By Reduction Of Pressure (e.g., Flashing, Etc.) Patents (Class 95/172)
  • Patent number: 11697098
    Abstract: An apparatus for continuously generating and controlling the density of foam has a fluid in-flow manifold in communication with a source of liquid and comprising a pressure sensor. A plurality of branch lines are in fluid communication with the in-flow manifold a foam out-flow manifold. Each branch line has a flow control valve, a Venturi tube and in fluid communication with a throat of each Venturi tube an air induction control valve. The foam out-flow manifold has a pressure sensor. At least one in-flow control valve is disposed between the source and the in-flow manifold and at least one out-flow control valve is in communication with the out-flow manifold. The branch valves, air valves, the in-flow control valve and the out-flow control valve are operable to provide a chosen flow rate of the liquid and a selected foam product flow rate at a selected density of the foam product.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: July 11, 2023
    Assignee: RheoVest, LLC
    Inventors: Eric Appleton, Clayton Massett, Nathan R. Hutchings
  • Patent number: 11484919
    Abstract: A control system for controlling extraction of landfill gas from a landfill via a gas extraction system, the gas extraction system comprising well piping for coupling a plurality of wells to a gas output. The control system comprises a controller configured to: obtain a value indicating measured energy content of landfill gas collected at the gas output from the plurality of wells; determine whether the measured energy content is different from a target energy content; and in response to determining that the measured energy content is different from the target energy content: control a plurality of valves disposed in the well piping to change flow rates of landfill gas being extracted from at least some of the plurality of wells at least in part by changing degrees to which the plurality of valves are open.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: November 1, 2022
    Assignee: Loci Controls, Inc.
    Inventors: Peter Quigley, Ian Martin, Nicole Neff, Jack Rowbottom
  • Patent number: 10208630
    Abstract: A steam power plant and method for operation the steam power plant is provided, that comprises: a main water-steam-cycle with a high pressure (HP) steam turbine, an intermediate pressure (IP) steam turbine and a low pressure (LP) steam turbine, a condenser, and a feed water tank, wherein low pressure heaters are arranged between said condenser and said feed water tank and wherein a plurality of high pressure heaters are arranged downstream of said feed water tank, whereby said low pressure heaters, said feed water tank and said plurality of high pressure heaters are supplied with steam from a plurality of extractions at said steam turbines.
    Type: Grant
    Filed: January 10, 2017
    Date of Patent: February 19, 2019
    Assignee: General Electric Company
    Inventors: Julia Kirchner, Volker Schule
  • Patent number: 9234631
    Abstract: A method for drag reducing low molecular weight liquids is provided. More specifically, a method to separate drag reducers from low molecular weight liquids, such as hydrocarbons and anhydrous ammonia, is provided.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: January 12, 2016
    Assignee: Lubrizol Speciality Products, Inc.
    Inventors: Ray L. Johnston, William F. Harris, Kenneth W. Smith
  • Patent number: 9011576
    Abstract: A method for sorbing a gas using an ionic liquid to sorb a vapor having an electric multi-pole moment. The ionic liquid comprises an anion and a cation. The electric multi-pole moment may be an electric dipole moment and/or an electric quadru-pole moment. The sorption may be an adsorption or an absorption. The ionic liquid may be a liquid that substantially contains only anions and cations, while not containing other components, such as water. Alternatively, a solution containing the ionic liquid and a solvent or further compound, such as water, may be used.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: April 21, 2015
    Inventors: Paul Dinnage, Roland Kalb
  • Publication number: 20150075375
    Abstract: A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventor: Gerald C. Blount
  • Patent number: 8961657
    Abstract: In a method for cooling liquid, when a liquid containing a volatile component and a surfactant is supplied to an atmosphere having a pressure which is lower than or equal to the saturated vapor pressure of the volatile component so that at least a portion of the volatile component is vaporized, whereby the liquid is cooled, a gas other than the volatile component is introduced into the atmosphere having the pressure so that the gas contacts the liquid.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: February 24, 2015
    Assignee: Kao Corporation
    Inventors: Toku Fujioka, Wataru Yamauchi
  • Patent number: 8945292
    Abstract: In one embodiment, a gas purification system is provided. The system includes a first section having a first solvent path and a first gas path. The first gas path is configured to flow a stripping gas to remove hydrogen sulfide (H2S) and carbon dioxide (CO2) from the first solvent path in a first vessel to produce a first gas mixture. The system also includes a second section having a second solvent path. The second solvent path is configured to flow a second solvent mixture to remove H2S from the first gas mixture and CO2 from the second solvent mixture within a second vessel. The second solvent mixture has a solvent saturated in CO2 at a first pressure, the second vessel is operated at a second pressure, and the first and second pressures are within approximately 20% of one another.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: February 3, 2015
    Assignee: General Electric Company
    Inventors: Judith Pauline Oppenheim, Anindra Mazumdar
  • Publication number: 20150013539
    Abstract: A method for removal of a compound from a crude hydrocarbon gas stream to be obtained from a sub-sea well is disclosed. The method comprises bringing the crude hydrocarbon gas stream in contact with a treatment solution comprising an absorbent at least partly selective to the compound to be removed, thereby obtaining a rich treatment solution and a compound depleted gas stream, regenerating the treatment solution comprising the absorbent by desorbing the compound from the rich treatment solution, thereby obtaining a compound stream.
    Type: Application
    Filed: February 21, 2013
    Publication date: January 15, 2015
    Inventors: Steinar Eriksen, Bodil Iren Hop, Torbjørn Ruud
  • Patent number: 8920544
    Abstract: A method for removing acid gases from a fluid flow using an absorbent including an aqueous solution with at least two different amines. An amine in a proportion of greater than 50 wt. % of the total amine amount in the aqueous solution is the first amine component in the aqueous solution, and a sterically hindered amine in a proportion of less than 50 wt. % is the second amine component in the aqueous solution. The fluid flow is brought into contact with the absorbent at a partial pressure of <200 mbar.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: December 30, 2014
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Johannes Menzel, Olaf Von Morstein
  • Patent number: 8920548
    Abstract: The CO2 capture system by chemical absorption for removing CO2 from a combustion exhaust gas by a solvent, comprising: an absorber for absorbing CO2 by a solvent, a regenerator for heating a rich solvent absorbed CO2 thereby releasing CO2, a gas exhaust system for discharging gas from the regenerator, a gas compressor installed in the gas exhaust system, a heat exchanger disposed downstream of the gas compressor for exchanging heat between compressed gas and rich solvent to be supplied to the regenerator, a gas-liquid separator disposed downstream of the heat exchanger for separating gas from condensed water, a condensed water supply system for supplying condensed water from the gas-liquid separator to the regenerator, another gas exhaust system for discharging gas containing high-concentration CO2 from the gas-liquid separator, and a compressor disposed downstream of the gas-liquid separator in the another gas exhaust system for pressurizing the gas containing high-concentration CO2.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: December 30, 2014
    Assignee: Babcock-Hitachi K.K.
    Inventors: Nobuyuki Hokari, Hisayuki Orita, Masaaki Mukaide, Jun Shimamura, Kouichi Yokoyama, Noriko Yoshida
  • Publication number: 20140366446
    Abstract: Systems and methods for gas separation are disclosed. In one exemplary embodiment, a method for gas separation includes the steps of contacting a feed gas stream that includes a product gas and an impurity gas with a liquid-phase absorption solvent and absorbing the impurity gas and a portion of the product gas of the feed gas stream into the liquid-phase absorption solvent. The exemplary method further includes the steps of subjecting the liquid-phase absorption solvent to a first reduced pressure environment to remove the portion of the product gas and a portion of the impurity gas from the liquid-phase absorption solvent and separating the portion of the product gas from the portion of the impurity gas.
    Type: Application
    Filed: June 14, 2013
    Publication date: December 18, 2014
    Inventors: Bhargav Sharma, Christopher B. McIlroy, Ernest James Boehm, David Farr, Nagaraju Palla
  • Patent number: 8894757
    Abstract: The CO2 capture system by chemical absorption for removing CO2 from a combustion exhaust gas by a solvent, comprising: an absorber for absorbing CO2 by a solvent, a regenerator for heating a rich solvent absorbed CO2 thereby releasing CO2, a gas exhaust system for discharging gas from the regenerator, a gas compressor installed in the gas exhaust system, a heat exchanger disposed downstream of the gas compressor for exchanging heat between compressed gas and rich solvent to be supplied to the regenerator, a gas-liquid separator disposed downstream of the heat exchanger for separating gas from condensed water, a condensed water supply system for supplying condensed water from the gas-liquid separator to the regenerator, another gas exhaust system for discharging gas containing high-concentration CO2 from the gas-liquid separator, and a compressor disposed downstream of the gas-liquid separator in the another gas exhaust system for pressurizing the gas containing high-concentration CO2.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: November 25, 2014
    Assignee: Babcock-Hitachi K.K.
    Inventors: Nobuyuki Hokari, Hisayuki Orita, Masaaki Mukaide, Jun Shimamura, Kouichi Yokoyama, Noriko Yoshida
  • Patent number: 8871008
    Abstract: Capturing a target gas includes contacting a gas mixture including a target species with an aqueous solution including a buffer species, and transferring some of the target species from the gas mixture to the aqueous solution. The target species forms a dissolved target species in the aqueous solution, and the aqueous solution is processed to yield a first aqueous stream and a second aqueous stream, where the equilibrium partial pressure of the target species over the second aqueous stream exceeds the equilibrium partial pressure of the target species over the first aqueous stream. At least some of the dissolved target species in the second aqueous stream is converted to the target species, and the target species is liberated from the second aqueous stream. The target species can be collected and/or compressed for subsequent processing or use.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: October 28, 2014
    Assignee: Carbon Engineering Limited Partnership
    Inventors: Matthew Alex Henderson, David William Keith, Arvinder Pal Singh Kainth, Kenton Robert Heidel, Jane Anne Ritchie
  • Patent number: 8858682
    Abstract: In order to control bubble removal or mixing in a flow channel, bubble transfer between flow channels (1, 2) is controlled by disposing first flow channel (1) for flow of a first fluid of liquid or gas and second flow channel (2) for flow of a second fluid of liquid with, interposed therebetween, gas exchange unit (5) through which while no liquid can pass, a gas component can be transferred, and by providing a pressure difference between the flow channels (1, 2) with the gas exchange unit (5). By rendering the pressure of the second flow channel (2) higher than that of the first flow channel (1), any bubble transfer from the first fluid to the second fluid is prevented, or bubbles within the second fluid are transferred into the first fluid to thereby attain deaeration.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: October 14, 2014
    Assignee: Shimadzu Corporation
    Inventor: Masakazu Akechi
  • Patent number: 8840708
    Abstract: A method for recovering methane gas from a landfill involves the use of a main absorber, a flash system, an ancillary absorber and a polishing absorber. The main absorber uses a main current of solvent for absorbing most of the carbon dioxide from raw landfill gas. The flash system removes much of the carbon dioxide from the solvent exiting the main absorber. A portion of the solvent downstream of the flash system is diverted to the ancillary absorber in which a current of air removes additional carbon dioxide from that portion of solvent. From the ancillary absorber, the diverted portion of solvent flows through the polishing absorber to remove additional carbon dioxide from the main current of solvent that was previously treated in the main absorber. To increase the energy content of the processed gas, in some examples, propane is added to the final outgoing gas stream.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: September 23, 2014
    Inventors: David C. Morrow, Paul D. Morrow, Luke N. Morrow
  • Patent number: 8800308
    Abstract: Methods and systems are provided for air conditioning, capturing combustion contaminants, desalination, and other processes using liquid desiccants.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: August 12, 2014
    Assignee: 7AC Technologies, Inc.
    Inventors: Peter F. Vandermeulen, Jack I. Hanoka, Chaim Hanoka
  • Patent number: 8779223
    Abstract: A method for reducing one or more additives in a gaseous hydrocarbon stream (40) such as natural gas, comprising the steps of: (a) admixing an initial hydrocarbon feed stream (10) with one or more additives (20) to provide a multiphase hydrocarbon stream (30); (b) passing the multiphase hydrocarbon stream (30) from a first location (A) to a second location (B2); (c) at the second location (B2), passing the multiphase hydrocarbon stream (30) through a separator (22) to provide one or more liquid streams (50) comprising the majority of the one or more additives, and a gaseous hydrocarbon stream (40) comprising the remainder of the one or more additives; and (d) washing the gaseous hydrocarbon stream (40) in a decontamination unit (24) with a washing stream (60), wherein the washing stream (60) comprises distilled water, to provide an additive-enriched stream (70) and an additive-reduced hydrocarbon stream (80).
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: July 15, 2014
    Assignee: Shell Oil Company
    Inventors: Paul Clinton, Marcus Johannes Antonius Van Dongen, Nishant Gupta
  • Patent number: 8696797
    Abstract: A method for removing CO2 from a pressurized gas stream with the effluent CO2 remaining at system pressure or higher is disclosed. Specifically, the removal method provides near isothermal absorption of CO2 from a gas stream in a suitable solvent at an elevated pressure and relatively low temperature. The solvent is then removed from contact with the gas stream, and the temperature is increased to such an extent that the CO2 will flash from the solvent.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: April 15, 2014
    Assignee: General Electric Company
    Inventor: Raymond Douglas Steele
  • Patent number: 8696798
    Abstract: Acid gas is removed from a feed gas using a physical solvent that is regenerated using successive flashing stages after heating of the rich solvent using low-level waste heat that is preferably produced or available within the acid gas removal plant. Especially preferred waste heat sources include compressor discharges of the refrigeration system and/or recompression system for CO2, and/or (low level) heat content from the feed gas.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: April 15, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8652236
    Abstract: The present invention describes a method for recovery of high purity carbon dioxide, which is substantially free of nitrogen oxides. This high purity carbon dioxide is obtained by introducing into the method a step in which carbon dioxide absorbed in an absorbing agent is flashed. The present invention also discloses a plant for recovery of said high purity carbon dioxide comprising an absorption column, a flash column, a stripper column, and a down stream purification unit comprising a washing column, a dehydrator, a condenser and a distillation unit.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: February 18, 2014
    Assignee: Union Engineering A/S
    Inventors: Rasmus Find, Svend Geleff, Maj Toft Andersen
  • Patent number: 8636831
    Abstract: The present relates to a process for optimizing the recovery of unreacted monomers from a polymerization process, wherein said process comprises the steps of recovering a fluid stream generated by the separation of the polyolefin product from the polymerization fluid comprising unreacted monomers and optionally comonomers; contacting said fluid stream in an absorption zone with a scrub liquid comprising at least one C4-10 hydrocarbons, thereby absorbing at least a portion of the unreacted monomers in said scrub liquid; and withdrawing from said absorption zone (i) a vapor overhead comprising light gas and (ii) an absorber bottoms scrub liquid comprising said C4-10 hydrocarbons and said unreacted monomer; thereby recovering said unreacted monomer in said absorber bottoms scrub liquid comprising said C4-10 hydrocarbons.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: January 28, 2014
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Bernard Van Der Schrick, Eric Damme
  • Patent number: 8518156
    Abstract: A process and system (100) for removing contaminants from a solution to regenerate the solution within the system. The process includes providing a solution (165) from a wash vessel (160) to a stripping column (181), the solution (165) including contaminants removed from a flue gas stream (150) present in the wash vessel (160) and contacting the solution with steam (185) inside the stripping column (181) thereby removing the contaminants from the solution and regenerating the solution. The stripping column (181) is operated at a pressure less than about 700 kilopascal.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 27, 2013
    Assignee: ALSTOM Technology Ltd
    Inventors: Frederic Z. Kozak, Arlyn V. Petig, Ritesh Agarwal, Rameshwar S. Hiwale
  • Patent number: 8518155
    Abstract: A method and apparatus for removing carbon dioxide from a synthesis gas stream containing hydrogen is disclosed. The method includes absorbing the carbon dioxide using a physical solvent under high pressure and then liberating the carbon dioxide in a series of expansion stages where the pressure on the solvent is reduced. The expansion ratio increases with each expansion stage. The apparatus includes expansion stages having throttling devices and expansion tanks operated at increasing expansion ratios. Carbon dioxide is liberated in this manner so as to minimize the energy required compress for transport via a pipe line for sequestration of the gas. Sequestration of the carbon dioxide is preferred to atmospheric venting to curb the release of greenhouse gases.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: August 27, 2013
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Eugene Palamara, Kevin Boyle Fogash
  • Patent number: 8512446
    Abstract: A method is provided that includes removing carbon dioxide from untreated syngas received from a gasifier to produce a gas stream comprising carbon dioxide, modifying the gas stream by adding carbon monoxide, hydrogen, hydrogen sulfide, or any combination thereof, and providing the gas stream from an acid gas remover to a feed system for use as a conveyance gas to convey a feedstock into the gasifier. Systems implementing these and other methods are also provided.
    Type: Grant
    Filed: July 22, 2010
    Date of Patent: August 20, 2013
    Assignee: General Electric Company
    Inventors: Anindra Mazumdar, John Saunders Stevenson, Sunil Ramabhilakh Mishra
  • Patent number: 8486165
    Abstract: In one embodiment, a gasification system includes a black water processing system with flash tanks. The flash tanks may separate gases from black water to produce a first discharge of the black water and another discharge of separated gases. The gasification system also includes a heat exchanger that transfers heat from the discharge of separated gases to a process stream of the gasification system.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: July 16, 2013
    Assignee: General Electric Company
    Inventors: Alay S Arya, Saumar Jyoti Hazarika, Ganesh Arumugam
  • Patent number: 8475566
    Abstract: The present invention relates to a method for recovery of carbon dioxide from a gas stream. The method is a two-step method in which carbon dioxide is compressed in the first step, while the residual carbon dioxide is recovered by an absorption process in a subsequent step. The present invention also relates to the use of the method for the recovery of carbon dioxide and a plant for recovery of carbon dioxide.
    Type: Grant
    Filed: June 6, 2005
    Date of Patent: July 2, 2013
    Assignee: Union Engineering A/S
    Inventor: Rasmus Find
  • Patent number: 8475571
    Abstract: In one embodiment, a gas purification system is provided. The system includes a first solvent section having a first carbon dioxide (CO2) absorber, a hydrogen sulfide (H2S) absorber, and a first solvent path that routes a first solvent through the first CO2 absorber and the H2S absorber. The gas purification system also includes a second solvent section having a second carbon dioxide (CO2) absorber and a second solvent path that flows a second solvent through the second CO2 absorber. The gas purification system has a gas path though the first and second solvent sections, wherein the first and second solvent paths are separate from one another, and the first and second solvents are different from one another.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: July 2, 2013
    Assignee: General Electric Company
    Inventors: Judith Pauline Oppenheim, Anindra Mazumdar
  • Patent number: 8460431
    Abstract: A method for regenerating an amine-containing scrubbing solution which is obtained during gas purification and in which CO2 and sulfur compounds are chemically bonded, as well as a system that is suitable for carrying out the method. The contaminated scrubbing solution is heated, compressed, and expanded in several stages such that CO2 and sulfur compounds are separated. The expanded scrubbing solution is subdivided into two partial streams, and one partial stream is recirculated into the process.
    Type: Grant
    Filed: August 12, 2008
    Date of Patent: June 11, 2013
    Assignee: MT-Biomethan GmbH
    Inventor: Lothar Günther
  • Patent number: 8445737
    Abstract: A method for reducing one or more additives in a gaseous hydrocarbon stream (40) such as natural gas, comprising the steps of: (a) admixing an initial hydrocarbon feed stream (10) with one or more additives (20) to provide a multiphase hydrocarbon stream (30); (b) passing the multiphase hydrocarbon stream (30) from a first location (A) to a second location (B2); (c) at the second location (B2), passing the multiphase hydrocarbon stream (30) through a separator (22) to provide one or more liquid streams (50) comprising the majority of the one or more additives, and a gaseous hydrocarbon stream (40) comprising the remainder of the one or more additives; and (d) washing the gaseous hydrocarbon stream (40) in a decontamination unit (24) with a washing stream (60), wherein the washing stream (60) comprises distilled water, to provide an additive-enriched stream (70) and an additive-reduced hydrocarbon stream (80).
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: May 21, 2013
    Assignee: Shell Oil Company
    Inventors: Paul Clinton, Marcus Johannes Antonius Van Dongen, Nishant Gupta
  • Patent number: 8425655
    Abstract: The present invention provides a gas pressurized separation system to strip a product gas from a liquid stream and yield a high pressure gaseous effluent containing the product gas. The system comprises a gas pressurized stripping apparatus, such as a column, with at least one first inlet allowing flow of one or more liquid streams in a first direction and at least one second inlet allowing flow of one or more high pressure gas streams in a second direction, to strip the product gas into the high pressure gas stream and yield through at least one outlet a high pressure gaseous effluent containing the product gas; and two or more heat supplying apparatuses provided at different locations along the column. Processes for separating a product gas from a gaseous mixture to yield a high pressure gaseous effluent containing the product gas, utilize the gas pressurized separation system described above.
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: April 23, 2013
    Assignee: Carbon Capture Scientific, LLC
    Inventors: Shiaoguo Chen, Zijiang Pan
  • Patent number: 8410329
    Abstract: A polyethylene production process, comprising contacting ethylene and a polymerization catalyst under suitable reaction conditions to yield a polymerization product stream, separating a light gas stream from the polymerization product stream, wherein the light gas stream comprises ethane and unreacted ethylene, contacting the light gas stream with an absorption solvent system, wherein at least a portion of the ethylene from the light gas stream is absorbed by the absorption solvent system, removing unabsorbed gases of the light gas stream from contact with the absorption solvent system to form a waste gas stream, and recovering ethylene from the absorption solvent system.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: April 2, 2013
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: John D. Hottovy, Ted Cymbaluk
  • Publication number: 20130059365
    Abstract: Capturing a target gas includes contacting a gas mixture including a target species with an aqueous solution including a buffer species, and transferring some of the target species from the gas mixture to the aqueous solution. The target species forms a dissolved target species in the aqueous solution, and the aqueous solution is processed to yield a first aqueous stream and a second aqueous stream, where the equilibrium partial pressure of the target species over the second aqueous stream exceeds the equilibrium partial pressure of the target species over the first aqueous stream. At least some of the dissolved target species in the second aqueous stream is converted to the target species, and the target species is liberated from the second aqueous stream. The target species can be collected and/or compressed for subsequent processing or use.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 7, 2013
    Applicant: CARBON ENGINEERING LIMITED PARTNERSHIP
    Inventors: Matthew Alex Henderson, David William Keith, Arvinder Pal Singh KAINTH, Kenton Robert HEIDEL, Jane Anne Ritchie
  • Patent number: 8361201
    Abstract: The hydrogen sulphide content of natural gas obtained from the extraction of sour-gas containing crude oil/ natural gas mixtures, is reduced by reducing the high pressure of a raw crude oil/ natural gas mixture to 70-130 bar, separating an outgassing raw gas from the crude oil, cooling the outgassed raw gas and simultaneously drawing off a liquid medium which condenses from the outgassing raw gas during cooling. The outgassed raw gas is subjected, after pressure reduction, to gas scrubbing by a physically active solvent. The laden solvent is directed to at least one pressure reduction step to obtain H2S outgas from the solvent. The pressure of the crude oil is further reduced in two subsequent steps to 20-40 bar and 2-15 bar and additional H2S rich raw gas streams are separated from the crude oil which outgas therefrom.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: January 29, 2013
    Assignee: UHDE GmbH
    Inventors: Johannes Menzel, Georg Saecker
  • Publication number: 20120297978
    Abstract: A method for removing impurities from a feed air gas stream prior to the stream being fed to a cryogenic distillation unit. The feed air gas stream contacts an ionic liquid which adsorbs the impurities from the air. The method can use one or more beds such as in pressure swing adsorption processes.
    Type: Application
    Filed: December 2, 2010
    Publication date: November 29, 2012
    Inventors: Suling Zhai, Yaping Lu
  • Patent number: 8303684
    Abstract: A pressurized gaseous mixture acidic gas and a useful gas is directly in a first absorption column with a physically acting absorption agent. Then the absorption agent loaded with the acid gas and useful gas is subdivided into first and second streams. The first stream is fed directly to a recycle flash container and there decompressed to reclaim the useful gas, extract the acidic gas from the absorption agent, and form a recycled gas containing the useful gas and acidic gas. The second stream is through a second absorption column to the recycle flash container. Some of the recycled gas from the recycle flash container is compressed and fed through the second absorption column so as to therein directly contact the second stream, and then the recycle gas that has passed through the second absorption column and contacted the second stream is returned to the gaseous mixture.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 6, 2012
    Assignee: UHDE GmbH
    Inventor: Johannes Menzel
  • Publication number: 20120222557
    Abstract: Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.
    Type: Application
    Filed: November 3, 2010
    Publication date: September 6, 2012
    Applicant: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: William F. Schneider, Joan F. Brennecke, Edward J. Maginn, Elaine Mindrup, Burcu Gurkan, Erica Price, Brett Goodrich
  • Patent number: 8252091
    Abstract: In a system involving CO2 capture having an acid gas removal system to selectively remove CO2 from shifted syngas, the acid gas removal system including at least one stage, e.g. a flash tank, for CO2 removal from an input stream of dissolved carbon dioxide in physical solvent, the method of recovering CO2 in the acid gas removal system including: elevating a pressure of the stream of dissolved carbon dioxide in physical solvent; and elevating the temperature of the pressurized stream upstream of at least one CO2 removal stage.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: August 28, 2012
    Assignee: General Electric Company
    Inventors: Ashok Kumar Anand, Chetan Madhav Joshi, Jegadeesan Maruthamuthu
  • Publication number: 20120111189
    Abstract: Method and system to capture target gases from all kind of point-sources, as well as from ambient air and surface waters, sediments or soils by advantage of large differences in Henrys law constants. For gas dissolution in water the constants favor dissolution of e.g. CO2 compared to the main constituents of flue gases like N2 and O2. The main principle is to dissolve the gases—release of the non-dissolved part stripping the liquid for the dissolved gases, which are enriched in target gas. Further steps can be used to reach a predetermined level of target gas concentration.
    Type: Application
    Filed: March 9, 2010
    Publication date: May 10, 2012
    Applicant: NORSK INSTITUTT FOR LUFTFORSKNING
    Inventors: Svein Knudsen, Norbert Schmidbauer
  • Patent number: 8075673
    Abstract: A description is given of an absorption medium for removing carbon dioxide from gas streams which comprises aqueous solution of an amine of the formula I HNR2??(I) where one or both radicals R are and the other radical R is hydrogen. The absorption medium is distinguished by particular oxidation resistance.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: December 13, 2011
    Assignee: BASF SE
    Inventors: Joachim-Thierry Anders, Johann-Peter Melder, Norbert Asprion, Ole Brettschneider, Iven Clausen, Bernd Eck, Ute Lichtfers
  • Publication number: 20110165663
    Abstract: A device and a method for producing a fine liquid mist and injecting the said mist into a gas stream to capture and remove very fine particulate pollutants. The pressurized gas stream is passed into a droplet generator (20) into which the liquid is sprayed and atomised into a mist which captures particulates and then into a droplet separator (30) to produce a separated liquid/particulate mixture and a gas stream with a reduced concentration of particulates. The main application is the removal of fine particulates from vehicle exhaust streams. Optionally a degassing stage (90) is provided for the removal of residual gases and vapours. The preferred liquid to form the mist is water.
    Type: Application
    Filed: July 11, 2005
    Publication date: July 7, 2011
    Inventor: Howard P. Davis
  • Patent number: 7967896
    Abstract: The invention provides a process and system for regenerating a solvent used to remove carbon dioxide from feed gases, such as natural gas and synthesis gas. The invention employs one or more hydraulic turbochargers to transfer energy from a higher energy solvent stream to a lower energy solvent stream. This provides for a significant reduction in operating expenses.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 28, 2011
    Assignee: UOP LLC
    Inventors: William J. Lechnick, Nagaraju Palla, Paul A. Sechrist, Lamar A. Davis, Michael R. Van de Cotte
  • Patent number: 7935178
    Abstract: The invention provides a process and system for regenerating a solvent used to remove carbon dioxide from feed gases, such as natural gas and synthesis gas. The process and system employ a biphasic turbine to recover energy following pressure let down.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: May 3, 2011
    Assignee: UOP LLC
    Inventors: William J. Lechnick, Paul A. Sechrist, Douglas E. Kuper, Lamar A. Davis
  • Patent number: 7901487
    Abstract: An acid gas such as carbon dioxide, hydrogen sulfide, or a mixture thereof is removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a multipressure stripper (51) that combines acid gas compression with stripping, less energy is consumed. The multipressure stripper is a multistage flash (52, 55, 59) in which the total vapor flow from each stage is compressed and fed to the bottom of the previous flash stage at a higher pressure. In this process, the heat in the water content of the vapor exiting each stage is utilized at a higher pressure in the previous stage. The described stripping process generates the acid gas at a higher pressure without operating the stripper at a higher temperature, thereby reducing the energy consumption of the system.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 8, 2011
    Assignee: Board of Regents, The University of Texas System
    Inventor: Gary T. Rochelle
  • Patent number: 7896954
    Abstract: A method of storing and dispensing a fluid includes providing a vessel configured for selective dispensing of the fluid therefrom. A solvent mixture comprising an ionic liquid and a cosolvent is provided within the vessel. The fluid is contacted with the solvent mixture for take-up of the fluid by the solvent mixture. The fluid is released from the ionic liquid and dispensed from the vessel.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: March 1, 2011
    Assignee: Matheson Tri-Gas, Inc.
    Inventors: Carrie L. Wyse, Robert Torres, Jr., Joseph V. Vininski
  • Patent number: 7892324
    Abstract: Methods and systems for handling sour carbon dioxide (CO2) streams are provided. In one aspect, a method for sequestering an emissions-heavy gas includes removing at least a portion of an acid gas from a rich solvent in an acid gas stripper to create the emissions-heavy gas, and channeling the emissions-heavy gas to a storage system.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 22, 2011
    Assignee: General Electric Company
    Inventors: Arnaldo Frydman, Pradeep Thacker, Sachin Naphad, Aaron John Avagliano
  • Patent number: 7892325
    Abstract: A process for controlled conversion of at least two gases which form ignitable and/or explosive mixtures with one another, in which the gases are absorbed either separately or together in a carrier liquid which is inert in relation to the gases; the carrier liquid with the absorbed gases is fed to a degasser which comprises a closed degassing vessel (2) which comprises at least one feed line for the gas-laden carrier liquid (1) and at least one gas outlet (3) at its upper end, and also one or more drains for the carrier liquid below the feed line for the carrier liquid and in each case connected to a drain pipe (4), and in such a manner that the liquid flow rate in the degassing vessel (2) is less than 0.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: February 22, 2011
    Assignee: Christ Water Technology AG
    Inventors: Thomas Menzel, Grigorios Kolios, Monique Bissen, Jürgen Johann
  • Patent number: 7811361
    Abstract: One exemplary embodiment can be a process for increasing an efficiency of an acid gas removal zone. The process can include sending a sour gas stream including at least one gas to a first absorber providing an overhead stream absorbing the at least one gas; withdrawing a side-stream from the first absorber and passing the side-stream through a holding tank, a side-stream fluid transfer device, and a side-stream chiller before returning the side-stream to the absorber; and passing the first absorber overhead stream to a pump-around circuit for a second absorber. Usually, the pump-around circuit may include a flash drum, a pump-around fluid transfer device and a pump-around chiller before providing a slipstream to the first absorber and another portion to the second absorber.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 12, 2010
    Assignee: UOP LLC
    Inventors: William J. Lechnick, Lamar A. Davis, David Alden Bahr, Carla F. Roberts
  • Publication number: 20100192770
    Abstract: An absorption medium for removing acid gases from a fluid stream comprises an aqueous solution of A) at least one cyclic amine compound having solely tertiary amine groups and/or sterically hindered secondary amine groups and B) at least one cyclic amine compound having at least one sterically unhindered secondary amine group. The absorption medium comprises, e.g., an aqueous solution of A) 1-hydroxyethylpiperidine and/or triethylenediamine and B) piperazine. The absorption medium is particularly suitable for separating off carbon dioxide from flue gases and satisfies the following criteria: (i) sufficient capacity at low CO2 partial pressures; (ii) sufficiently rapid absorption rate at low CO2 partial pressures; (iii) stability toward oxygen; (iv) low vapor pressure for reducing solvent losses; and (v) low energy requirement for regeneration of the absorption medium.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 5, 2010
    Applicant: BASF SE
    Inventors: Hugo Rafael Garcia Andarcia, Ute Lichtfers, Georg Sieder, Oliver Spuhl, Steven Brughmans
  • Patent number: 7699908
    Abstract: A method for displacing acid gas constituents from natural gas to acid gas removal installations equipped with Claus installations with free capacities utilizes a portion of the acid gas which is removed from a first flow of natural gas containing acid gas. The acid gas removed from the first flow of natural gas is fed to at least one other acid gas removal installation, whereby this feeding results in the acid gas removed from the first flow of natural gas being mixed with at least one second flow of natural gas with which it is transported to at least one other acid gas removal installation.
    Type: Grant
    Filed: November 27, 2004
    Date of Patent: April 20, 2010
    Assignee: UHDE GmbH
    Inventor: Johannes Menzel