Removed Gas Recycled Patents (Class 95/176)
  • Patent number: 10641549
    Abstract: Gas processing plants and methods are contemplated in CO2 is effectively removed to very low levels from a feed gas to an NRU unit by adding a physical solvent unit that uses waste nitrogen produced by the NRU as stripping gas to produce an ultra-lean solvent, which is then used to treat the feed gas to the NRU unit. Most preferably, the physical solvent unit includes a flash unit and stripper column to produce the ultra-lean solvent.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: May 5, 2020
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 10537843
    Abstract: A process for separating a mixture of components is disclosed. A liquid mixture is provided to a separation vessel substantially near a temperature at which a product component freezes. The liquid mixture comprises the product component and a carrier component. The product component and the carrier component are essentially immiscible substantially near the temperature. The liquid mixture is separated into two or more phases, the two or more phases comprising a product component-rich liquid phase and a product component-depleted liquid phase. In this manner, a mixture of components is separated.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: January 21, 2020
    Assignee: Hall Labs LLC
    Inventors: Larry Baxter, Kyler Stitt, Stephanie Burt, Christopher Hoeger, Eric Mansfield, Nathan Davis
  • Patent number: 10384160
    Abstract: Acid gas is removed from a high pressure feed gas that contains significant quantities of CO2 and H2S. In especially preferred configurations and methods, feed gas is contacted in an absorber with a lean and an ultra-lean solvent that are formed by flashing rich solvent and stripping a portion of the lean solvent, respectively. Most preferably, the flash vapors and the stripping overhead vapors are recycled to the feed gas/absorber, and the treated feed gas has a CO2 concentration of less than 2 mol % and a H2S concentration of less than 10 ppmv, and more typically less than 4 ppm.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: August 20, 2019
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 10066514
    Abstract: Provided is a method for recycling energy in process of butadiene preparation, which includes, in the process of preparing butadiene using oxidative dehydrogenation reaction, steps of: a) supplying part or all of a light gas discharged from a solvent absorption tower to a turbine to produce electricity; b) passing the light gas passed through the turbine through one or more device units provided with a heat exchanger; and c) feeding the light gas passed through the device units provided with the heat exchanger into a reactor, according to which more economical butadiene preparation process is provided, by reducing net energy value required in process of butadiene preparation using oxidative dehydrogenation reaction.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: September 4, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Mi Kyung Kim, Jeong Seok Lee, Jae Ik Lee, Dae Hyeon Kim, Jong Ku Lee
  • Patent number: 10018080
    Abstract: Provided is a method for recycling energy in process of butadiene preparation, which includes, in the process of preparing butadiene using oxidative dehydrogenation reaction, steps of: a) supplying part or all of a light gas discharged from a solvent absorption tower to a turbine to produce electricity; b) passing the light gas passed through the turbine through one or more device units provided with a heat exchanger; and c) feeding the light gas passed through the device units provided with the heat exchanger into a reactor, according to which more economical butadiene preparation process is provided, by reducing net energy value required in process of butadiene preparation using oxidative dehydrogenation reaction.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: July 10, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Mi Kyung Kim, Jeong Seok Lee, Jae Ik Lee, Dae Hyeon Kim, Jong Ku Lee
  • Patent number: 9492786
    Abstract: Systems and methods directed to cleaning a flue gas are described, in which a column housing can be configured to receive a feed stream, and includes an absorber configured to produce a clean stream that is substantially depleted of at least one of SOx and CO2. The absorber can comprise at least one of (1) a primary CO2 capture system disposed downstream of a gas conditioning system and (2) a primary acid gas removal system disposed upstream of a gas conditioning system. The gas conditioning system can also be disposed in the column housing.
    Type: Grant
    Filed: November 22, 2011
    Date of Patent: November 15, 2016
    Assignee: Fluor Corporation
    Inventors: Dennis W. Johnson, James H. Brown
  • Patent number: 9366180
    Abstract: A method for capturing carbon dioxide is provided. In a first absorption process, carbon dioxide is absorbed by contacting a supplied carbon dioxide-containing natural gas with a first substream of a solvent. In this process a carbon dioxide-depleted natural gas and carbon dioxide-enriched solvent are formed. Then in a combustion process, the carbon dioxide-depleted natural gas is burnt, with a carbon dioxide-containing exhaust gas being formed. Then, in a second absorption process, carbon dioxide is absorbed by contacting the carbon dioxide-containing exhaust gas with a second substream of the solvent. In this process an exhaust gas freed from carbon dioxide and carbon dioxide-enriched solvent are formed. Then, in a desorption process, the first substream and the second substream of the carbon dioxide-enriched solvent are combined and carbon dioxide is desorbed by supplying heating energy, with carbon dioxide-depleted solvent being formed.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: June 14, 2016
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Roland Birley, Christian Brunhuber, Hermann Kremer, Gerhard Zimmermann
  • Publication number: 20140366446
    Abstract: Systems and methods for gas separation are disclosed. In one exemplary embodiment, a method for gas separation includes the steps of contacting a feed gas stream that includes a product gas and an impurity gas with a liquid-phase absorption solvent and absorbing the impurity gas and a portion of the product gas of the feed gas stream into the liquid-phase absorption solvent. The exemplary method further includes the steps of subjecting the liquid-phase absorption solvent to a first reduced pressure environment to remove the portion of the product gas and a portion of the impurity gas from the liquid-phase absorption solvent and separating the portion of the product gas from the portion of the impurity gas.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Bhargav Sharma, Christopher B. McIlroy, Ernest James Boehm, David Farr, Nagaraju Palla
  • Patent number: 8845788
    Abstract: A syngas treatment plant is configured to remove sulfurous compounds from syngas in a configuration having two flash stages for a physical solvent to so enrich the acid gas to at least 40 mol % H2S or higher as required by the Claus unit and to flash and recycle CO2 back to the syngas feed. Contemplated methods and configurations advantageously remove sulfur to less than 10 ppmv while increasing H2S selectivity at high pressure operation to thereby allow production of an H2S stream that is suitable as feed gas to a Claus plant.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: September 30, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8795415
    Abstract: A process for removing carbon dioxide from a fluid comprises the steps of: (a) treating the fluid by bringing it into countercurrent contact with a liquid absorbent in a first absorption zone and thereafter in a second absorption zone to absorb at least part of the carbon dioxide contained in the fluid into the absorbent; (b) depressurizing the loaded absorbent to release a first stream of carbon dioxide and yield a partially regenerated absorbent; (c) recycling a first stream of the partially regenerated absorbent into the first absorption zone; (d) heating a second stream of the partially regenerated absorbent to release a second stream of carbon dioxide and yield a regenerated absorbent; (e) recycling the regenerated absorbent into the second absorption zone; (f) condensing water vapor entrained in the second stream of carbon dioxide by cooling the second stream of carbon dioxide and transferring at least part of the heat recovered to the partially regenerated absorbent by indirect heat exchange.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: August 5, 2014
    Assignees: BASF SE, JGC Corporation
    Inventors: Torsten Katz, Georg Sieder, Koji Tanaka
  • Patent number: 8779223
    Abstract: A method for reducing one or more additives in a gaseous hydrocarbon stream (40) such as natural gas, comprising the steps of: (a) admixing an initial hydrocarbon feed stream (10) with one or more additives (20) to provide a multiphase hydrocarbon stream (30); (b) passing the multiphase hydrocarbon stream (30) from a first location (A) to a second location (B2); (c) at the second location (B2), passing the multiphase hydrocarbon stream (30) through a separator (22) to provide one or more liquid streams (50) comprising the majority of the one or more additives, and a gaseous hydrocarbon stream (40) comprising the remainder of the one or more additives; and (d) washing the gaseous hydrocarbon stream (40) in a decontamination unit (24) with a washing stream (60), wherein the washing stream (60) comprises distilled water, to provide an additive-enriched stream (70) and an additive-reduced hydrocarbon stream (80).
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: July 15, 2014
    Assignee: Shell Oil Company
    Inventors: Paul Clinton, Marcus Johannes Antonius Van Dongen, Nishant Gupta
  • Patent number: 8758483
    Abstract: A process for removing carbon dioxide from a fluid comprises the steps of: (a) treating the fluid by bringing it into countercurrent contact with a liquid absorbent in a first absorption zone and thereafter in a second absorption zone to absorb at least part of the carbon dioxide contained in the fluid into the absorbent; (b) depressurizing the loaded absorbent to release a first stream of carbon dioxide and yield a partially regenerated absorbent; (c) recycling a first stream of the partially regenerated absorbent into the first absorption zone; (d) heating a second stream of the partially regenerated absorbent to release a second stream of carbon dioxide and yield a regenerated absorbent; (e) recycling the regenerated absorbent into the second absorption zone; (f) condensing water vapor entrained in the second stream of carbon dioxide by cooling the second stream of carbon dioxide and transferring at least part of the heat recovered to the partially regenerated absorbent by indirect heat exchange.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: June 24, 2014
    Assignees: BASF SE, JGC Corporation
    Inventors: Torsten Katz, Georg Sieder, Koji Tanaka
  • Patent number: 8728209
    Abstract: A method for reducing energy requirements of a CO2 capture system comprises: contacting a flue gas stream with a CO2 lean absorbent stream in an absorber, thereby removing CO2 from the flue gas and providing a CO2 rich absorbent stream; heating a first portion of the CO2 rich absorbent stream using heat from the CO2 lean absorbent stream, and providing the heated first portion of the CO2 rich absorbent stream to a regenerator; providing a second portion of the CO2 rich absorbent stream to the regenerator, wherein the heated first portion is hotter than the second portion and the heated first portion is provided to the regenerator at a lower elevation in the regenerator relative to that of the second portion.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 20, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Joseph P. Naumovitz, Michael Koch
  • Patent number: 8540803
    Abstract: A method and apparatus for drying a natural gas or an industrial gas that contains acidic gas components, wherein gas drying is followed by the removal of the acidic gas components from the dried gas. The same physical solvent is used for both of the process steps of gas drying and of acidic gas removal. The gas to be dried is brought into contact with the physical solvent, which absorbs most of the water contained in the gas. The physical solvent, loaded with water, is transferred into a solvent regenerating device to be heated where the water contained in the solvent is stripped from the solvent in the countercurrent by acidic gas that is removed from the dried useful gas during the acidic gas absorption. The acidic gas being released again in the acidic gas solvent regenerating device, stripped from the solvent, and discharged from the solvent regenerating device.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: September 24, 2013
    Assignee: ThyssenKrupp Uhde GmbH
    Inventor: Johannes Menzel
  • Patent number: 8512446
    Abstract: A method is provided that includes removing carbon dioxide from untreated syngas received from a gasifier to produce a gas stream comprising carbon dioxide, modifying the gas stream by adding carbon monoxide, hydrogen, hydrogen sulfide, or any combination thereof, and providing the gas stream from an acid gas remover to a feed system for use as a conveyance gas to convey a feedstock into the gasifier. Systems implementing these and other methods are also provided.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: August 20, 2013
    Assignee: General Electric Company
    Inventors: Anindra Mazumdar, John Saunders Stevenson, Sunil Ramabhilakh Mishra
  • Patent number: 8475570
    Abstract: The invention provides a process for producing purified gas from feed gas comprising H2S, CO2 and HCN and/or COS, the process comprising the steps of: (a) contacting feed gas comprising H2S, CO2 and HCN and/or COS with a HCN/COS hydrolysis sorbent in the presence of water in a HCN/COS hydrolysis unit, thereby obtaining gas depleted in HCN and/or COS; (b) contacting the gas depleted in HCN and/or COS with absorbing liquid in an H2S/CO2 absorber to remove H2S and CO2, thereby obtaining the purified gas and absorbing liquid rich in H2S and CO2; (c) heating and de-pressurizing at least part of the absorbing liquid rich in H2S and CO2 to obtain hot flash gas enriched in CO2 and absorbing liquid enriched in H2S; (d) contacting the absorbing liquid enriched in H2S at elevated temperature with a stripping gas, thereby transferring H2S to the stripping gas to obtain regenerated absorbing liquid and stripping gas rich in H2S; and (e) leading at least part of the flash gas enriched in CO2 to the HCN/COS hydrolysis unit
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: July 2, 2013
    Assignee: Shell Oil Company
    Inventors: Anthonius Maria Demmers, Sandra Schreuder
  • Patent number: 8445737
    Abstract: A method for reducing one or more additives in a gaseous hydrocarbon stream (40) such as natural gas, comprising the steps of: (a) admixing an initial hydrocarbon feed stream (10) with one or more additives (20) to provide a multiphase hydrocarbon stream (30); (b) passing the multiphase hydrocarbon stream (30) from a first location (A) to a second location (B2); (c) at the second location (B2), passing the multiphase hydrocarbon stream (30) through a separator (22) to provide one or more liquid streams (50) comprising the majority of the one or more additives, and a gaseous hydrocarbon stream (40) comprising the remainder of the one or more additives; and (d) washing the gaseous hydrocarbon stream (40) in a decontamination unit (24) with a washing stream (60), wherein the washing stream (60) comprises distilled water, to provide an additive-enriched stream (70) and an additive-reduced hydrocarbon stream (80).
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: May 21, 2013
    Assignee: Shell Oil Company
    Inventors: Paul Clinton, Marcus Johannes Antonius Van Dongen, Nishant Gupta
  • Patent number: 8419843
    Abstract: In one embodiment, a system includes a hydrogen sulfide (H2S) absorber, a first flash tank, a flash gas treatment column, and a CO2 absorber. The system also includes a first fluid path extending sequentially through the H2S absorber, the first flash tank, the flash gas treatment column, the H2S absorber, and the CO2 absorber.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: April 16, 2013
    Assignee: General Electric Company
    Inventors: Arnaldo Frydman, Pradeep Stanley Thacker, Sachin Suhas Naphad
  • Patent number: 8361201
    Abstract: The hydrogen sulphide content of natural gas obtained from the extraction of sour-gas containing crude oil/ natural gas mixtures, is reduced by reducing the high pressure of a raw crude oil/ natural gas mixture to 70-130 bar, separating an outgassing raw gas from the crude oil, cooling the outgassed raw gas and simultaneously drawing off a liquid medium which condenses from the outgassing raw gas during cooling. The outgassed raw gas is subjected, after pressure reduction, to gas scrubbing by a physically active solvent. The laden solvent is directed to at least one pressure reduction step to obtain H2S outgas from the solvent. The pressure of the crude oil is further reduced in two subsequent steps to 20-40 bar and 2-15 bar and additional H2S rich raw gas streams are separated from the crude oil which outgas therefrom.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: January 29, 2013
    Assignee: UHDE GmbH
    Inventors: Johannes Menzel, Georg Saecker
  • Patent number: 8303684
    Abstract: A pressurized gaseous mixture acidic gas and a useful gas is directly in a first absorption column with a physically acting absorption agent. Then the absorption agent loaded with the acid gas and useful gas is subdivided into first and second streams. The first stream is fed directly to a recycle flash container and there decompressed to reclaim the useful gas, extract the acidic gas from the absorption agent, and form a recycled gas containing the useful gas and acidic gas. The second stream is through a second absorption column to the recycle flash container. Some of the recycled gas from the recycle flash container is compressed and fed through the second absorption column so as to therein directly contact the second stream, and then the recycle gas that has passed through the second absorption column and contacted the second stream is returned to the gaseous mixture.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 6, 2012
    Assignee: UHDE GmbH
    Inventor: Johannes Menzel
  • Patent number: 8282899
    Abstract: Solvent absorption processes for separating components of an impure feed gas are disclosed. The processes involve two stages of gas-liquid contacting, namely a first, absorption stage and a second, stripping stage. In the case of a carbon dioxide (CO2)-containing methane gas as an impure feed gas, contacting, in the stripping stage, the solvent effluent from the absorption stage with a recycled vapor fraction of the solvent effluent from the stripping stage can improve the recovery and purity of not only the methane (and/or other light hydrocarbons in the impure feed gas), but also that of the CO2 contaminant gas.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: October 9, 2012
    Assignee: UOP LLC
    Inventors: David A. Bahr, Lamar A. Davis
  • Patent number: 8257476
    Abstract: A first contaminant selected from oxygen and carbon monoxide is removed from impure liquid carbon dioxide using a mass transfer separation column system which is reboiled by indirect heat exchange against crude carbon dioxide fluid, the impure liquid carbon dioxide having a greater concentration of carbon dioxide than the crude carbon dioxide fluid. The invention has particular application in the recovery of carbon dioxide from flue gas generated in an oxyfuel combustion process or waste gas from a hydrogen PSA process. Advantages include reducing the level of the first contaminant to not more than 1000 ppm.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: September 4, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vincent White, Rodney John Allam
  • Patent number: 7819951
    Abstract: A first contaminant selected from oxygen and carbon monoxide is removed from impure liquid carbon dioxide using a mass transfer separation column system which is reboiled by indirect heat exchange against crude carbon dioxide fluid, the impure liquid carbon dioxide having a greater concentration of carbon dioxide than the crude carbon dioxide fluid. The invention has particular application in the recovery of carbon dioxide from flue gas generated in an oxyfuel combustion process or waste gas from a hydrogen PSA process. Advantages include reducing the level of the first contaminant to not more than 1000 ppm.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: October 26, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Vincent White, Rodney John Allam
  • Patent number: 7811361
    Abstract: One exemplary embodiment can be a process for increasing an efficiency of an acid gas removal zone. The process can include sending a sour gas stream including at least one gas to a first absorber providing an overhead stream absorbing the at least one gas; withdrawing a side-stream from the first absorber and passing the side-stream through a holding tank, a side-stream fluid transfer device, and a side-stream chiller before returning the side-stream to the absorber; and passing the first absorber overhead stream to a pump-around circuit for a second absorber. Usually, the pump-around circuit may include a flash drum, a pump-around fluid transfer device and a pump-around chiller before providing a slipstream to the first absorber and another portion to the second absorber.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 12, 2010
    Assignee: UOP LLC
    Inventors: William J. Lechnick, Lamar A. Davis, David Alden Bahr, Carla F. Roberts
  • Patent number: 7699914
    Abstract: A method of using a triple-effect absorption system to recover methane from landfill gas contaminated with CO2 and trace contaminates such as chlorinated hydrocarbons and aromatics involves processing the landfill gas with three absorbers and a flash system. One absorber uses a solvent to absorb the trace contaminants from the landfill gas, the second absorber in conjunction with the flash system extracts CO2 from the gas, and just a first portion of that CO2 is used for stripping the trace contaminates from the solvent in the third absorber. The rest of the extracted CO2 is vented to atmosphere to prevent dampening the combustion of the trace contaminants absorbed by the first portion of CO2.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: April 20, 2010
    Inventors: Luke N. Morrow, Paul D. Morrow, David C. Morrow
  • Publication number: 20100083696
    Abstract: A method for treating a gas mixture containing acid gases is provided, comprising: contacting the gas mixture with an absorbing solution, by means of which a de-acidified gas mixture and an absorbing solution loaded with acid gases may be obtained; and regenerating the absorbing solution loaded with acid gases; wherein the regeneration comprises the following steps: passing the absorbing solution into a first regenerator at a first pressure; and then passing the absorbing solution into a second regenerator at a second pressure, less than the first pressure; and compressing the gases from the second regenerator and recycling the thereby compressed gases to the first regenerator, subsequent to passing into the second regenerator, passing the absorbing solution into a third regenerator at a third pressure less than the second pressure; and compressing the gases from the third regenerator and recycling the thereby compressed gases to the second regenerator; and wherein at least a portion of the gases from the
    Type: Application
    Filed: January 18, 2008
    Publication date: April 8, 2010
    Applicant: TOTAL S.A.
    Inventors: Viep Hoang-Dinh, Damien Roquet, Kenza Habchi-Tounsi, Olivier Chazelas, Claire Weiss
  • Patent number: 6984257
    Abstract: An improved apparatus and method for use with a natural gas dehydrator. The apparatus and method of the invention provide for recirculation of gaseous or combustible materials so that they are not released into the atmosphere and to provide fuel for the process. Likewise, liquid hydrocarbons are collected. Various components, including separators, an absorber, wet glycol, dry glycol, an effluent condenser, heat exchangers, and a reboiler are utilized in accordance with the present invention.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: January 10, 2006
    Inventors: Rodney T. Heath, Forrest D. Heath
  • Patent number: 6793712
    Abstract: A pretreatment system for natural gas liquefaction employing heat integration for more efficient and effective natural gas temperature control. The pretreatment system expands the natural gas prior to acid gas removal. After acid gas removal, the natural gas is cooled by indirect heat exchange with the expanded natural gas located upstream of the acid gas removal system.
    Type: Grant
    Filed: November 1, 2002
    Date of Patent: September 21, 2004
    Assignee: ConocoPhillips Company
    Inventor: Wesley R. Qualls
  • Publication number: 20040003717
    Abstract: A process for separating the components of a multi-component gas stream is disclosed. The multi-component gas stream is contacted with a solvent in an extractor to produce an overhead stream enriched with unabsorbed component(s) and a rich solvent bottoms stream enriched with absorbed component(s). The rich solvent bottoms stream is then flashed regenerate lean solvent and to recover the absorbed component(s) as an overhead stream, which is compressed to produce a product stream. The regenerated solvent is recycled to the extractor. A portion of the product stream is also recycled to the extractor to improve the overall purity of the product stream.
    Type: Application
    Filed: July 3, 2003
    Publication date: January 8, 2004
    Inventor: Thomas K. Gaskin
  • Patent number: 6352414
    Abstract: The invention pertains to the field of jet technology and relates to an operating process of a multiple-stage pump-ejector-separator system which essentially includes bypassing a motive liquid from a second-stage separator into a first-stage one and subsequent delivery of the motive liquid from the first-stage separator to the suction port of a pump. The invention also relates to a device for realizing the process which essentially constitutes a multiple-stage pump-ejector-separator system, wherein the suction side of a pump is connected to a first-stage separator, the first-stage and second-stage separators are interconnected by a vertical U-tube acting as a hydro seal, where the height of the U-tube above the motive liquid level in the second-stage separator is not less than the height of the liquid column created in the U-tube by the motive liquid from the second-stage separator under a pressure difference between the two separators.
    Type: Grant
    Filed: March 3, 2000
    Date of Patent: March 5, 2002
    Inventor: Serguei A. Popov
  • Patent number: 6203599
    Abstract: The present invention provides a process for removing gas contaminants such as hydrogen sulfide and carbon dioxide from a product gas such as natural gas or synthesis gas. According to the invention the product gas is contacted with a solvent which includes dialkyl ethers of polyethylene glycols and water, and a high pressure recycle loop is utilized to desorb a portion the gas contaminants and co-absorbed product gas from the solvent. The solvent is provided with an amount of water sufficient to increase recovery of co-absorbed product gas while at the same time providing a reduced circulation rate requirement for the solvent and reduced re-compression and cooling requirements for the recycle gas.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: March 20, 2001
    Assignee: Union Carbide Chemicals & Plastics Technology Corporation
    Inventors: Craig Norman Schubert, William I. Echt
  • Patent number: 6120254
    Abstract: The invention pertains to the field of fluidics and jet technology. The essence of the invention: is a vacuum-producing device composed of a liquid-gas jet apparatus, a separator and a pump, is furnished with a jet pump, so that the gas inlet of the liquid-gas jet apparatus is connected to a pipeline for discharge of vapors from a rectification column, the liquid inlet of the liquid-gas jet apparatus is connected to the discharge side of the pump, the outlet of the liquid-gas jet apparatus is connected to the separator, the passive medium inlet of the jet pump is connected to the separator, the outlet of the jet pump is connected to the suction side of the pump, the active nozzle of the jet pump is connected to a pipeline for export of a liquid fraction from the rectification column. This vacuum system results in increased efficiency and productivity.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: September 19, 2000
    Inventor: Serguei A. Popov
  • Patent number: 6106243
    Abstract: The invention relates to the field of petrochemical industry. The essence of the invention: is a vacuum-producing device, comprising a liquid-gas jet apparatus, a separator and a pump, is furnished with a mixer. The gas inlet of the liquid-gas jet apparatus is connected to the pipeline for export of a gas-vapor phase from a rectification column, the liquid inlet of the liquid-gas jet apparatus is connected to the discharge side of the pump, the outlet of the liquid-gas jet apparatus is connected to the separator, the gas outlet of the separator is connected to consumers of compressed gas, the outlet of the mixer is connected to the suction side of the pump, the inlet of the mixer is connected both to the pipeline for export of a liquid faction from the rectification column and to the liquid outlet of the separator. The offered jet pump vacuum-producing unit is more effective, more capable and less harmful to the environment in comparison to existing units.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: August 22, 2000
    Inventor: Serguei A. Popov
  • Patent number: 5837037
    Abstract: The present invention relates to a method for removing high molecular weight high melting point hydrocarbon vapors from a hydrocarbon vapor offgas stream produced during the liquefaction of a solid waste plastic material to produce an oil that serves as a liquid feedstock for a partial oxidation reaction. The hydrocarbon vapor offgas stream is directly contacted with a water spray at a condensation temperature above the melting point of the high molecular weight hydrocarbons contained in the offgas. This results in the condensation and convenient removal of the high melting point hydrocarbons, referred to as "waxes." One or more subsequent condensation steps can be conducted at lower condensation temperatures to remove the lower temperature condensable hydrocarbons. The remaining uncondensed vapors are then recycled to serve as a heater fuel for the liquefaction of the waste plastic material.
    Type: Grant
    Filed: July 3, 1997
    Date of Patent: November 17, 1998
    Assignee: Texaco Inc
    Inventor: John Duckett Winter
  • Patent number: 5788743
    Abstract: A process for separating chlorine of high purity from a chlorine-containing feed gas by absorption of the chlorine using an inert absorbent and downstream desorption of the chlorine from the absorbent/chlorine mixture drawn off from the absorption stage by the supply of mixture to a desorption distillation column which is coupled to a chlorine separation column in such a way that the top of the chlorine separation column and an upper section of the desorption distillation column and a lower section of the desorption distillation column and the bottom of the chlorine separation column are connected to one another on both the gas and the liquid side, the absorbent/chlorine mixture being supplied exclusively to the desorption distillation column, and high-purity chlorine being drawn off from a middle region of the chlorine separation column.
    Type: Grant
    Filed: September 12, 1996
    Date of Patent: August 4, 1998
    Assignee: BASF Aktiengesellschaft
    Inventors: Otto Watzenberger, Joachim Pfeffinger
  • Patent number: 5741350
    Abstract: Hydrocarbons are recovered from the product purge gas in an alkene polymerization process by absorption of heavier hydrocarbons from the purge gas by an intermediate hydrocarbon stream to yield a vapor rich in inert gas and alkene monomer. Alkene monomer is condensed and rectified by dephlegmation at low temperatures from the inert gas, flashed and vaporized to provide refrigeration for the condensation step, and recycled to the polymerization process. The intermediate hydrocarbon from the absorption step is recycled to the polymerization process. Optionally a portion of the inert gas is reused for purge gas.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: April 21, 1998
    Assignee: Air Products And Chemicals, Inc.
    Inventors: Howard Charles Rowles, Lee Jarvis Howard
  • Patent number: 5533437
    Abstract: Hydrocarbons are recovered from the product purge gas in an alkene polymerization process by absorption of heavier hydrocarbons from the purge gas by an intermediate hydrocarbon stream to yield a vapor rich in inert gas and alkene monomer. Alkene monomer is condensed at low temperatures from the inert gas, flashed and vaporized to provide refrigeration for the condensation step, and recycled to the polymerization process. The intermediate hydrocarbon from the absorption step is recycled to the polymerization process. Optionally a portion of the inert gas is reused for purge gas.
    Type: Grant
    Filed: January 20, 1995
    Date of Patent: July 9, 1996
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Lee J. Howard, Howard C. Rowles