Carbon Dioxide Sorbed Patents (Class 95/236)
-
Patent number: 12179141Abstract: A method for processing a salt solution together with carbon dioxide is disclosed. The method comprises: extracting lignin from biomass; and treating the salt solution with the lignin residue and the carbon dioxide.Type: GrantFiled: February 26, 2024Date of Patent: December 31, 2024Assignee: UNITED ARAB EMIRATES UNIVERSITYInventors: Jawad Mustafa, Ameera Mohammad, Mohsin Raza, Ali Hassan Al-Marzouqi, Basim Abu-Jdayil
-
Patent number: 12152210Abstract: The present disclosure relates to systems and methods for separation of sulfurous material(s) from a multi-component feed stream. The systems and methods can comprise contacting the multi-component feed stream with a solvent in a contacting column so that at least a portion of the sulfurous material(s) is transferred from the multi-component feed stream to the solvent. A stream of a substantially purified gas can thus be provided along with a liquid stream comprising at least a majority of the sulfurous material. In particular, the solvent can comprise liquid carbon dioxide, which can be particularly beneficial for removing sulfurous materials from multi-component feed streams.Type: GrantFiled: August 13, 2024Date of Patent: November 26, 2024Assignee: 8 Rivers Capital, LLCInventors: Rodney John Allam, Navid Rafati
-
Patent number: 12138588Abstract: A system and a process for capturing Carbon Dioxide (CO2) from flue gases are disclosed. The process comprises feeding a flue gas comprising CO2 to at least one Rotary Packed Bed (RPB) absorber rotating circularly. A solvent may be provided through an inner radius of the RPB absorber. The solvent may move towards an outer radius of the RPB absorber. The solvent may react with the flue gas in a counter-current flow. The process further includes passing the flue gas through at least one of a water wash and an acid wash to remove traces of the solvent present in the flue gas. Finally, the solvent reacted with the CO2 may be thermally regenerated for re-utilizing the solvent back in the process.Type: GrantFiled: June 22, 2023Date of Patent: November 12, 2024Assignee: CARBON CLEAN SOLUTIONS LIMITEDInventors: Prateek Bumb, James Jonathan Hall, Ausula Ramesh Kumar, Shailesh Lohare, Richard Mather
-
Patent number: 12116543Abstract: The present disclosure relates to systems and methods for separation of sulfurous material(s) from a multi-component feed stream. The systems and methods can comprise contacting the multi-component feed stream with a solvent in a contacting column so that at least a portion of the sulfurous material(s) is transferred from the multi-component feed stream to the solvent. A stream of a substantially purified gas can thus be provided along with a liquid stream comprising at least a majority of the sulfurous material. In particular, the solvent can comprise liquid carbon dioxide, which can be particularly beneficial for removing sulfurous materials from multi-component feed streams.Type: GrantFiled: July 10, 2023Date of Patent: October 15, 2024Assignee: 8 Rivers Capital, LLCInventors: Rodney John Allam, Navid Rafati
-
Patent number: 11946002Abstract: Provided is a method for treating an oil gas, which can realize high-efficiency separation for and recovery of gasoline components, C2, C3, and C4 components. The method first conducts separation of light hydrocarbon components from gasoline components, and then performs subsequent treatment on a stream rich in the light hydrocarbon components, during which it is no longer necessary to use gasoline to circularly absorb liquefied gas components, which significantly reduces the amount of gasoline to be circulated and reduces energy consumption throughout the separation process. Besides, in this method, impurities, such as H2S and mercaptans, in the stream rich in the light hydrocarbon components are removed first before the separation for the components. This ensures that impurities will not be carried to a downstream light hydrocarbon recovery section, thus avoiding corrosion issues caused by hydrogen sulfide in the light hydrocarbon recovery section.Type: GrantFiled: June 5, 2020Date of Patent: April 2, 2024Assignees: SINOPEC ENGINEERING INCORPORATION, SINOPEC ENGINEERING (GROUP) CO., LTD.Inventors: Mengqi Huang, Longhong Yu, Lei Wu, Shengyang Jiang, Yuwen Ding, Na Gao, Di Wu, Dan Duan
-
Patent number: 11732206Abstract: The present disclosure relates to systems and methods for separation of sulfurous material(s) from a multi-component feed stream. The systems and methods can comprise contacting the multi-component feed stream with a solvent in a contacting column so that at least a portion of the sulfurous material(s) is transferred from the multi-component feed stream to the solvent. A stream of a substantially purified gas can thus be provided along with a liquid stream comprising at least a majority of the sulfurous material. In particular, the solvent can comprise liquid carbon dioxide, which can be particularly beneficial for removing sulfurous materials from multi-component feed streams.Type: GrantFiled: August 17, 2022Date of Patent: August 22, 2023Assignee: 8 Rivers Capital, LLCInventors: Rodney John Allam, Navid Rafati
-
Patent number: 11447710Abstract: The present disclosure relates to systems and methods for separation of sulfurous material(s) from a multi-component feed stream. The systems and methods can comprise contacting the multi-component feed stream with a solvent in a contacting column so that at least a portion of the sulfurous material(s) is transferred from the multi-component feed stream to the solvent. A stream of a substantially purified gas can thus be provided along with a liquid stream comprising at least a majority of the sulfurous material. In particular, the solvent can comprise liquid carbon dioxide, which can be particularly beneficial for removing sulfurous materials from multi-component feed streams.Type: GrantFiled: May 6, 2019Date of Patent: September 20, 2022Assignee: 8 Rivers Capital, LLCInventors: Rodney John Allam, Mohammad Rafati
-
Patent number: 11446603Abstract: The acid gas removal system for removing acidic gases from gaseous hydrocarbons (10) removes sour gases, such as hydrogen sulfide (H2S) and carbon dioxide (CO2), from an input gaseous stream. The system (10) includes a contactor (12) for contacting the input gaseous stream with an absorption liquid solvent (ALS), and a stripper (24) for recycling the absorption liquid solvent (ALS) and removing acidic gases (AG) therefrom, but with the addition of a pair of plate-plate heat exchangers (22, 26). The first heat exchanger (22) heats the used absorption liquid solvent (UALS) output from the contactor (12) prior to injection into the stripper (24). The used absorption liquid solvent (UALS) is heated via heat exchange with the acidic gases (AG) output from the stripper (24). The second heat exchanger (26) cools the recycled absorption liquid solvent (RALS) before injection back into the contactor (12).Type: GrantFiled: July 6, 2018Date of Patent: September 20, 2022Assignee: QATAR FOUNDATION FOR EDUCATION, SCIENCE, ANDCOMMUNITY DEVELOPMENTInventors: Abdulkarem Ibrahim Amhamed, Ahmed Mohamed Gamal Abotaleb
-
Patent number: 10456749Abstract: A system for the removal of heat stable amine salts from an amine absorbent used in a carbon dioxide (CO2) capture process.Type: GrantFiled: August 31, 2016Date of Patent: October 29, 2019Assignees: General Electric Technology GMBH, Dow Global Technologies LLCInventors: Nareshkumar B. Handagama, Barath Baburao, Frederic Vitse, Stephen A. Bedell, Jonathan W. Leister, Ross Dugas
-
Patent number: 10450264Abstract: Non-cyclic amide or thioamide based ionic liquids and methods of making them are disclosed.Type: GrantFiled: January 9, 2018Date of Patent: October 22, 2019Assignee: UOP LLCInventors: Erin M. Broderick, Avram M. Buchbinder, Alakananda Bhattacharyya
-
Patent number: 9975083Abstract: Systems and methods for gas processing are described that utilize two or more cells that are fluidly coupled to one another by a common liquid space. Via the common liquid space, each of the cells can be coupled to a fluid outlet. The cells can each include an absorber and/or other gas processing equipment. A feed gas can be separately fed to each of the cells for processing. The cells can be independently operable, such that not all of the cells must be operated simultaneously.Type: GrantFiled: April 19, 2016Date of Patent: May 22, 2018Assignee: Fluor Technologies CorporationInventors: Satish Reddy, Joseph Yonkoski
-
Patent number: 9919259Abstract: The present invention provides a gas pressurized separation system to strip a product gas from a liquid stream and yield a high pressure gaseous effluent containing the product gas. The system comprises a gas pressurized stripping apparatus, such as a column, with at least one first inlet allowing flow of one or more liquid streams in a first direction and at least one second inlet allowing flow of one or more high pressure gas streams in a second direction, to strip the product gas into the high pressure gas stream and yield through at least one outlet a high pressure gaseous effluent containing the product gas; and two or more heat supplying apparatuses provided at different locations along the column. Processes for separating a product gas from a gaseous mixture to yield a high pressure gaseous effluent containing the product gas, utilize the gas pressurized separation system described above.Type: GrantFiled: January 7, 2013Date of Patent: March 20, 2018Assignee: CARBON CAPTURE SCIENTIFIC, LLCInventors: Shiaoguo Chen, Zijiang Pan
-
Patent number: 9776124Abstract: Acid gas is removed from a high pressure feed gas that contains significant quantities of CO2 and H2S. In especially preferred configurations and methods, feed gas is contacted in an absorber with a lean and an ultra-lean solvent that are formed by flashing rich solvent and stripping a portion of the lean solvent, respectively. Most preferably, the flash vapors and the stripping overhead vapors are recycled to the feed gas/absorber, and the treated feed gas has a CO2 concentration of less than 2 mol % and a H2S concentration of less than 10 ppmv, and more typically less than 4 ppmv.Type: GrantFiled: March 4, 2016Date of Patent: October 3, 2017Assignee: Fluor Technologies CorporationInventor: John Mak
-
Patent number: 9731245Abstract: The present invention relates to a method of removing a gas from a mixture. The method includes contacting a silicone membrane with a feed mixture including at least a first gas component and contacting a second side of the membrane with an organosilicon sweep liquid, producing a retentate mixture depleted in the first gas component and an organosilicon sweep liquid enriched in the first gas component. The invention also provides methods of removing a gas from a liquid, and methods of regenerating and recycling an organosilicon sweep liquid.Type: GrantFiled: September 25, 2013Date of Patent: August 15, 2017Assignee: Dow Corning CorporationInventors: Dongchan Ahn, Aaron Greiner, James Hrabal, Alexandra Lichtor
-
Patent number: 9545596Abstract: An improved process for deacidizing a gaseous mixture with reduced overall energy costs is described. The process involves contacting the gaseous mixture with at least one of a vaporizing compound, a vaporized compound, a vaporizing solution of compound and a vaporized solution of compound, and forming a liquid or solid reaction product that can be easily separated from the gaseous mixture.Type: GrantFiled: June 18, 2012Date of Patent: January 17, 2017Inventor: Liang Hu
-
Patent number: 9486737Abstract: The absorbent solution for removing acidic compounds contained in a gas effluent comprises water and at least one amine that is selected from among tertiary monoalkanolamines that contain an etheric function and belong to the 3-alcoxypropylamine family having general formula (A). The method for removing the acidic compounds contained in a gas effluent involves placing a gas effluent 1 into the column C1 together with the absorbent solution 4.Type: GrantFiled: September 28, 2012Date of Patent: November 8, 2016Assignee: IFP Energies NouvellesInventors: Bruno Delfort, Dominique Le Pennec, Julien Grandjean
-
Patent number: 9463410Abstract: A system (1) for removing carbon dioxide (CO2) from a gas stream by bringing the gas stream into contact with a circulating ammoniated solution stream such that CO2 is absorbed in said ammoniated solution, characterized in that the system comprises a membrane purifier (17), said membrane purifier having a first compartment (18) and a second compartment (19), wherein said first and second compartment are separated by a semipermeable membrane (20), a method for removing carbon dioxide (CO2) from a gas stream by bringing the gas stream into contact with a circulating ammoniated solution stream such that CO2 is absorbed in said ammoniated solution, said method comprising the step of separating trace components from a circulating solution using a semipermeable membrane, and the use of a membrane purifier having a first and a second compartment, wherein said first and a second compartments are separated by a semipermeable membrane, for reducing the trace component and/or water content of a circulating solution streType: GrantFiled: September 14, 2011Date of Patent: October 11, 2016Assignee: General Electric Technology GmbHInventors: Jon K Bockman, Michael Koch
-
Patent number: 9321007Abstract: Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a blend of piperazine and at least one diamine or triamine.Type: GrantFiled: July 18, 2014Date of Patent: April 26, 2016Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEMInventors: Gary Rochelle, Omkar Namjoshi, Le Li, Yang Du, Thu Nguyen
-
Patent number: 9180403Abstract: An aqueous ionic absorbent solution is disclosed containing (a) about 15 wt. % to about 80 wt. % of one or more diluents, based on the total weight of the aqueous ionic absorbent solution; and (b) an ionic absorbent containing a cation and an anion comprising an amine moiety.Type: GrantFiled: December 30, 2010Date of Patent: November 10, 2015Assignees: Chevron U.S.A. Inc., University of South AlabamaInventors: Daniel Chinn, Russell Evan Cooper, Zunqing He, James H. Davis, Jr., Kevin N. West, Hye Kyung Timken, Michael S. Driver
-
Patent number: 9044709Abstract: A formulation and process for capturing CO2 use an absorption mixture containing water, biocatalysts and an absorption compound selected from dimethylmonoethanolamine (DMMEA), diethylmonoethanolamine (DEMEA), and dimethylglycine. The process may include contacting a CO2-containing gas with the absorption mixture to enable dissolution and transformation of CO2 into bicarbonate and hydrogen ions, thereby producing a CO2-depleted gas and an ion-rich solution, followed by subjecting the ion-rich solution to desorption.Type: GrantFiled: December 13, 2013Date of Patent: June 2, 2015Assignee: CO2 SOLUTIONS INC.Inventors: Sylvie Fradette, Julie Gingras, Jonathan Carley, Glenn R. Kelly, Olivera Ceperkovic, Geert F. Versteeg
-
Patent number: 9034081Abstract: Systems and methods are contemplated for down-flow cooling of a feed gas. Contemplated systems can include a housing having an inlet conduit disposed within an upper portion and configured to receive a first stream. First and second stages can be disposed within the housing, with the first stage disposed upstream of the second stage and having a first cooling stream, and the second stage having a second cooling stream that is colder than the first cooling stream. The housing can be configured such that the first stream is cooled by down-flow heat exchange with the first and second cooling streams to produce a conditioned stream depleted of at least a portion of water condensed from the feed gas.Type: GrantFiled: November 22, 2011Date of Patent: May 19, 2015Assignee: FLUOR TECHNOLOGIES CORPORATIONInventor: Dennis W. Johnson
-
Publication number: 20150114226Abstract: Methods and compositions useful, for example, for physical solvent carbon capture. A method comprising: contacting at least one first composition comprising carbon dioxide with at least one second composition to at least partially dissolve the carbon dioxide of the first composition in the second composition, wherein the second composition comprises at least one siloxane compound which is covalently modified with at least one non-siloxane group comprising at least one heteroatom. Polydimethylsiloxane (PDMS) materials and ethylene-glycol based materials have high carbon dioxide solubility but suffer from various problems. PDMS is hydrophobic but suffers from low selectivity. Ethylene-glycol based systems have good solubility and selectivity, but suffer from high affinity to water. Solvents were developed which keep the desired combinations of properties, and result in a simplified, overall process for carbon dioxide removal from a mixed gas stream.Type: ApplicationFiled: October 27, 2014Publication date: April 30, 2015Inventors: Hunaid NULWALA, David LUEBKE
-
Patent number: 9017455Abstract: This invention relates to sulfur based compounds useful in methods of carbon dioxide or sulfur dioxide removal.Type: GrantFiled: March 11, 2011Date of Patent: April 28, 2015Assignee: E I du Pont de Nemours and CompanyInventor: Mark A. Scialdone
-
Patent number: 9011576Abstract: A method for sorbing a gas using an ionic liquid to sorb a vapor having an electric multi-pole moment. The ionic liquid comprises an anion and a cation. The electric multi-pole moment may be an electric dipole moment and/or an electric quadru-pole moment. The sorption may be an adsorption or an absorption. The ionic liquid may be a liquid that substantially contains only anions and cations, while not containing other components, such as water. Alternatively, a solution containing the ionic liquid and a solvent or further compound, such as water, may be used.Type: GrantFiled: June 22, 2011Date of Patent: April 21, 2015Inventors: Paul Dinnage, Roland Kalb
-
Patent number: 9010081Abstract: A power plant includes a gas turbine unit adapted to feed flue gases into a boiler of a steam turbine unit, to be then diverted into a recirculated flow and discharged flow. The recirculated flow is mixed with fresh air forming a mixture that is fed into a gas turbine unit compressor. The discharged flow is fed into a CO2 capture unit that is an amine based or chilled ammonia based CO2 capture unit. A cooler for the flue gases can be configured as a shower cooler located upstream of the CO2 capture unit. The plant can also include a washing unit to neutralize ammonia drawn by the flue gases that can be fed with nitric acid gathered at the cooler.Type: GrantFiled: October 14, 2011Date of Patent: April 21, 2015Assignee: Alstom Technology Ltd.Inventors: Eribert Benz, Gian-Luigi Agostinelli, Andreas Brautsch, Gisbert Wolfgang Kaefer, Felix Güthe
-
Publication number: 20150068398Abstract: A process and system for separating CO2 from a flue gas stream is disclosed. The process involves (a) contacting a flue gas stream containing water vapor and CO2 with an ionic absorbent under absorption conditions to absorb at least a portion of the CO2 from the flue gas stream and form a CO2-absorbent complex; wherein the ionic absorbent comprises a cation and an anion comprising an amine moiety; and (b) recovering a gaseous product having a reduced CO2 content.Type: ApplicationFiled: November 14, 2014Publication date: March 12, 2015Inventors: Daniel Chinn, Russell Evan Cooper, Zunqing He, James H. Davis, JR., Kevin N. West, Hye Kyung Timken, Michael S. Driver
-
Patent number: 8974582Abstract: A CO2 recovery system includes an absorber 2 and a regenerator 3. The absorber 2 includes a CO2 absorbing section 21 and a water-washing section 22. The CO2 absorbing section 21 allows flue gas 101 to come into contact with a basic amine compound absorbent 103 so that the basic amine compound absorbent 103 absorbs CO2 in the flue gas 101. The water-washing section 22 allows the decarbonated flue gas 101A in which the amount of CO2 has been reduced in the CO2 absorbing section 21 to come into contact with circulating wash water 104 and to be washed with the wash water 104 so that the amounts of the basic amine compounds entrained in the decarbonated flue gas 101A are reduced. The regenerator 3 releases CO2 from the basic amine compound absorbent 103 the CO2 absorbed therein.Type: GrantFiled: February 13, 2013Date of Patent: March 10, 2015Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co. Inc.Inventors: Hiromitsu Nagayasu, Takashi Kamijo, Takahito Yonekawa, Hiroshi Tanaka, Shinya Kishimoto, Takuya Hirata, Tatsuya Tsujiuchi, Masaru Chiyomaru, Koji Nakayama, Masahiko Tatsumi, Yasuyuki Yagi, Kazuhiko Kaibara
-
Patent number: 8961665Abstract: There is provided an exhaust gas treatment system including a CO2 recovery unit with further enhanced energy efficiency. The exhaust gas treatment system (1) includes: a CO2 recovery unit (10) including a CO2 absorption column (11), an absorbing solution regeneration column (16), a condensate supply pipeline (15) for supplying condensate, which contains CO2 absorbing solution discharged from the CO2 absorption column (11) to a bottom portion of the absorbing solution regeneration column (16), and a CO2 separation section (22) for performing heat exchange, via a heat exchanger (23), between the CO2 discharged from the absorbing solution regeneration column (16) and the condensate; and an exhaust gas heat exchanger (5) provided on a gas upstream side of the CO2 recovery unit (10) for performing heat exchange between exhaust gas before flowing into the CO2 recovery unit (10) and the condensate.Type: GrantFiled: September 5, 2012Date of Patent: February 24, 2015Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Tatsuya Tsujiuchi, Shintaro Honjo, Takahito Yonekawa, Satoru Sugita, Motofumi Ito, Takashi Kamijo, Tatsuto Nagayasu, Takuya Okamoto
-
Patent number: 8961664Abstract: A carbon dioxide recovery unit is provided with: an absorption tower for bringing an exhaust gas into contact with a CO2 absorbing liquid to thereby absorb and recover CO2 from the exhaust gas; a regeneration tower for taking out the CO2 from the CO2 absorbing liquid; a CO2 delivery line L3 for delivering the taken-out CO2 to a storage process; and a CO2 return line L5 for returning the taken-out CO2 to the absorption tower. When a CO2 recovery unit and a CO2 compressing device are activated, if a storage process side has some kind of trouble and cannot receive the CO2, a destination part to which the CO2 is delivered from the regeneration tower is switched from the CO2 delivery line L3 to the CO2 return line L5, whereby the CO2 gas is mixed with the exhaust gas in the absorption tower.Type: GrantFiled: September 20, 2012Date of Patent: February 24, 2015Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Koji Nakayama, Takahito Yonekawa, Masayuki Inui, Tatsuya Tsujiuchi, Yoshiki Sorimachi
-
Patent number: 8961663Abstract: An apparatus that separates and recovers CO2 from a CO2 absorbent that has absorbed CO2 includes a regeneration tower configured to apply heat to the CO2 absorbent that has absorbed CO2, configured to separate and remove CO2 from the CO2 absorbent, configured to exhaust CO2 gas, and configured to regenerate the CO2 absorbent, a plurality of compressors configured to compress the CO2 gas exhausted from the regeneration tower, a dehydration device provided between the plurality of compressors and configured to remove moisture from the compressed CO2, and a line configured to supply air or N2 gas into the dehydration device to preliminarily operate the dehydration device until a stable state is achieved before starting the compressor.Type: GrantFiled: September 6, 2012Date of Patent: February 24, 2015Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Taku Asano, Tatsuya Tsujiuchi, Richard Reinke
-
Patent number: 8951335Abstract: Systems and methods are described for selectively removing an acid gas from a feed stream to reduce co-absorption of CO2. The system can include an absorber configured to contact at least a portion of the feed stream with a caustic solution or other basic solvents to produce a clean stream substantially depleted of the acid gas. To reduce co-absorption of CO2 by the caustic solution to less than 10% of the CO2 present in the feed stream, the absorber can be further configured to receive a driver gas that is substantially non-reactive with the caustic solution.Type: GrantFiled: December 7, 2011Date of Patent: February 10, 2015Assignee: Fluor Technologies CorporationInventor: Paul M. Mathias
-
Patent number: 8945280Abstract: An amine solvent solution that is useful in absorbing acid gases from a liquid or gas feed stream may have an amine additive added thereto. Additionally or alternatively, the amine additive may be added to a liquid or gas feed stream. The addition of the amine additive decreases the presence of amine-derived contaminants and/or degradation of amine in the amine solvent solution. As such, the amine solvent solution is available for effective reuse in treating the liquid or gas feed stream and there may be a decrease in the corrosion within an amine treating system.Type: GrantFiled: December 3, 2009Date of Patent: February 3, 2015Assignee: Huntsman Petrochemical LLCInventors: Patrick E. Holub, Robert A. Grigsby, Jr., Larry R. White, James E. Critchfield
-
Patent number: 8945292Abstract: In one embodiment, a gas purification system is provided. The system includes a first section having a first solvent path and a first gas path. The first gas path is configured to flow a stripping gas to remove hydrogen sulfide (H2S) and carbon dioxide (CO2) from the first solvent path in a first vessel to produce a first gas mixture. The system also includes a second section having a second solvent path. The second solvent path is configured to flow a second solvent mixture to remove H2S from the first gas mixture and CO2 from the second solvent mixture within a second vessel. The second solvent mixture has a solvent saturated in CO2 at a first pressure, the second vessel is operated at a second pressure, and the first and second pressures are within approximately 20% of one another.Type: GrantFiled: March 23, 2012Date of Patent: February 3, 2015Assignee: General Electric CompanyInventors: Judith Pauline Oppenheim, Anindra Mazumdar
-
Patent number: 8936234Abstract: A method of mass transfer includes the steps of: supplying a first fluid and a second fluid into a mass transfer apparatus, wherein the mass transfer apparatus includes a vessel which has a head region, a base region and a mass transfer region, wherein the first fluid is brought into contact with the second fluid at least in the mass transfer region, wherein the mass transfer region is arranged between the head region and the base region and the mass transfer region includes a structured packing which includes a plurality of neighboring layers of fabric which includes fiber strands of a non-metallic material. The mass transfer apparatus is operated at a fluid load of at most 3 m3/m2/h. The fabric of the structured packing includes fiber strands of a non-metallic material which are formed as weft threads, wherein the weft threads have a yarn count of at least 100 g/1000 m and the weft threads include at least 20 yarns/25.4 mm.Type: GrantFiled: May 15, 2014Date of Patent: January 20, 2015Assignee: Sulzer Chemtech AGInventors: Werner Wicki, Marcus Duss, Llja Ausner
-
Patent number: 8920544Abstract: A method for removing acid gases from a fluid flow using an absorbent including an aqueous solution with at least two different amines. An amine in a proportion of greater than 50 wt. % of the total amine amount in the aqueous solution is the first amine component in the aqueous solution, and a sterically hindered amine in a proportion of less than 50 wt. % is the second amine component in the aqueous solution. The fluid flow is brought into contact with the absorbent at a partial pressure of <200 mbar.Type: GrantFiled: December 21, 2010Date of Patent: December 30, 2014Assignee: ThyssenKrupp Uhde GmbHInventors: Johannes Menzel, Olaf Von Morstein
-
Patent number: 8911539Abstract: A process and system for separating CO2 from a flue gas stream is disclosed. The process involves (a) contacting a flue gas stream containing water vapor and CO2 with an ionic absorbent under absorption conditions to absorb at least a portion of the CO2 from the flue gas stream and form a CO2-absorbent complex; wherein the ionic absorbent comprises a cation and an anion comprising an amine moiety; and (b) recovering a gaseous product having a reduced CO2 content.Type: GrantFiled: December 30, 2010Date of Patent: December 16, 2014Assignees: Chevron U.S.A. Inc., University of South AlabamaInventors: Daniel Chinn, Russell Evan Cooper, Zunqing He, James H. Davis, Jr., Kevin N. West, Hye Kyung Timken, Michael S. Driver
-
Patent number: 8911538Abstract: A system for treating an effluent stream including a carbon capture system utilizing an amine-containing solution to remove carbon dioxide from a flue gas stream, the carbon capture system generating an effluent stream comprising degradation products generated by the amine-containing solution; storage means for storing at least a portion of the effluent stream, the storage means being fluidly coupled to the carbon capture system. The system also including at least one nozzle connected to a combustion zone of a boiler, the at least one nozzle being fluidly coupled to the storage means for providing at least a portion of the effluent stream present in the storage means to the combustion zone of the boiler through the at least one nozzle, wherein the effluent stream provided to the combustion zone is co-incinerated with a fuel in the combustion zone.Type: GrantFiled: December 22, 2011Date of Patent: December 16, 2014Assignee: ALSTOM Technology LtdInventors: Staffan Joensson, Bjorn Ungerer, Christoph Weingartner, Shin G. Kang, Armand A. Levasseur
-
Publication number: 20140360369Abstract: An absorption medium comprising water and at least one amine of formula (I) where R2 is hydrogen or an alkyl radical having 1 to 4 carbon atoms, R2 is an alkyl radical having 1 to 4 carbon atoms, R3 and R5 are each independently alkyl radicals having 1 to 6 carbon atoms and R4 and R6 are each independently hydrogen or alkyl radicals having 1 to 6 carbon atoms where R3 and R4 may combine to form the bridging radical —(CH2)n—, —CH2CH2OCH2CH2— or —CH2CH2NR7CH2CH2— with n=2 to 5 and R2=hydrogen or an alkyl radical having 1 to 6 carbon atoms, brings about an improved CO2 absorption capacity in the absorption of CO2 from a gas mixture by contacting the gas mixture with the absorption medium.Type: ApplicationFiled: November 30, 2012Publication date: December 11, 2014Applicant: Evonik Degussa GmbHInventors: Alexander Schraven, Stefanie Rinker, Benjamin Willy, Jöm Rolker, Rolf Schneider, Daniel Dembkowski, Manfred Neumann, Jochen Niemeyer
-
Patent number: 8906135Abstract: A method for separating a target gas from a gaseous mixture using 1,2,3-triazolium ionic liquids is presented. Industrial effluent streams may be cleaned by removing carbon dioxide from the stream by contacting the effluent stream with a 1,2,3-triazolium ionic liquid compound.Type: GrantFiled: September 1, 2011Date of Patent: December 9, 2014Assignee: U.S. Department of EnergyInventors: David Luebke, Hunald Nulwala, Chau Tang
-
Patent number: 8906149Abstract: The present application relates to a system for removal of gaseous contaminants from a gas stream. The system includes an absorber for contacting the gas stream with a wash solution to form a used wash stream, a regenerator for regenerating the used wash solution, a reboiler and at least two heat exchangers in fluid communication with the absorber, regenerator and reboiler.Type: GrantFiled: August 26, 2014Date of Patent: December 9, 2014Assignee: ALSTOM Technology LtdInventors: Barath Baburao, Jonathan W. Leister, Frederic Vitse
-
Patent number: 8906141Abstract: An apparatus for separating and recovering CO2 from a CO2 absorbent, includes: a regeneration tower for regenerating the absorbent that has absorbed CO2 by heating it to separate and remove CO2 therefrom and to exhaust CO2 gas; a compressor for compressing the CO2 gas exhausted from the tower; and a heat exchanger for heating the absorbent in the tower by exchanging heat with a part of the compressed CO2 by the compressor which is introduced into the tower. The apparatus may include a plurality of the compressors and a plurality of the heat exchangers. The plurality of compressors is arranged in series to sequentially compress the CO2 gas exhausted from the tower. The plurality of heat exchangers is configured so that each part of the CO2 compressed by the plurality of compressors is introduced to the tower in parallel to exchange heat with the absorbent in the tower.Type: GrantFiled: August 9, 2012Date of Patent: December 9, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Tatsuya Tsujiuchi, Shintaro Honjo, Takahito Yonekawa, Satoru Sugita
-
Patent number: 8900355Abstract: Impure carbon dioxide (“CO2”) comprising a first contaminant selected from the group consisting of oxygen (“O2”) and carbon monoxide (“CO”) is purified by separating expanded impure carbon dioxide liquid in a mass transfer separation column system. The impure carbon dioxide may be derived from, for example, flue gas from an oxyfuel combustion process or waste gas from a hydrogen (“H2”) PSA system.Type: GrantFiled: November 5, 2010Date of Patent: December 2, 2014Assignee: Air Products and Chemicals, Inc.Inventors: Vincent White, Rodney John Allam
-
Patent number: 8894941Abstract: SOx removal equipment for reducing sulfur oxides from flue gas from a boiler, a cooler provided on a downstream side of the SOx removal equipment, for reducing the sulfur oxides that remain in the flue gas and decrease a gas temperature, CO2 recovery equipment including an absorber for bringing CO2 in the flue gas into contact with a CO2 absorption liquid to be reduced, and a regenerator for causing the CO2 absorption liquid to emit CO2 to recover CO2 and regenerate the CO2 absorption liquid, a heat exchanger which is provided on an inlet passage side of the electric dust collector, for decreasing a temperature of the flue gas are included, and a mist generation material in the flue gas is converted from a gas state to a mist state to cause particulates in the flue gas to arrest and reduce the mist generation material in the mist state.Type: GrantFiled: May 31, 2011Date of Patent: November 25, 2014Assignee: Mitsubishi Heavy Industries, Ltd.Inventors: Tatsuto Nagayasu, Takashi Kamijo, Masayuki Inui, Tsuyoshi Oishi, Hiromitsu Nagayasu, Hiroshi Tanaka, Takuya Hirata, Tatsuya Tsujiuchi, Susumu Okino, Naoyuki Kamiyama, Seiji Yoshihara
-
Patent number: 8882896Abstract: Post-combustion conditioning systems are described that include a flue gas conditioning device configured to condition an exhaust stream to produce a conditioned stream. First and second outlet ducts can be fluidly coupled to, and substantially supported by, the flue gas conditioning device. This advantageously can eliminate costly ductwork, reduce the space required, and reduce the pressure drop of the system. The first outlet duct can fluidly couple the flue gas conditioning device to an exhaust duct, such that the conditioned stream can flow from the first conditioning device via the first outlet duct.Type: GrantFiled: December 2, 2011Date of Patent: November 11, 2014Assignee: Fluor Technologies CorporationInventors: Dennis W. Johnson, Jonathan Priest
-
Publication number: 20140326140Abstract: Systems and methods for gas processing are described that utilize two or more cells that are fluidly coupled to one another by a common liquid space. Via the common liquid space, each of the cells can be coupled to a fluid outlet. The cells can each include an absorber and/or other gas processing equipment. A feed gas can be separately fed to each of the cells for processing. The cells can be independently operable, such that not all of the cells must be operated simultaneously.Type: ApplicationFiled: May 3, 2013Publication date: November 6, 2014Applicant: FLUOR TECHNOLOGIES CORPORATIONInventor: Fluor Technologies Corporation
-
Patent number: 8876960Abstract: A method and system for transporting and processing sour gas are provided. The method includes collecting a sour gas at a collection location, which has an associated sweetening device, and delivering a solvent to the sweetening device from a regeneration device remote therefrom. The sour gas is treated at the collection location with the solvent in the associated sweetening device to form a sweetened gas and a sour gas-rich solvent. The sweetened gas is transported from the sweetening device to a gas processing plant remote therefrom, and the sour gas-rich solvent from the sweetening device is delivered to the regeneration device for regeneration therein.Type: GrantFiled: September 16, 2009Date of Patent: November 4, 2014Assignee: Chevron U.S.A Inc.Inventors: David W. Kalinowski, James E. Chitwood, James O. Y. Ong, Rui Song
-
Patent number: 8871008Abstract: Capturing a target gas includes contacting a gas mixture including a target species with an aqueous solution including a buffer species, and transferring some of the target species from the gas mixture to the aqueous solution. The target species forms a dissolved target species in the aqueous solution, and the aqueous solution is processed to yield a first aqueous stream and a second aqueous stream, where the equilibrium partial pressure of the target species over the second aqueous stream exceeds the equilibrium partial pressure of the target species over the first aqueous stream. At least some of the dissolved target species in the second aqueous stream is converted to the target species, and the target species is liberated from the second aqueous stream. The target species can be collected and/or compressed for subsequent processing or use.Type: GrantFiled: September 7, 2012Date of Patent: October 28, 2014Assignee: Carbon Engineering Limited PartnershipInventors: Matthew Alex Henderson, David William Keith, Arvinder Pal Singh Kainth, Kenton Robert Heidel, Jane Anne Ritchie
-
Patent number: 8864879Abstract: Disclosed herein is a method comprising contacting a residual flue gas stream with a lean solution stream in an appendix stripper; where the residual flue gas stream comprises nitrogen, oxygen and moisture; and where the lean solution stream comprises ammonium, ammonium carbonate, ammonium bicarbonate and ammonium sulfate; forming a vapor phase that comprises ammonia vapor, water vapor, carbon dioxide and nitrogen; forming a liquid phase that comprises water, ammonium sulfate and ammonia; discharging the vapor phase to a capture system; and discharging the liquid phase to a direct contact cooler.Type: GrantFiled: March 30, 2012Date of Patent: October 21, 2014Inventors: Jalal Askander, Fred Kozak
-
Patent number: 8864878Abstract: The present invention relates to methods and systems for improving the utilization of energy in a cement manufacturing plant comprising an absorption based contaminant, e.g. CO2, capture process using thermal regeneration of a liquid absorbent. The methods and systems of the present invention are characterized in that the thermal regeneration of the liquid absorbent is at least partially effected using a hot exhaust gas stream generated in the kiln of the cement manufacturing plant.Type: GrantFiled: September 23, 2011Date of Patent: October 21, 2014Assignee: ALSTOM Technology LtdInventors: Nareshkumar B. Handagama, Rasesh R. Kotdawala, Ajay Vajpeyi
-
Patent number: 8864876Abstract: The invention generally relates to a method for sequestration contaminates. More particularly, the invention relates to a significant performance enhancement over existing mineral carbonation processes through the use of a high mass transfer system and an efficient pH swing reaction. More particularly, aspects of the invention are directed to direct and indirect methods of sequestering contaminates.Type: GrantFiled: September 28, 2009Date of Patent: October 21, 2014Assignee: Neumann Systems Group, Inc.Inventors: David Kurt Neumann, Boris R. Nizamov, Thomas Lee Henshaw, Jeremy L. Anderson