disclosed, comprising a seal sheet affixed to a rotor. At least some area, namely a “rotor plate surface mating area” is provided, over which a seal sheet anchoring assembly can directly abut, along a planar portion, the rotor plate surface that is in contact with the seal sheet. This advantageously provides an area of direct contacting between the seal sheet anchoring assembly, or one of its components, and the rotor plate, with the abutting surfaces being defined by consistently rigid materials (e.g., metals such as stainless steel) that undergo substantially no deformation, compression, or softening over conditions of normal operation.
    Type: Grant
    Filed: May 10, 2011
    Date of Patent: June 17, 2014
    Assignee: UOP LLC
    Inventor: Stephen Jay Koski
  • Patent number: 8753427
    Abstract: In various implementations, various feed gas streams which include hydrogen and carbon monoxide may be processed for conversion to product streams. For example, the feed gas stream may be processed using the Fischer-Tropsch process or a methanol synthesis process. Unconverted hydrogen and carbon monoxide can be recycled at high recovery and/or inert components removed to prevent build-up in the recycle system by using an arrangement of pressure swing adsorption systems designed to recover impure product gas streams.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: June 17, 2014
    Assignee: GTLpetrol LLC
    Inventor: Rodney J. Allam
  • Publication number: 20140157987
    Abstract: To provide an Fe(II)-substituted beta type zeolite which has been ion-exchanged with Fe(II) ions and can effectively adsorb and remove nitrogen monoxide or hydrocarbon contained in gas to be cleaned, even if oxygen is present in the gas at a high concentration or the temperature of the gas is low. In the Fe(II)-substituted beta type zeolite, a ratio of SiO2/Al2O3 is preferably 10 to 18, a BET specific surface area is preferably 400 m2/g to 700 m2/g, a micropore specific surface area is preferably 290 m2/g to 500 m2/g, and a micropore volume is preferably 0.15 cm3/g to 0.25 cm3/g. The amount of Fe(II) supported is preferably 0.01% by mass to 6.5% by mass based on the Fe(II)-substituted beta type zeolite.
    Type: Application
    Filed: January 17, 2012
    Publication date: June 12, 2014
    Applicants: THE UNIVERSITY OF TOKYO, NIPPON CHEMICAL INDUSTRIAL CO., LTD.
    Inventors: Masaru Ogura, Keiji Itabashi, Tatsuya Okubo, Shanmugam Palani Elangovan
  • Publication number: 20140157984
    Abstract: Systems and methods are provided for improving separation of gas phase streams using an adsorbent, such as 8-member ring zeolite adsorbents or DDR type zeolite adsorbents. Suitable gas phase streams can include at least one hydrocarbon, such as methane or a hydrocarbon containing at least one saturated carbon-carbon bond, and at least one additional component, such as CO2 or N2. The selectivity of the adsorbent is improved by selectivating the adsorbent with one or more barrier compounds. The presence of the barrier compounds is believed to alter the relative ability of potential adsorbates to enter into and/or move within the pores of the adsorbent.
    Type: Application
    Filed: November 8, 2013
    Publication date: June 12, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Harry W. Deckman, Peter I. Ravikovitch, Preeti Kamakoti, Chris Yoon
  • Publication number: 20140157986
    Abstract: Methods are provided for forming zeolite crystals suitable for gas phase separations with transport characteristics that are stable over time. The zeolitic materials and/or corresponding methods of synthesis or treatment described herein provide for improved stability in the early stages of process operation for some types of gas phase separations. The methods allow for synthesis of DDR type zeolites that have reduced contents of alkali metal impurities. The synthetic methods for reducing the non-framework alkali metal atom or cation impurity content appear to have little or no impact on the DDR crystal structure and morphology.
    Type: Application
    Filed: November 8, 2013
    Publication date: June 12, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Peter I. Ravikovitch, Barbara Carstensen, Charanjit S. Paur, Ivy D. Johnson, Harry W. Deckman
  • Patent number: 8715395
    Abstract: Fluorinated metal-organic frameworks (“FMOFs”) are capable of adsorbing and desorbing hydrocarbons, namely, C6-C8 hydrocarbon oil components (n-hexane, cyclohexane, benzene and toluene). FMOFs can be arranged in a variety of configurations and have internal hollow channels and cavities. In FMOFs, hydrogen atoms have been substituted completely or partially with fluorine atoms or fluorinated groups in each linking organic ligand. These FMOFs can adsorb C6-C8 hydrocarbons, up to 500 kg/m3 as demonstrated for toluene, through a combination of superhydrophobicity and capillary action. No water adsorption was detectable even under extreme conditions including moist air near 100% relative humidity and immersion in water for multiple weeks, demonstrating far superior water resistance to BPL carbon and zeolites. These materials are stable and can be readily recycled by simple desorption many times.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: May 6, 2014
    Assignee: University of North Texas
    Inventors: Mohammad A. Omary, Chi Yang
  • Patent number: 8715396
    Abstract: A method for providing superadsorption of polar organic compounds using a material system is provided. The method can comprise enhancing adsorption by means of using high surface area and mass transfer rates and decreased reactivity at surface sites attractive to the polar compounds; and employing consequence management by maintaining a high rate of adsorptivity combined with high fidelity and accuracy of the material system. A modified superadsorbent material for air sampling applications comprising a superadsorbent material treated with a solution, thereby forming a treated superadsorbent material, wherein the treated superadsorbent material is substantially hydrophobic and is capable of adsorbing polar compounds.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: May 6, 2014
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Tadd C. Kippeny, Christopher S. Badorrek, Michael J. Bowers, II, Christopher L. Rector
  • Patent number: 8685146
    Abstract: Processes and apparatuses are provided for preparing liquified natural gas from a natural gas feed that comprises C5 to C7 hydrocarbons and C8 or greater hydrocarbons. An exemplary process includes effecting the preferential adsorption of the C8 or greater hydrocarbons from the natural gas feed over adsorption of hydrocarbons having less than 8 carbon atoms to provide a C8-depleted natural gas stream. The process continues with effecting the preferential adsorption of the C5 to C7 hydrocarbons from the C8-depleted natural gas stream over adsorption of hydrocarbons having less than 5 carbon atoms to form a C5 to C8-depleted natural gas stream. The C5 to C7 hydrocarbons are preferentially adsorbed with higher selectivity and capacity than adsorption of the C5 to C7 hydrocarbons during preferentially adsorbing the C8 or greater hydrocarbons. The C5 to C8-depleted natural gas stream is then liquified.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: April 1, 2014
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Shain-Jer Doong, Bradley P. Russell, Henry Rastelli
  • Publication number: 20140083293
    Abstract: Adsorber for adsorbing a fluid, comprising a cylinder with at least two parallel-passage contactors disposed in series in the direction of flow of the fluid to be adsorbed, and characterised in that each contactor comprises an internal insulation.
    Type: Application
    Filed: April 20, 2012
    Publication date: March 27, 2014
    Applicant: l' Air Liquide, Société Anonyme pour I'Etude et I'Exploitation des Procédés Georges Claude
    Inventor: Benoit Davidian
  • Publication number: 20140060326
    Abstract: The invention relates to an increased efficiency high-capacity pressure and/or temperature swing adsorption process comprising: contacting a feedstream at a rate of more than 75 MSCFD with an adsorbent material under conditions sufficient for the adsorbent material to selectively adsorb at least one of the component gases in the feedstream, so as to form a first effluent; and selectively desorbing the adsorbed gas from the adsorption material, so as to form a second effluent The adsorption module can contain rotary valves both on the feed end and on the product end and a rotational member defining a central rotational axis, with the adsorption bed(s) oriented circumferentially thereto. The adsorption bed walls can be angled, the feed end cross-sectional area of the adsorption bed(s) can be larger than the product end, and/or the feed end rotary valve diameter of the module(s) can be larger than the product end.
    Type: Application
    Filed: September 4, 2012
    Publication date: March 6, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: NARASIMHAN SUNDARAM
  • Patent number: 8663375
    Abstract: An oil suppressing structure in an air drying device for removing oil which rises in an interior of the air drying device used in a vehicle compressed air brake system includes an outer case 21, a drying case 22 in an interior of the outer case 21, a base plate 23 fixed to a lower end portion 21a of the outer case 21, and an outer cover 24 fixed to a lower end portion 21a of the base plate 23. The drying case 22 has a large-diameter long cylindrical body portion 22A and a small-diameter long cylindrical body portion 22B. A particulate desiccating agent 25 is filled in an interior of the large-diameter cylindrical body portion 22A. An oil adsorbing material 27 is inserted in a space S3 between an inner wall of the outer case 21 and the small-diameter long cylindrical body portion 22B of the drying case 22.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: March 4, 2014
    Assignee: Nabtesco Automotive Corporation
    Inventors: Ichiro Minato, Hiroyuki Murakami, Hiroki Hasebe, Takeo Shimomura, Takuya Sugio
  • Publication number: 20140053730
    Abstract: A system and process for removing hydrocarbons from a gas process feed stream is presented. The treatment process may be, but is not limited to, glycol dehydration, amine sweetening, and MEG reclamation. As an example, a hydrocarbon removal bed containing a solid adsorbent material adsorbs the hydrocarbons in a rich MEG feed stream as it passes through the hydrocarbon removal bed. After the hydrocarbons have been removed, the feed stream flows through a flash separator and a distillation column to reclaim MEG. Alternatively, the hydrocarbon removal bed may be used after the MEG reclamation process to remove hydrocarbons in the distilled water from the distillation column. Spent solid adsorbent material may be regenerated in place.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Inventors: Daniel W. Phelps, Luis Eduardo Caires Fernandez
  • Patent number: 8658849
    Abstract: The present invention relates to a process for the separation of at least one unbranched C4-C2O hydrocarbon from a fluid mixture containing the unbranched hydrocarbon and at least one branched isomer of the unbranched hydrocarbon, which comprises the step of—contacting the fluid mixture with an adsorbent comprising a porous metal organic framework material, which material comprises at least one at least bidentate organic compound coordinately bound to at least one metal ion, to get the unbranched hydrocarbon adsorbed, wherein the at least one at least bidentate organic compound is a monocyclic, bicyclic or polycyclic ring system which is derived from at least one heterocycle selected from the group consisting of pyrrole, alpha-pyridone and gamma-pyridone and has at least two ring nitrogens and is unsubstituted or bears one or more substituents selected independently from the group consisting of halogen, Ci-6-alkyl, phenyl, NH2, NH(d-6-alkyl), N(C1-6-alkyl)2, OH, Ophenyl and OCi-6-alkyl, where the substituents
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: February 25, 2014
    Assignee: BASF SE
    Inventors: Markus Schubert, Ulrich Mueller, Christoph Kiener, Ingo Richter, William Dolan, Frank Poplow
  • Patent number: 8658120
    Abstract: Disclosed is a non-thermofusible phenol resin powder having an average particle diameter of not more than 20 ?m and a single particle ratio of not less than 0.7. This non-thermofusible phenol resin powder preferably has a chlorine content of not more than 500 ppm. This non-thermofusible phenol resin powder is useful as an organic filler for sealing materials for semiconductors and adhesives for semiconductors. The non-thermofusible phenol resin powder is also useful as a precursor of functional carbon materials such as a molecular sieve carbon and a carbon electrode material.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: February 25, 2014
    Assignee: Air Water Inc.
    Inventors: Naoto Yoshinaga, Satoshi Ibaraki, Yoshinobu Kodani, Takaomi Ikeda
  • Patent number: 8636969
    Abstract: A method is provided for forming a zeolitic imidazolate framework composition using at least one reactant that is relatively insoluble in the reaction medium. Also provided herein is a material made according to the method, designated either as EMM-19 or as EMM-19*, and a method of using same to adsorb and/or separate gases, such as carbon dioxide.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 28, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Simon Christopher Weston, Mobae Afeworki, Zheng Ni, John Zengel, David Lawrence Stern
  • Patent number: 8636829
    Abstract: The invention provides gas purification systems for the recovery and liquefaction of low boiling point organic and inorganic gases, such as methane, propane, CO2, NH3, and chlorofluorocarbons. Many such gases are in the effluent gas of industrial processes and the invention can increase the sustainability and economics of such industrial processes. In a preferred system of the invention, low boiling point gases are adsorbed with a heated activated carbon fiber material maintained at an adsorption temperature during an adsorption cycle. During a low boiling point desorption cycle the activated carbon fiber is heated to a desorption temperature to create a desorption gas stream with concentrated low boiling point gases. The desorption gas stream is actively compressed and/or cooled to condense and liquefy the low boiling point gases, which can then be collected, stored, re-used, sold, etc.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: January 28, 2014
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Mark J. Rood, K. James Hay, David Johnsen, Kaitlin Mallouk
  • Patent number: 8571419
    Abstract: In accordance with some embodiments of the present disclosure, a method for spectrally spacing carrier waves comprises determining a frequency offset between a first frequency of a first optical carrier wave and a second frequency of a second optical carrier wave. The method further comprises adjusting the second frequency of the second optical carrier wave according to the frequency offset. The method additionally comprises combining a first optical signal associated with the first carrier wave and a second optical signal associated with he second carrier wave into a multi-frequency signal.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: October 29, 2013
    Assignee: Fujitsu Limited
    Inventor: Martin Bouda
  • Publication number: 20130274087
    Abstract: MOF (metal organic framework)-modified materials and methods of making and methods of using same. The MOFs are covalently bound to the materials. Examples of suitable materials include fibers and thin films. The MOF-modified materials can be made by forming MOFs in situ such that they are covalently bound to the materials. The MOF-modified materials can be used in methods where gases and/or toxic chemicals are absorbed.
    Type: Application
    Filed: August 25, 2011
    Publication date: October 17, 2013
    Applicant: CORNELL UNIVERSITY
    Inventors: Marcia da Silva Pinto, Cesar Augusto Sierra Avilla, Juan Paulo Hinestroza
  • Publication number: 20130269524
    Abstract: The invention relates to an adsorbent zeolite-based material comprising for 100 mass % an amount different from zero of a zeolite selected from X zeolites or LSX zeolites; the balance up to 100 mass % consisting of an amount different from zero of a cation-exchanged zeolite, said cation-exchanged zeolite being selected from cation-exchanged X zeolites and cation-exchanged LSX zeolites.
    Type: Application
    Filed: January 4, 2012
    Publication date: October 17, 2013
    Applicant: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventor: Christian Monereau
  • Publication number: 20130255493
    Abstract: A fuel vapor removal method includes removing fuel vapor from ullage of a fuel tank of a vehicle, adsorbing the fuel vapor removed from the ullage onto adsorption media on the vehicle, and desorbing the fuel vapor from the adsorption media while on the vehicle. A fuel vapor removal method includes purging fuel vapor from ullage of a fuel tank using air added into the ullage, reducing a fuel-air ratio in the ullage using the air purging, and adsorbing the purged fuel vapor onto adsorption media. A fuel vapor removal system includes a fuel tank having ullage, an adsorption system including fuel vapor adsorption media fluidically connected to the ullage and to an ullage purging system, and a controller. The controller includes a flammability determination system and is configured to start fuel vapor removal by the purging system from the ullage onto the adsorption media before the ullage exhibits flammability.
    Type: Application
    Filed: March 27, 2012
    Publication date: October 3, 2013
    Inventor: Alankar Gupta
  • Publication number: 20130259792
    Abstract: A method is provided for forming a zeolitic imidazolate framework composition using at least one reactant that is relatively insoluble in the reaction medium. Also provided herein is a material made according to the method, designated either as EMM-19 or as EMM-19*, and a method of using same to adsorb and/or separate gases, such as carbon dioxide.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 3, 2013
    Applicant: ExxonMobil Research & Engineering Company
    Inventors: Simon Christopher Weston, Mobae Afeworki, Zheng Ni, John Zengel, David Lawrence Stern