Hydrocarbon Sorbed Patents (Class 95/143)
  • Patent number: 6986804
    Abstract: The present invention provides a combination filter for filtering fluids comprising a flow channel particulate filtration media having a first face and a second face and a gas adsorbing filtration media. The flow channel particulate filtration media comprises a plurality of flow channels directed in flow direction and defined by inner surfaces. The flow channels having inlet openings through the first face and outlet openings through the second face of the flow channel particulate filtration media. The inner surfaces of said flow channels at least in part are provided with structures protruding therefrom and forming or extending into the flow channels or an electrical charge or a combination of both. The said gas adsorbing filtration media comprises a pad having a first face and a second face and width and length dimensions orthogonal with respect to each other and each individually to the flow direction and having a thickness dimension in flow direction.
    Type: Grant
    Filed: April 5, 2002
    Date of Patent: January 17, 2006
    Assignee: 3M Innovative Properties Company
    Inventors: Klaus Dominiak, Frank Koehler, Nicolai Bochynek, Marcus Lotgerink-Bruinenberg
  • Patent number: 6977007
    Abstract: A method of separating a gas mixture using a permeation membrane unit, wherein the gas mixture, containing primarily hydrogen and carbon monoxide, is first treated to reduce the level of secondary components to lower than 100 molar ppm.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: December 20, 2005
    Assignee: L'Air Liquide, Société Anonyme à Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Nicolas Siadous, Yves Engler, Christian Monereau
  • Patent number: 6974889
    Abstract: Colloidal crystalline molecular sieve seeds are used in phosphorus-containing crystalline molecular sieve manufacture. Certain of the products have enhanced utility in oxygenate conversions.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: December 13, 2005
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jannetje Maatje van den Berge, legal representative, Machteld Maria Wilfried Mertens, Wilfried Jozef Mortier, Marcel Johannes Janssen, Cornelius Maria Wilhelmus Van Oorschot, Johannes Petrus Verduijn, deceased
  • Patent number: 6966938
    Abstract: An oil separator for oil-flooded rotary vane vacuum pumps has a filter housing (10) and a plurality of filter cartridges (14) disposed therein through which the pumping medium flows. The filter cartridges (14) are each inserted through a respective opening (16) in an outer housing wall (12) of the filter housing (10) and are secured to the housing wall (12) so as to be detachable and tight with respect to media.
    Type: Grant
    Filed: February 22, 2002
    Date of Patent: November 22, 2005
    Assignee: Werner Rietschle GmbH & Co. KG
    Inventors: Andreas Bürgin, Markus Kuny
  • Patent number: 6964695
    Abstract: A regenerable adsorber for removing VOCs from gas streams consists of a porous monolithic carbon which can be regenerated by heating by passing an electric current through it.
    Type: Grant
    Filed: September 11, 2003
    Date of Patent: November 15, 2005
    Assignee: Carbon Technologies NV
    Inventors: Roger Nicholas Place, Andrew John Blackburn, Stephen Robert Tennison, Anthony Paul Rawlinson, Barry David Crittenden
  • Patent number: 6962629
    Abstract: Carbon dioxide is purified through the use of catalytic oxidation. Carbon dioxide is exposed to at least one catalyst, oxidizing at least a portion of the nonvolatile organic residues to form purified carbon dioxide that is directed to an application. Carbon dioxide that is in a near-critical, critical, or supercritical phase can be exposed to the catalyst.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: November 8, 2005
    Assignee: Praxair Technology, Inc.
    Inventors: Michael Clinton Johnson, Carl Joseph Heim, John Fredric Billingham
  • Patent number: 6955704
    Abstract: A method and mobile system for cleaning dirty gas from a newly stimulated gas well. The entire system is supported on a trailer or other mobile support so that it can be driven from well site to well site for short-term, post-stimulation use only. The system comprises a gas separator, such as a membrane separator. The system also includes a pretreatment assembly for preparing the gas for the gas separator. The pretreatment assembly may include separators, a heater, a guard vessel and a polishing filter. A chiller or heat exchanger cools the treated gas to a marketable temperature. A generator and a hydraulics plant provide power to the system. Each mobile system will be designed to treat gases with widely different operating conditions varying from well to well.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: October 18, 2005
    Inventor: Ronald L. Strahan
  • Patent number: 6918948
    Abstract: A Process for the production and uses of a molecular sieve adsorbent blend product with improved performance characteristics produced by preparing a zeolite powder, preparing a highly dispersed attapulgite fiber binder, mixing the zeolite powder with the highly dispersed attapulgite binder to form a mixture, forming molecular sieve adsorbent products into a shaped material and calcining the shaped material, wherein the tapped bulk density of the highly dispersed attapulgite fibers measured according to DIN/ISO 787 is more than about 550 g/ml.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: July 19, 2005
    Assignee: Zeochem LLC
    Inventors: Dave Jaussaud, Kerry Weston, Armin Pfenninger, Beat Kleeb
  • Patent number: 6911189
    Abstract: A filter such as an air having a reagent which chemically reacts with and removes a gaseous component of an air stream. The reagent contains functional groups covalently bonded to a non-volatile inorganic substrate which is incorporated in the filter. The filter can remove gaseous components such as aldehydes. Preferred functional groups are 3-aminopropylsilyl groups covalently bonded to silica gel (APS silica gel). The reagent can be contained in a space in the filter or incorporated in one or more filter elements. The reagent can be part of or coated on paper such as filter paper or incorporated in non-paper filter elements formed from fibrous materials such as cellulose acetate or polypropylene fibers. Other preferred reagents include aminoethylaminopropylsilyl silica gel (AEAPS) and aminoethylaminoethylaminopropylsilyl silica gel (AEAEAPS).
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: June 28, 2005
    Assignee: Philip Morris USA Inc.
    Inventors: Kent B. Koller, Susan E. Wrenn, Willie G. Houck, Jr., John B. Paine, III
  • Patent number: 6911064
    Abstract: A method and apparatus for preventing contamination of a substrate or a substrate surface, and particularly relates to prevention of contamination of raw materials, semi-finished products, base materials of products and substrate surface in a high-tech industry such as an in the production of semiconductors and liquid crystals. A gas coming into contact with a base material or substrate is purified by dust removing apparatus and adsorption and/or absorption apparatus so that the concentration of fine particles in the gas is below class 1,000 and a non-methane hydrocarbon concentration is below 0.2 ppm. Thereafter, the base material or the substrate surface is exposed to this gas.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: June 28, 2005
    Assignee: Ebara Research Co., Ltd.
    Inventors: Toshiaki Fujii, Tsukuru Suzuki, Hidetomo Suzuki, Kazuhiko Sakamoto
  • Patent number: 6911065
    Abstract: A fluid purifying apparatus that includes a manifold that includes a first branch and a second branch, a first check valve coupled to the first branch of the manifold, and a purifier unit that includes a first end and a second end, wherein the first end is coupled to the second branch of the manifold. Also, a fluid purifying apparatus that includes a vessel that includes a first interior compartment for containing a purifier material and a second interior compartment for containment of a fluid containing impurities, wherein the first interior compartment is separated from the second interior compartment by a fluid permeable support, and a rupturable seal.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: June 28, 2005
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Tadaharu Watanabe, Robert Torres, Jr., Joseph Vininski
  • Patent number: 6893483
    Abstract: A gas adsorption composite a high density adsorbent including a high density layer having a first density of at least 0.3 g/cc; and a low density adsorbent having a low density layer having a second density of less than 0.3 g/cc, wherein the high density adsorbent is in substantially contiguous contact with the low density adsorbent and each of the high density adsorbent and the low density adsorbent has an adsorbent surface area of at least 500 m2/g. A pressure swing adsorption process for recovering a product gas from a feed gas, the process including supplying a pressure swing adsorption apparatus including a gas adsorption composite, feeding a feed gas into the pressure swing adsorption apparatus during a feed period not exceeding 100 seconds and recovering the product gas from the pressure swing adsorption apparatus.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: May 17, 2005
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Catherine Marie Anne Golden, Timothy Christopher Golden, Paula Jean Battavio
  • Patent number: 6890373
    Abstract: An adsorbent includes core particles containing an adsorbing material; a porous coating layer including a polymer material that coats the core particles; and an underlying layer containing a metal compound and disposed between the core particles and the porous coating layer. The porous coating layer is formed by spraying and applying a suspension or a solution containing the polymer material over the adsorbing material, or by immersing the adsorbing material into the suspension or the solution.
    Type: Grant
    Filed: June 13, 2001
    Date of Patent: May 10, 2005
    Assignee: Bridgestone Corporation
    Inventors: Yasushi Nemoto, Hisashi Mori, Tadashi Kuwahara
  • Patent number: 6866699
    Abstract: The invention is directed to a process for the adsorption of organic vapours from gas mixtures containing them onto activated carbon, where the process comprises passing the gas mixture consecutively through at least a first and a second adsorption system, the first system consisting of activated carbon having a first adsorption rate for the organic vapours and the second system consisting of an adsorbent having a second adsorption rate for the organic vapours, the second adsorption rate being higher than the first adsorption rate, more in particular to such process when used in the operation of vehicle internal combustion engines.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: March 15, 2005
    Assignee: Norit Nederland B.V.
    Inventors: James Duff MacDowall, Dirk van de Kleut, Michiel Trijnisse Kleij
  • Patent number: 6863713
    Abstract: An adsorbent composition containing a modified carbonaceous material capable of adsorbing an adsorbate is disclosed, wherein at least one organic group is attached to the carbonaceous material. Furthermore, methods to increase the adsorption capacity of a carbonaceous material capable of adsorbing an adsorbate and methods to adsorb an adsorbate using the above-described adsorbent composition are also disclosed.
    Type: Grant
    Filed: December 30, 1999
    Date of Patent: March 8, 2005
    Assignee: Cabot Corporation
    Inventors: Ranjan Ghosal, James A. Belmont, Douglas M. Smith, Jameel Menashi
  • Patent number: 6849106
    Abstract: Conducting a PSA process for the purification of gaseous hydrogen contaminated at least with CO and N2 of the H1 where the gas stream to be purified is passed through an adsorption region comprising at least one adsorbent based on zeolite 5A and one adsorbent based on zeolite X exchanged with calcium.
    Type: Grant
    Filed: July 2, 2001
    Date of Patent: February 1, 2005
    Assignee: CECA S.A.
    Inventor: Remi Le Bec
  • Patent number: 6837917
    Abstract: A process for removal of ethylene oxide (EO) from ambient air laden with EO is passed through a zeolite-based removal media, which preferrably consists of the acid form of zeolite ZSM-5, herein referred to as “H-ZSM-5.” The process described herein may be applied to many forms, configurations and uses, such as, for example, gas masks, fume hood ventilation filters, cartridge filters, etc. Preferably, the H-ZSM-5 is configured within an apparatus in such a manner that the stream containing EO is brought into sufficient contact with the zeolite to remove the EO from the airstream.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: January 4, 2005
    Assignee: Guild Associates, Inc.
    Inventors: Christopher A. Karwacki, Joseph A. Rossin
  • Patent number: 6824588
    Abstract: An apparatus and a method for purifying the air used in cryogenic air separation are described, which are capable of effectively removing nitrogen oxides and/or hydrocarbons. The apparatus comprises an adsorber comprising an adsorption cylinder that has a first adsorbing layer and a second adsorbing layer therein. The first adsorbing layer is composed of a first adsorbent capable of selectively adsorbing water in the air. The second adsorbing layer is composed of a second adsorbent capable of selectively adsorbing nitrogen oxide and/or hydrocarbon in the air passing the first adsorbing layer, wherein the second adsorbent comprises an X zeolite containing magnesium ion as an ion-exchangeable cation.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: November 30, 2004
    Assignee: Nippon Sanso Corporation
    Inventors: Morimitsu Nakamura, Kazuhiko Fujie, Yasuo Tatsumi, Masato Kawai
  • Publication number: 20040231511
    Abstract: A process for removal of ethylene oxide (EO) from ambient air laden with EO is passed through a zeolite-based removal media, which preferrably consists of the acid form of zeolite ZSM-5, herein referred to as “H-ZSM-5.” The process described herein may be applied to many forms, configurations and uses, such as, for example, gas masks, fume hood ventilation filters, cartridge filters, etc. Preferably, the H-ZSM-5 is configured within an apparatus in such a manner that the stream containing EO is brought into sufficient contact with the zeolite to remove the EO from the airstream.
    Type: Application
    Filed: May 22, 2003
    Publication date: November 25, 2004
    Inventors: Christopher J. Karwacki, Joseph A. Rossin
  • Publication number: 20040226439
    Abstract: An auxiliary fuel vapor adsorption device includes a housing and an activated carbon segment contained within the housing and including a quantity of activated carbon material. A dust separator is also contained within the housing and in fluid communication with the carbon segment, and a canister vent valve is mounted to the housing in fluid communication with the activated carbon segment. The invention allows for the reduction of evaporative emissions by minimizing interconnecting joints between necessary fuel system components.
    Type: Application
    Filed: May 13, 2003
    Publication date: November 18, 2004
    Applicant: VISTEON GLOBAL TECHNOLOGIES, INC.
    Inventors: Michael Heim, Ljupco Dimitreivski, Frank Robinson
  • Patent number: 6818043
    Abstract: A method for efficiently removing vapor-phase contaminants from gas streams is described. A powdered adsorbent such as activated carbon is ground into a fine powder by wet grinding to form a slurry. Chemicals are added to the slurry to impregnate the sorbent to enhance sorbent effectiveness. The slurry chemical mixture is sprayed into the gas stream in the form of small droplets which evaporate to produce an aerosol of fine adsorbent particles. Vapor-phase contaminants in the gas stream adsorb onto the fine adsorbent particle surfaces and the adsorbent particles are removed from the gas stream by a conventional particle collection method.
    Type: Grant
    Filed: January 23, 2003
    Date of Patent: November 16, 2004
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Ramsay Chang, Frank Meserole, Carl Richardson
  • Patent number: 6814787
    Abstract: The present invention describes a pressure swing adsorption (PSA) apparatus and process for the production of purified hydrogen from a feed gas stream containing heavy hydrocarbons (i.e., hydrocarbons having at least six carbons). The apparatus comprises at least one bed containing at least three layers. The layered adsorption zone contains a feed end with a low surface area adsorbent (20 to 400 m2/g) which comprises 2 to 20% of the total bed length followed by a layer of an intermediate surface area adsorbent (425 to 800 m2/g) which comprises 25 to 40% of the total bed length and a final layer of high surface area adsorbent (825 to 2000 m2/g) which comprises 40 to 78% of the total bed length.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: November 9, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist, Jr.
  • Patent number: 6814783
    Abstract: Inorganic, porous particles filter a substance or substances from a flow of fluid such as a gas. The particles can be arranged into a bed to filter a substance (filtrate substance) from a fluid. The filtrate substance can collect on or within the pores of the inorganic particles. Collection of the filtrate substance within the pores of the particles rather than within the interstices of the bed enhances the filtering capacity and does not impede the flow of fluid through the bed of particles. Furthermore, the inorganic particles are re-usable, in that they can be subjected to harsh filtrate-separation techniques, e.g., heat treatment, solvent extraction, detergent washing, and centrifugal separation, yet retain their desired properties.
    Type: Grant
    Filed: March 14, 2003
    Date of Patent: November 9, 2004
    Assignee: Phillips Plastics Corporation
    Inventors: Tom Fitch, Majid Entezarian, James R. Johnson
  • Patent number: 6776821
    Abstract: A material for fixing gaseous hydrocarbon containing fibrous crystal aggregates formed by precipitating by making a metal aliphatic carboxylate dissolve completely in pure water to give a solution, stirring and gradually cooling the resulting solution; a method of preparing the fixing material; and a method of adsorbing and solidifying gaseous hydrocarbon by using the fixing material.
    Type: Grant
    Filed: March 11, 2002
    Date of Patent: August 17, 2004
    Assignees: National Institute of Advanced Industrial Science and Technology, Okamura Oil, Mill, Ltd.
    Inventors: Hiroshi Sakaguchi, Yoshishige Kida, Seizi Iseki
  • Patent number: 6752853
    Abstract: A method and apparatus of the invention includes a method of removing airborne hydrocarbons from liquid electrophotographic printer exhaust comprises generating airborne hydrocarbon droplets as either vapor or mist during the transportation of electrophotographic ink or toner, directing substantially all of the air and hydrocarbon droplet mixture to a central collection point, forcing the air/droplet mixture to and through an oleophilic, substantially non-leaching collection media, and exhausting substantially hydrocarbon-free air from the electrophotographic printer. The method may further comprise inducing pressure in the printer with air pressure reduction to pull the exhaust through the collection media, for example with a pump or fan used to produce air pressure reduction. The method may comprise inducing airflow in the printer with ventilation holes or by the addition of a fan to provide a fresh air inlet. The air/hydrocarbon mixture may be directed to the collection media by a transportation system.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: June 22, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Charles W. Simpson, James A. Baker, A. Kristine Fordahl, Susan E. Hill
  • Patent number: 6746513
    Abstract: A gas separation module includes an adsorbent filter medium inside the case that holds the active gas separation membrane. The adsorbent filter is positioned upstream of the membrane and is operative to extract from the feed gas contaminants which adversely affect membrane separation performance and which if not removed, would cause the membrane separation performance to deteriorate. The adsorbent filter fits within vacant space in conventionally-sized hollow fiber membrane modules and thus can obviate the need to install an external adsorbent filter upstream of the module and/or to enlarge the space occupied by the module to accommodate addition of the internal adsorbent medium.
    Type: Grant
    Filed: February 8, 2003
    Date of Patent: June 8, 2004
    Assignee: L'Air Liquide Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitations des Procedes Georges Claude
    Inventor: Charles L. Anderson
  • Patent number: 6743278
    Abstract: A fluid storage and dispensing apparatus, including a fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a dispensing assembly coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having been formed by pyrolysis and optional activation, at temperature(s) below 1000° C.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 1, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Publication number: 20040094035
    Abstract: The present invention provides a method for removing hydrocarbons from an exhaust gas of an internal combustion engine. The method of the present invention comprises contacting the exhaust gas with a water-removing composition and then contacting the exhaust gas at a position downstream from the water-removing composition with a hydrocarbon-removing material to remove at least some of the hydrocarbons from the exhaust gas. The hydrocarbon-removing material use in the present invention has a sufficiently low Si to Al atom ratio that less than 50% of the low molecular hydrocarbons desorb from the hydrocarbon-removing composition at a temperature of 250° C.
    Type: Application
    Filed: November 20, 2002
    Publication date: May 20, 2004
    Applicant: Ford Global Technologies, Inc.
    Inventors: Andrew A. Adamczyk, Christian Thomas Goralski, William P. Boone
  • Patent number: 6733570
    Abstract: A method and apparatus for preventing contamination of a substrate or a substrate surface, and particularly relates to prevention of contamination of raw materials, semi-finished products, base materials of products and substrate surface in a high-tech industry such as in the production of semiconductors and liquid crystals. A gas coming into contact with a base material or substrate is purified by dust removing apparatus and adsorption and/or absorption apparatus so that the concentration of fine particles in the gas is below class 1,000 and a non-methane hydrocarbon concentration is below 0.2 ppm. Thereafter, the base material or the substrate surface is exposed to this gas.
    Type: Grant
    Filed: June 2, 1995
    Date of Patent: May 11, 2004
    Assignee: Ebara Research Co., Ltd.
    Inventors: Toshiaki Fujii, Tsukuru Suzuki, Hidetomo Suzuki, Kazuhiko Sakamoto
  • Patent number: 6733572
    Abstract: The present invention is a process for separating propylene and dimethylether from a mixture comprising propylene, dimethylether, and propane. The mixture is passed through a bed of an adsorbent comprising a porous crystalline material having (i) diffusion time constants for dimethylether and propylene of at least 0.1 sec−1, and (ii) a diffusion time constant for propane of than 0.02 of the diffusion time constants for dimethylether and propylene. The bed preferentially adsorbs propylene and dimethylether from the mixture. The adsorbed propylene and dimethylether are then desorbed from the bed.
    Type: Grant
    Filed: July 30, 2002
    Date of Patent: May 11, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sebastian C. Reyes, Krishnan V. Venkatesan, Gregory J. DeMartin, John H. Sinfelt, Karl G. Strohmaier, Jose Guadalupe Santiesteban
  • Publication number: 20040083887
    Abstract: A method and apparatus of the invention includes a method of removing airborne hydrocarbons from liquid electrophotographic printer exhaust comprises generating airborne hydrocarbon droplets as either vapor or mist during the transportation of electrophotographic ink or toner, directing substantially all of the air and hydrocarbon droplet mixture to a central collection point, forcing the air/droplet mixture to and through an oleophilic, substantially non-leaching collection media, and exhausting substantially hydrocarbon-free air from the electrophotographic printer. The method may further comprise inducing pressure in the printer with air pressure reduction to pull the exhaust through the collection media, for example with a pump or fan used to produce air pressure reduction. The method may comprise inducing airflow in the printer with ventilation holes or by the addition of a fan to provide a fresh air inlet. The air/hydrocarbon mixture may be directed to the collection media by a transportation system.
    Type: Application
    Filed: October 31, 2002
    Publication date: May 6, 2004
    Applicant: SAMSUNG Electronics Co. Ltd.
    Inventors: Charles W. Simpson, James A. Baker, A. Kristine Fordahl, Susan E. Hill
  • Patent number: 6730143
    Abstract: Oil entrained in purge air from a vehicle air dryer is directed through a purge air cleaner to remove the oil before discharge of the purge air to the environment. An absorbent material, perferably hydrophobic, is enclosed in the purge air cleaner, which may be safely disposed. Alternatively, oil can be extracted from the absorbent media and thereby recycled. By providing a spin-on type canister, the absorbent media can be easily replaced and serviced.
    Type: Grant
    Filed: November 18, 2002
    Date of Patent: May 4, 2004
    Assignee: Bendix Commercial Vehicle Systems, LLC
    Inventors: Randall W. Nichols, Jeff Malarik
  • Patent number: 6726745
    Abstract: A filter assembly includes a shaped adsorbent article disposed in a housing. The shaped adsorbent article has one or more projections extending from a surface of the article toward the housing to provide for flow of fluid between the shaped adsorbent article and the housing. The filter assembly may optionally include a diffusion channel for additional filtering and/or one or more porous polymer films disposed over inlet or outlet openings in the housing to reduce or prevent particulate contamination. The filter assembly may be used in a device, such as a computer disk drive, to filter a fluid, such as air, within and/or entering or exiting the device.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: April 27, 2004
    Assignee: Donaldson Company, Inc.
    Inventors: Daniel L. Tuma, Andrew C. Dahlgren, Vijay Garikipati, Randy J. Logan
  • Patent number: 6726746
    Abstract: A method for removing a first sorbate having a first desorption activation energy and a second sorbate having a second desorption activation energy from a sorbent, involves a two-stage desorber. In a first stage, the first sorbate, second sorbate and the sorbent are contacted with a stripping fluid having a first temperature sufficient to separate the first sorbate in a vapor phase from the sorbent. In a second stage, the second sorbate and the sorbent is heated to a second temperature higher than the first temperature to separate the second sorbate in a vapor phase from the sorbent. The second sorbate can then be condensed to a liquid phase and sold to offset the costs of the process. Heating in the second phase can be facilitated by the introduction of microwave or infrared energy for stripping the second sorbate from the sorbent. Use of the microwave or infrared energy can be facilitated with a purging gas which can also be heated to function as a stripping gas.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: April 27, 2004
    Assignee: American Purification, Inc.
    Inventors: Xiangfeng Dai, Kevin Simpson
  • Patent number: 6709482
    Abstract: Trace impurities such as organic compounds and carbon monoxide in reactive fluids such as ammonia, hydrogen chloride, hydrogen bromide, and chlorine are reduced to sub-ppb levels using gas purifying systems that contain a preconditioned ultra-low emission (P-ULE) carbon. P-ULE is capable of removing impurities from a reactive fluid down to parts-per-billion (ppb) and sub-ppb levels without concurrently emitting other impurities such as moisture or carbon dioxide into the purified reactive fluid. The P-ULE carbon is prepared by heating a carbon material to temperatures from 300° C. to about 800° C. in an ultra-dry, inert gas stream, to produce an ultra-low emission (ULE) carbon material, subjecting the ULE carbon to a second activation process under a reactive gas atmosphere to produce a P-ULE carbon and storing the P-ULE carbon in an environment that minimizes contamination of the P-ULE prior to its use in a gas purifier system.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: March 23, 2004
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Hans H. Funke, Dan Fraenkel, Virginia H. Houlding
  • Publication number: 20040050252
    Abstract: An air cleaner assembly for an internal combustion engine and process for eliminating fuel emissions from passing into the atmosphere. The air cleaner assembly includes a housing comprising a filter element situated therein, an outlet, and an inlet; and an adsorber panel disposed within the housing, wherein the adsorber panel comprises a pollutant treating material and a substrate.
    Type: Application
    Filed: September 16, 2002
    Publication date: March 18, 2004
    Inventors: Lee S. Wernholm, Gordon J. Rutland
  • Publication number: 20040045434
    Abstract: A process for removing at least water and carbon dioxide from a feed gas stream of air, synthesis gas or natural gas is described, comprising the steps of: contacting the feed gas stream with a composite adsorbent comprising silica and metal oxide, wherein the composite adsorbent contains at least 50 wt % silica, to form a first purified gas stream, and regenerating the composite adsorbent at a temperature of 0 to 200° C. The process optionally further comprises contacting the first purified gas stream with a carbon dioxide adsorbent and/or a nitrous oxide or hydrocarbon adsorbent.
    Type: Application
    Filed: July 3, 2003
    Publication date: March 11, 2004
    Inventors: Timothy Christopher Golden, Fred William Taylor, Elizabeth Helen Salter, Mohammad Ali Kalbassi, Christopher James Raiswell
  • Publication number: 20040031388
    Abstract: The trend in personal and light commercial transportation vehicle choices is heading toward electric or fuel cell vehicles capable of zero emission. Their demand for electricity to re-charge batteries or hydrogen to operate fuel cells can best be met by onsite production of electricity and hydrogen from conventional transportation fuel by an on-site energy supply system employing a conversion device. This approach can result in minimum changes in the present day infrastructure of the automobile and truck service station industry and can avoid any disturbances to the normal operation of the electric power industry. The onsite hydrogen/electricity hybrid conversion device is a reformer and/or a fuel cell. The output of the system can be varied to either meet the demand of hydrogen fuel for fuel cell vehicles or to provide electricity for charging batteries used on the electrical vehicles.
    Type: Application
    Filed: June 15, 2001
    Publication date: February 19, 2004
    Inventor: Michael S. Hsu
  • Patent number: 6689195
    Abstract: A process is described for the manufacture of crystalline molecular sieve layers with good para-xylene over meta-xylene selectivity's good para-xylene permeances and selectivities. The process requires impregnation of the support prior to hydrothermal synthesis using the seeded method and may be undertaken with pre-impregnation masking. The crystalline molecular sieve layer has a selectivity (&agr;x) for para-xylene over meta-xylene of 2 or greater and a permeance (Qx) for para-xylene of 3.27×10−8 mole(px)/m2.s.Pa(px) or greater measured at a temperature of ≧250° C. and an aromatic hydrocarbon partial pressure of ≧10×103 Pa.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: February 10, 2004
    Inventors: Marc Henri Carolina Anthonis, Anton-Jan Bons, Harry William Deckman, Jonas Hedlund, Wenyih F. Lai, Jacobus Anna Josephus Peters
  • Publication number: 20040020360
    Abstract: In a process for separating propylene and dimethylether from a mixture comprising propylene, dimethylether, and propane, the mixture is passed through a bed of an adsorbent comprising a porous crystalline material having (i) diffusion time constants for dimethylether and propylene of at least 0.1 sec−1, when measured at a temperature of 373° K and dimethylether and propylene partial pressures of 8 kPa, and (ii) a diffusion time constant for propane, when measured at a temperature of 373° K and a propane partial pressure of 8 kPa, less than 0.02 of said diffusion time constants for dimethylether and propylene. The bed preferentially adsorbs propylene and dimethylether from the mixture. The adsorbed propylene and dimethylether are then desorbed from the bed either by lowering the pressure or raising the temperature of the bed.
    Type: Application
    Filed: July 30, 2002
    Publication date: February 5, 2004
    Inventors: Sebastian C. Reyes, Krishnan V. Venkatesan, Gregory J. DeMartin, John H. Sinfelt, Karl G. Strohmaier, Jose Guadalupe Santiesteban
  • Patent number: 6669759
    Abstract: Methods for regenerating activated carbon mainly used in air-treating devices in transportation, in particular for passenger compartments in transportation conveyances. The invention can be also used for regenerating activated carbon for air-treating devices in other areas. The method for regeneration of activated carbon comprises a regeneration, which is performed with the help of water vapor obtained from condensate of humidity in the atmosphere. The condensate is pre-adsorbed on silica gel during air cleaning. The regeneration is carried out at the atmospheric pressure, at a temperature of up to 160° C. followed by cooling with the help of the fan with an air flow of no less than 25 min−1.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: December 30, 2003
    Assignee: Kutyev Anatoly Anatolyevich
    Inventors: Anatoly A Kutyev, Vladimir Matveevich Zlotopolsky, Arkady Samuilovich Guzenberg, Dmitry Anatolyevich Krychenkov, Sergei Ivanovich Eremeev
  • Patent number: 6669916
    Abstract: Disclosed are a carbon dioxide purification process and apparatus including (i) an adsorbing step for removing a predetermined amount of hydrocarbons from a carbon dioxide feed gas to reduce the caloric value of the feed stream, and (ii) a catalytic oxidation step located downstream of the adsorbing step for removing residual hydrocarbons from the feed gas by catalytic oxidation.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: December 30, 2003
    Assignee: Praxair Technology, Inc.
    Inventors: Carl Joseph Heim, Amitabh Gupta
  • Publication number: 20030226443
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Application
    Filed: June 7, 2002
    Publication date: December 11, 2003
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6660064
    Abstract: A pressure swing adsorption process for recovering a product gas from a feed gas, includes: supplying a pressure swing adsorption apparatus including an adsorbent composition containing activated carbon as a major ingredient, wherein the adsorbent composition and the apparatus are substantially free of zeolite adsorbents; feeding a feed gas into the pressure swing adsorption apparatus during a feed period not exceeding 20 seconds; and recovering the product gas from the pressure swing adsorption apparatus. The process and apparatus are particularly suitable for use with fuel cells and other applications requiring compact, rapid cycling systems for producing high purity hydrogen.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: December 9, 2003
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Timothy Christopher Golden, Edward Landis Weist
  • Publication number: 20030221555
    Abstract: A process for removing at least water and carbon dioxide from a feed gas stream of air, synthesis gas or natural gas is described, comprising the steps of:
    Type: Application
    Filed: May 31, 2002
    Publication date: December 4, 2003
    Inventors: Timothy Christopher Golden, Fred William Taylor, Elizabeth Helen Salter, Mohammad Ali Kalbassi, Christopher James Raiswell
  • Patent number: 6652627
    Abstract: This invention relates to a process for separating a fluid component from a fluid mixture comprising the fluid component, the process comprising: (A) flowing the fluid mixture into a microchannel separator; the microchannel separator comprising a plurality of process microchannels containing a sorption medium, a header and a footer, the combined internal volume of the header and the footer being up to about 40% of the internal volume of the process microchannels; the fluid mixture being maintained in the microchannel separator until at least part of the fluid component is sorbed by the sorption medium; purging the microchannel separator to displace non-sorbed parts of the fluid mixture from the microchannel separator; and (B) desorbing the fluid component from the sorption medium and flowing a flush fluid through the microchannel separator to displace the desorbed fluid component from the microchannel separator. The process is suitable for purifying oxygen as well as effecting other fluid separations.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: November 25, 2003
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Tonkovich, Bruce F. Monzyk, Dongming Qiu, Matthew B. Schmidt, G. Bradley Chadwell, Wesley Bruno, Eric Burckle
  • Patent number: 6652826
    Abstract: A process is described for the elimination of hydrogen sulfide from gas mixtures by catalytic oxidation over activated carbon catalyst which converts the hydrogen sulfide to elemental sulfur and water, the former being sorbed by the activated carbon while the latter is transported with the gas mixture and may be removed by known dehydration processes. The above oxidative process is conducted at elevated temperatures and pressures and with sufficient residence time to assure virtually complete conversion of the hydrogen sulfide with minimal production of by-product sulfur dioxide. Traces of heavy hydrocarbons in the feed gas mixture which may reduce the life of the catalyst and the quality of the sulfur product may be removed by cryogenic means or by sorption on an activated carbon guard bed.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 25, 2003
    Assignee: Xergy Processing Inc.
    Inventors: Aminul Islam Chowdhury, Eric Lars Tollefson, Tushar Kanti Ghosh
  • Patent number: 6645271
    Abstract: An adsorbent article having a base body or matrix onto which is applied an adsorptive coating. The body or matrix can be a honeycomb matrix or structure having a plurality of cells defining a plurality of passages extending through the body. The adsorptive coating comprises an adsorptive media, such as activated carbon or ion exchange resin, that is bound by a polymeric adhesive or resin. The adsorbent article has a minimal pressure loss therethrough.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: November 11, 2003
    Assignee: Donaldson Company, Inc.
    Inventors: Kevin John Seguin, Steven Alan Carter, Andrew James Dallas, Lefei Ding, Brian Nghia Hoang, Jon Dennis Joriman
  • Patent number: 6641788
    Abstract: An adsorbent for a hydrocarbon, comprising a calcined &bgr;-type zeolite showing a powder X-ray diffraction such that the sum of X-ray diffraction intensities at lattice spacings d=1.15±0.03 nm and d=0.397±0.01 nm, is at least 90% of the diffraction intensity at d=0.346±0.01 nm of Catalysis Society reference catalyst JRC-Z-HM-20(3).
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: November 4, 2003
    Assignee: Tosoh Corporation
    Inventors: Hiroshi Ogawa, Hiroshi Miura, Masao Nakano
  • Patent number: 6637193
    Abstract: A natural gas engine capable of exhaust emission control over the entire temperature range and at low costs without requiring a complicated structure. An adsorbent (7) is disposed between a fuel tank (4) and a fuel supply port (5) on a suction air passage (2), and NMOG in the fuel gas supplied to the fuel tank (4) is adsorbed by the adsorbent (7) to purify the fuel gas in advance. When the temperature of a catalyst (11) disposed on an exhaust passage (3) reaches an activation temperature, the adsorbent (7) is heated by a heater (9) to a desorption temperature to desorb NMOG from the adsorbent (7) and purify the NMOG by the catalyst (11).
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: October 28, 2003
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Masaru Oku, Hiroshi Ogasa, Mari Kohno