Carbon Dioxide Sorbed Patents (Class 95/236)
  • Patent number: 8845797
    Abstract: A CO2 recovery system includes a CO2 absorption tower for absorbing CO2 in combustion exhaust gas into an absorbing solution by bringing the combustion exhaust gas into contact with the absorbing solution that absorbs CO2; a dissolved oxygen removing device that uses at least one device of a device for blowing bubbling gas into the rich absorbing solution into which CO2 has been absorbed, a device for applying ultrasonic oscillation, and a device for heating the rich absorbing solution; a bubble removing device that turns the rich absorbing solution into which CO2 has been absorbed in the CO2 absorption tower into a swirling flow or agitates the rich absorbing solution; and a regeneration tower that regenerates the absorbing solution by releasing CO2 from the absorbing solution from which oxygen has been removed by the dissolved oxygen removing device and the bubble removing device and obtains CO2 gas.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: September 30, 2014
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Koji Kadono, Kazuhiko Kaibara
  • Patent number: 8840806
    Abstract: Provided is an absorbent for capturing carbon dioxide. The absorbent may include an amino acid with multiple amine groups and an alkali-metal hydroxide mixed with the amino acid and thus, may increase an absorption capacity for carbon dioxide. When a sterically hindered effect is induced to the amino acid with multiple amine groups, the absorption capacity for carbon dioxide may increase and heat of absorption reaction may decrease and thus, energy consumed for regeneration of an absorbent may be reduced. The absorbent for capturing carbon dioxide may include amino acid with multiple amine groups and the metal hydroxide, and may provide a functional group around the amine groups to cause an sterically hindered effect and thus, the absorption capacity for carbon dioxide and an carbon dioxide absorption rate may increase, and the capital cost for a carbon dioxide capturing process and an operating cost may be significantly reduced.
    Type: Grant
    Filed: October 11, 2011
    Date of Patent: September 23, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Soon Kwan Jeong, Sung Chan Nam, Si Hyun Lee, Sang Do Kim, Dong Hyuk Jeon, Yeo Il Yoon, Il Hyun Baek, Jin Ah Lim, Dae Hoon Kim
  • Patent number: 8840708
    Abstract: A method for recovering methane gas from a landfill involves the use of a main absorber, a flash system, an ancillary absorber and a polishing absorber. The main absorber uses a main current of solvent for absorbing most of the carbon dioxide from raw landfill gas. The flash system removes much of the carbon dioxide from the solvent exiting the main absorber. A portion of the solvent downstream of the flash system is diverted to the ancillary absorber in which a current of air removes additional carbon dioxide from that portion of solvent. From the ancillary absorber, the diverted portion of solvent flows through the polishing absorber to remove additional carbon dioxide from the main current of solvent that was previously treated in the main absorber. To increase the energy content of the processed gas, in some examples, propane is added to the final outgoing gas stream.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: September 23, 2014
    Inventors: David C. Morrow, Paul D. Morrow, Luke N. Morrow
  • Patent number: 8834609
    Abstract: A method for separating carbon dioxide from a flue gas of a fossil fuel-operated power plant is provided. In the method, a fossil fuel is initially burned in a combustion process, wherein a hot waste gas containing carbon dioxide is produced. In a next process step, waste gas containing carbon dioxide is brought into contact with an absorption medium in an absorption process, wherein carbon dioxide is absorbed by the absorption medium, thus forming a charged absorption medium. Next, gaseous carbon dioxide is thermally expelled from the charged absorption medium in a desorption process. For this purpose, a vapor is supplied to the desorption process, the vapor is injected into the charged absorption medium, wherein the condensation heat released by the condensation of the vapor is transferred to the charged absorption medium, and the partial pressure of the carbon dioxide is simultaneously reduced in the desorption unit.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: September 16, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ralph Joh, Rüdiger Schneider, Henning Schramm
  • Patent number: 8834605
    Abstract: Method and apparatus for separating a target substance from a fluid or mixture. Capsules having a coating and stripping solvents encapsulated in the capsules are provided. The coating is permeable to the target substance. The capsules having a coating and stripping solvents encapsulated in the capsules are exposed to the fluid or mixture. The target substance migrates through the coating and is taken up by the stripping solvents. The target substance is separated from the fluid or mixture by driving off the target substance from the capsules.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 16, 2014
    Assignees: Lawrence Livermore National Security, LLC., The Board of Trustees of the University of Illinois
    Inventors: Roger D. Aines, Christopher M. Spadaccini, Joshuah K. Stolaroff, William L. Bourcier, Jennifer A. Lewis, Eric B. Duoss, John J. Vericella
  • Patent number: 8828122
    Abstract: A system includes an acid gas removal (AGR) system configured to remove an acid gas from an untreated syngas to generate a treated syngas, a hydrogen separation system configured to receive the treated syngas to generate a non-permeate and a permeate, and an expander configured to expand the non-permeate to generate a cooled non-permeate. The AGR system includes a solvent chiller configured to cool a solvent via heat exchange with the cooled non-permeate.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: Pradeep Stanley Thacker, Sachin Suhas Naphad, Rupinder Singh Benipal
  • Patent number: 8828344
    Abstract: A fuel system comprising a fuel tank, a catalytic inerting device for producing oxygen depleted air (ODA) by reaction of fuel vapor from the fuel tank with air, and a separator device for separating carbon dioxide from the ODA gas before feeding the carbon dioxide depleted ODA gas to the fuel tank so as to render the fuel tank ullage atmosphere inert. Also, a method of reducing the carbon dioxide content of oxygen depleted air (ODA) produced by a catalytic inerting device for inerting a fuel tank ullage atmosphere, the method comprising separating carbon dioxide from the ODA gas before feeding the carbon dioxide depleted ODA gas to the fuel tank. The system may be installed in an aircraft.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: September 9, 2014
    Assignee: Airbus Operations Limited
    Inventors: Joseph K-WLam, Gregory Hylands
  • Patent number: 8828130
    Abstract: An object of the present invention is to solve these problems and to provide a exhaust gas treatment system which prevents formation of deposits in a main duct and a flue, on and after the point where the exhaust gases converge, after the removal of CO2 and reduces labor required for maintenance such as cleaning, and thus enabling a long-term operation.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 9, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Jun Shimamura, Toshio Katsube, Shigehito Takamoto, Masaharu Kuramoto, Naoki Oda
  • Patent number: 8821615
    Abstract: The disclosure relates to a process for treating a gas mixture containing carbon dioxide and hydrogen sulphide, including the following steps: deacidificating the gas mixture by bringing the gas mixture into contact with a first lean absorbent solution stream, delivering a deacidified gas mixture, and a first rich absorbent solution stream; regenerating the first rich absorbent solution stream, delivering the first lean absorbent solution stream and a sour gas stream; distillating the sour gas stream, delivering a first carbon-dioxide-rich stream and a hydrogen-sulphide-rich stream; purifying the first carbon-dioxide-rich stream by bringing the first carbon-dioxide-rich stream into contact with a second lean absorbent solution stream, delivering a second carbon-dioxide-rich stream and a second rich absorbent solution stream, the molar concentration of carbon dioxide in the second carbon-dioxide-rich stream being greater than the molar concentration of carbon dioxide in the first carbon-dioxide-rich stream.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: September 2, 2014
    Assignee: Total S.A.
    Inventors: Claire Weiss, Renaud Cadours, Kamal Bouzalmata
  • Patent number: 8814981
    Abstract: The present invention relates to a method of pressurizing a fluid comprising carbon dioxide, the method includes: obtaining the fluid from a unit for removing carbon dioxide from a process gas; compressing the fluid to a pressure above the critical pressure of carbon dioxide; and cooling the compressed fluid to a temperature above the critical temperature of carbon dioxide to produce a supercritical fluid. The invention further relates to an apparatus for pressurizing a fluid comprising carbon dioxide, the apparatus including: means for obtaining the fluid from a unit for removing carbon dioxide from a process gas; means for compressing the fluid to a pressure above the critical pressure of carbon dioxide; and means for cooling the compressed fluid to a temperature above the critical temperature of carbon dioxide to produce a supercritical fluid.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: August 26, 2014
    Assignee: ALSTOM Technology Ltd
    Inventor: Olaf Stallmann
  • Patent number: 8808433
    Abstract: A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.
    Type: Grant
    Filed: October 1, 2010
    Date of Patent: August 19, 2014
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Roger D. Aines, William L. Bourcier
  • Patent number: 8808429
    Abstract: A method for reclaiming CO2 absorbing chemical(s) from a lean aqueous CO2 absorbent leaving a regeneration column (8), where lean absorbent (30) is withdrawn and flashed (31) to generate a vapor that is compressed (34) and returned into the regeneration column as stripper gas (37), where a part of the lean absorbent (20) is withdrawn and introduced into a reclaimer (21) in which the lean absorbent is boiled to generate a gas phase (23) that is withdrawn and returned into the regeneration column as reclaimed absorbent, and a liquid phase containing impurities (24), wherein the gaseous phase that is withdrawn from the reclaimer is compressed (34) together with the vapor part (33) from the flashing of the lean absorbent, to generate a pressure in the reclaimer that is lower than the pressure in the regeneration column, and a reboiler (11) for carrying out the method, are described.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: August 19, 2014
    Assignee: Aker Clean Carbon AS
    Inventors: Simon Woodhouse, Otto Morten Bade, Anne-Helene Haaland, Oddvar Gorset, Bjorn Magnus Berg
  • Patent number: 8801836
    Abstract: The present invention relates to a method for recovery of carbon dioxide from a gas (G3), in particular the present invention relates to a method for recovery of carbon dioxide using a process gas (G1) heated reboiler (A1) for carbon dioxide removal in a stripper (A3).
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: August 12, 2014
    Assignee: Union Engineering A/S
    Inventor: Rasmus Find
  • Publication number: 20140216253
    Abstract: CO2 is extracted from the atmosphere by concentrating atmospheric air to form a first volume of the atmospheric air of increased level of CO2 and a second volume of reduced level of CO2, discharging the second volume back into the atmosphere and injecting the first volume into underground formations. The CO2 is concentrated by ionization and electrostatic separation of the charged particles from a stream and further concentration is carried out by molecular sieves. The first volume can be made miscible with oil and used to extract oil from oil-bearing formations or permanently stored in underground formations.
    Type: Application
    Filed: January 3, 2014
    Publication date: August 7, 2014
    Applicant: Climate Strategy Inc.
    Inventor: Alan Scarth
  • Patent number: 8795415
    Abstract: A process for removing carbon dioxide from a fluid comprises the steps of: (a) treating the fluid by bringing it into countercurrent contact with a liquid absorbent in a first absorption zone and thereafter in a second absorption zone to absorb at least part of the carbon dioxide contained in the fluid into the absorbent; (b) depressurizing the loaded absorbent to release a first stream of carbon dioxide and yield a partially regenerated absorbent; (c) recycling a first stream of the partially regenerated absorbent into the first absorption zone; (d) heating a second stream of the partially regenerated absorbent to release a second stream of carbon dioxide and yield a regenerated absorbent; (e) recycling the regenerated absorbent into the second absorption zone; (f) condensing water vapor entrained in the second stream of carbon dioxide by cooling the second stream of carbon dioxide and transferring at least part of the heat recovered to the partially regenerated absorbent by indirect heat exchange.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: August 5, 2014
    Assignees: BASF SE, JGC Corporation
    Inventors: Torsten Katz, Georg Sieder, Koji Tanaka
  • Patent number: 8795413
    Abstract: The object of the invention is a method for dissolving carbon dioxide from flue or other gas and for the neutralization of the solution obtained. The gas, in which the partial pressure of carbon dioxide is at least 0.4 bar, is led to a dissolution process, where the major part of the carbon dioxide is dissolved into a flow of water. The aqueous solution of carbon dioxide thus obtained is neutralized by passing it through a material containing feldspar minerals, at which time the hydrogen ions of said solution are replaced by ions of alkali or alkaline earth metals, and the aluminum in said material is converted into aluminum compounds that can be separated and utilized.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 5, 2014
    Assignee: Cuycha Innovation Oy
    Inventor: Matti Nurmia
  • Patent number: 8795618
    Abstract: A method and apparatus for utilizing an amine-based absorption compound for flue gas, or combustion gas, CO2 capture, according to embodiments of the present invention. In some embodiments, CO2 is delivered from a wet, or dry, flue gas scrubber to an absorber. The amine-based absorption compound is introduced in an aqueous solution to the absorber, which is located downstream of the wet, or dry, flue gas scrubber. In some embodiments, the CO2-laden amine-based absorption compound is then subjected to a regeneration step to regenerate the CO2-laden amine-based absorption compound and strip out absorbed CO2. In some embodiments, energy is supplied to a stripper through a reboiler to accomplish the regeneration step.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: August 5, 2014
    Assignee: Babcock & Wilcox Power Generation Group, Inc.
    Inventors: Lei Ji, George A. Farthing, Jr.
  • Patent number: 8790452
    Abstract: A system adapted to separate a natural gas feed stream into a sweetened gas stream, at least one liquid waste stream and at least one gaseous waste stream, and to discharge, recover or destroy the at least one liquid waste stream and the at least one gaseous waste stream.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: July 29, 2014
    Inventor: Richard Paul Posa
  • Patent number: 8790445
    Abstract: Air scrubbers and approaches for removing CO2, SO2, and other gaseous contaminates from gas emissions. An approach for removing a gaseous contaminant from a gas emission may include providing a supply of an ionic liquid. The gaseous contaminant may be absorbable in the ionic liquid. The approach may also include spraying the ionic liquid into the gas emission. The gaseous contaminant in the gas emission may be absorbed in the ionic liquid. The ionic liquid having the gaseous contaminant absorbed therein may be collected on a counter electrode and separated from the gas emission. Spraying the ionic liquid into a gas emission may include ultrasound agitation of the ionic liquid. The approach may also include venting the gas emission having the gaseous contaminant separated therefrom.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: July 29, 2014
    Assignee: Honeywell International Inc.
    Inventors: Alex Gu, Wei Yang, Tariq Samad
  • Patent number: 8790453
    Abstract: The present invention relates to a gas purification system for removal of acidic gases from a gas stream. The system comprises an absorption unit arranged for receiving a gas stream and contacting it with a wash solution stream and a cooling unit in fluid communication with the absorption unit. The cooling unit receives wash solution enriched with acidic gases from a first withdrawal level of said absorption unit, cools the enriched wash solution, and provides cooled, enriched wash solution to a first reintroduction level of the absorption unit upstream of the withdrawal level. The ratio of withdrawn wash solution is 10-90% of the total wash solution stream.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: July 29, 2014
    Assignees: Alstom Technology Ltd, Dow Global Technologies LLC
    Inventors: Barath Baburao, Craig Norman Schubert
  • Patent number: 8784537
    Abstract: CO2 is absorbed from a gas mixture by contacting the gas mixture with an absorption medium which comprises at least water as solvent and at least one amine of formula (I) where R1 is an aliphatic radical, having 2 to 6 carbon atoms and at least one amino group, and R2 is hydrogen, a C1-4 alkyl radical or a radical R1.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: July 22, 2014
    Assignee: Evonik Degussa GmbH
    Inventors: Matthias Seiler, Rolf Schneider, Jörn Rolker, Daniel Dembkowski, Manfred Neumann, Daniel Witthaut, Michael Keup, Volker Brehme, Muhammad Irfan
  • Patent number: 8771403
    Abstract: The present invention provides a system for capturing CO2 and/or SO2, comprising: (a) a CO2 and/or SO2 absorber comprising an amine and/or amino acid salt capable of absorbing the CO2 and/or SO2 to produce a CO2- and/or SO2-containing solution; (b) an amine regenerator to regenerate the amine and/or amino acid salt; and, when the system captures CO2, (c) an alkali metal carbonate regenerator comprising an ammonium catalyst capable catalyzing the aqueous alkali metal bicarbonate into the alkali metal carbonate and CO2 gas. The present invention also provides for a system for capturing SO2, comprising: (a) a SO2 absorber comprising aqueous alkali metal carbonate, wherein the alkali metal carbonate is capable of absorbing the SO2 to produce an alkali metal sulfite/sulfate precipitate and CO2.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: July 8, 2014
    Assignee: The Regents of the University of California
    Inventors: Shih-Ger Chang, Yang Li, Xinglei Zhao
  • Patent number: 8764892
    Abstract: A method for removal of CO2 from a flue gas stream, comprising the steps of: a) contacting a flue gas stream comprising CO2 with a first absorption liquid comprising NH3 such that the flue gas stream is depleted in CO2; b) contacting the flue gas stream depleted in CO2 of step a) with a second absorption liquid such that NH3 from the flue gas stream is absorbed in said second absorption liquid to form a flue gas stream depleted in CO2 and NH3; c) separating NH3 from the second absorption liquid such that a gas stream comprising NH3 is obtained; d) contacting said gas stream comprising NH3 separated in step c) with a third absorption liquid such that NH3 is absorbed in said third absorption liquid. A system for removal of CO2 from a flue gas stream, the system comprising: a CO2 absorption stage; an NH3 absorption stage; and a reabsorption stage.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: July 1, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Peter Ulrich Koss, Frederic Zenon Kozak
  • Patent number: 8764884
    Abstract: A CO2 recovery system includes an absorption tower and a regeneration tower. CO2 rich solution is produced in the absorption tower by absorbing CO2 from CO2-containing gas. The CO2 rich solution is conveyed to the regeneration tower where lean solution is produced from the rich solution by removing CO2. A regeneration heater heats lean solution that accumulates near a bottom portion of the regeneration tower with saturated steam thereby producing steam condensate from the saturated steam. A steam-condensate heat exchanger heats the rich solution conveyed from the absorption tower to the regeneration tower with the steam condensate.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: July 1, 2014
    Assignees: Mitsubishi Heavy Industries, Ltd., Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Takashi Kamijo, Takahito Yonekawa, Tomio Mimura, Yasuyuki Yagi
  • Patent number: 8758484
    Abstract: A process of removal of CO2 from a flue gas (2). The process comprises the steps of: a) providing a flue gas comprising CO2 (2), b) contacting the flue gas of step (a) with an ammonia-comprising medium (9), to absorb CO2 from said flue gas; and c) condensing ammonia (4) present in the flue gas leaving step (b), to remove ammonia from said flue gas. A system for removal of CO2 from a flue gas. A system for removal of CO2 from a flue gas. The system comprises a CO2 absorber (1) receiving the flue gas (2) and comprising an ammonia-comprising medium (9). The system further comprises an ammonia condenser (4) receiving flue gas (3) leaving the CO2 absorber.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: June 24, 2014
    Assignee: ALSTOM Technology Ltd
    Inventor: Nader Padban
  • Patent number: 8758483
    Abstract: A process for removing carbon dioxide from a fluid comprises the steps of: (a) treating the fluid by bringing it into countercurrent contact with a liquid absorbent in a first absorption zone and thereafter in a second absorption zone to absorb at least part of the carbon dioxide contained in the fluid into the absorbent; (b) depressurizing the loaded absorbent to release a first stream of carbon dioxide and yield a partially regenerated absorbent; (c) recycling a first stream of the partially regenerated absorbent into the first absorption zone; (d) heating a second stream of the partially regenerated absorbent to release a second stream of carbon dioxide and yield a regenerated absorbent; (e) recycling the regenerated absorbent into the second absorption zone; (f) condensing water vapor entrained in the second stream of carbon dioxide by cooling the second stream of carbon dioxide and transferring at least part of the heat recovered to the partially regenerated absorbent by indirect heat exchange.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: June 24, 2014
    Assignees: BASF SE, JGC Corporation
    Inventors: Torsten Katz, Georg Sieder, Koji Tanaka
  • Patent number: 8747520
    Abstract: The present invention are methods for removing preselected substances from a mixed flue gas stream characterized by cooling said mixed flue gas by direct contact with a quench liquid to condense at least one preselected substance and form a cooled flue gas without substantial ice formation on a heat exchanger. After cooling additional process methods utilizing a cryogenic approach and physical concentration and separation or pressurization and sorbent capture may be utilized to selectively remove these materials from the mixed flue gas resulting in a clean flue gas.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: June 10, 2014
    Assignee: Battelle Memorial Institute
    Inventors: Mark D. Bearden, Paul H. Humble
  • Patent number: 8741028
    Abstract: In one embodiment, a carbon dioxide separating and recovering system includes an absorption tower to cause carbon dioxide to be absorbed in an absorbing solution, a regeneration tower to release the carbon dioxide from the absorbing solution, and at least one measuring apparatus to measure an ultrasound propagation speed in the absorbing solution. Each of the at least one measuring apparatus calculates a dissolved carbon dioxide concentration in the absorbing solution, based on a temperature measured by a temperature measuring unit, the ultrasound propagation speed measured by an ultrasound propagation speed measuring unit, and a correlation expression which shows a relationship between the dissolved carbon dioxide concentration and the ultrasound propagation speed in the absorbing solution, and is changed according to the temperature of the absorbing solution.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: June 3, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Daigo Muraoka, Koshito Fujita, Takashi Ogawa, Hideo Kitamura, Satoshi Saito, Masatoshi Hodotsuka
  • Patent number: 8741034
    Abstract: An object of the present invention is to provide an exhaust gas treatment system that effectively use heat recovered from an exhaust gas without any limitation in a CO2 chemical absorption equipment that requires enormous heat energy, and thus enabling reduction in running cost of the CO2 chemical absorption equipment.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: June 3, 2014
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Tomoyuki Konishi, Takanori Nakamoto, Naoki Oda, Nobuo Morimoto
  • Patent number: 8734744
    Abstract: Aspects of the disclosure relate to the separation of gases and to a process for the removal of carbon dioxide gas using liquid absorbents. A process is disclosed for removing carbon dioxide from a gaseous stream comprising contacting the gaseous stream with a carbon dioxide absorbent comprising a mixture of an ionic liquid and water in a molar ratio of from 10:1 to 1:10, wherein the ionic liquid has the formula: [Cat+][X?].
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 27, 2014
    Assignee: Petroliam Nasional Berhad
    Inventors: David F. Wassell, Kenneth R. Seddon, Martin P. Atkins
  • Patent number: 8728209
    Abstract: A method for reducing energy requirements of a CO2 capture system comprises: contacting a flue gas stream with a CO2 lean absorbent stream in an absorber, thereby removing CO2 from the flue gas and providing a CO2 rich absorbent stream; heating a first portion of the CO2 rich absorbent stream using heat from the CO2 lean absorbent stream, and providing the heated first portion of the CO2 rich absorbent stream to a regenerator; providing a second portion of the CO2 rich absorbent stream to the regenerator, wherein the heated first portion is hotter than the second portion and the heated first portion is provided to the regenerator at a lower elevation in the regenerator relative to that of the second portion.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: May 20, 2014
    Assignee: ALSTOM Technology Ltd
    Inventors: Joseph P. Naumovitz, Michael Koch
  • Patent number: 8728220
    Abstract: A CO2 recovery system according to the present invention includes: a cooling tower that uses cooling water to cool a CO2-containing exhaust gas discharged from industrial equipment such as a boiler or a gas turbine; a CO2 absorber that brings the cooled CO2-containing exhaust gas into contact with a CO2-absorbent that absorbs CO2, thereby removing the CO2 from the exhaust gas; and a first absorbent regenerator and a second absorbent regenerator that release CO2 from a CO2-absorbent that has absorbed CO2 (rich solution), thereby regenerating the CO2-absorbent. A second lean solution at the outlet of the second absorbent regenerator is subjected to vacuum flash vaporization, and the resulting vapor is inputted to the first absorbent regenerator.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: May 20, 2014
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Masahiko Tatsumi, Yasuyuki Yagi
  • Patent number: 8721770
    Abstract: This invention relates to compounds useful as ionic liquids that are based on an N-substituted pyrrolidinone and incorporate a pendant ammonium cation that is spaced from the pyrrolidone ring by a variable length linker; and to methods of carbon dioxide removal in which they may be used.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: May 13, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Thomas Foo, Mark Andrew Harmer, Keith W. Hutchenson, Christopher P. Junk, Berlyn R. Mellein, Aaron Minter, Mark Brandon Shiflett
  • Patent number: 8715397
    Abstract: A CO2 amine scrubbing process uses an absorbent mixture combination of an amine CO2 sorbent in combination with a non-nucleophilic, relatively stronger, typically nitrogenous, base. The weaker base(s) are nucleophilic and have the ability to react directly with the CO2 in the gas stream while the relatively stronger bases act as non-nucleophilic promoters for the reaction between the CO2 and the weaker base. The sorption and desorption temperatures can be varied by selection of the amine/base combination, permitting effective sorption temperatures of 70 to 90° C., favorable to scrubbing flue gas.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: May 6, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Pavel Kortunov, Lisa S. Baugh, David C. Calabro, Michael Siskin, Preeti Kamakoti, Quanchang Li
  • Patent number: 8715392
    Abstract: Disclosed are membranes and methods for making the same, which membranes provide improved permeability, stability, and cost-effective manufacturability, for separating CO2 from gas streams such as flue gas streams. High CO2 permeation flux is achieved by immobilizing an ultra-thin, optionally catalyzed fluid layer onto a meso-porous modification layer on a thin, porous inorganic substrate such as a porous metallic substrate. The CO2-selective liquid fluid blocks non-selective pores, and allows for selective absorption of CO2 from gas mixtures such as flue gas mixtures and subsequent transport to the permeation side of the membrane. Carbon dioxide permeance levels are in the order of 1.0×10?6 mol/(m2sPa) or better. Methods for making such membranes allow commercial scale membrane manufacturing at highly cost-effective rates when compared to conventional commercial-scale CO2 separation processes and equipment for the same and such membranes are operable on an industrial use scale.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: May 6, 2014
    Assignee: Battelle Memorial Institute
    Inventor: Wei Liu
  • Patent number: 8702847
    Abstract: The present invention describes methods and systems for extracting, capturing, reducing, storing, sequestering, or disposing of carbon dioxide (CO2), particularly from the air. The CO2 extraction methods and systems involve the use of chemical processes. Methods are also described for extracting and/or capturing CO2 via exposing air containing carbon dioxide to a solution comprising a base—resulting in a basic solution which absorbs carbon dioxide and produces a carbonate solution. The solution is causticized and the temperature is increased to release carbon dioxide, followed by hydration of solid components to regenerate the base.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 22, 2014
    Inventors: Klaus S. Lackner, Frank S. Zeman
  • Patent number: 8702071
    Abstract: Provided is a method, liquid distributor and reactor for contacting a gas with a liquid in a rotating packed bed. The method comprises providing a rotating packed bed comprising two sets of rotatable packing rings disposed within a chamber and defining an interior region. The rotating packed bed also comprises at least one liquid distributor with an inlet for accepting a liquid, the inlet in communication with an exit port for infusing the liquid into the interior region. The liquid distributor also comprises at least one gas outlet for accepting gas which has passed through the packed bed and for removing the gas from the interior region. The two sets of rotatable packing rings are caused to rotate. Liquid is infused into the interior region by way of the liquid inlet, and gas is injected through at least one gas inlet into the interior region, with the liquid and gas passing through each of the packing rings in countercurrent flow.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 22, 2014
    Assignee: Chevron U.S.A. Inc.
    Inventors: Marcus Dutra Mello, Manuel Lim, Krishniah Parimi, David Brossard
  • Patent number: 8702846
    Abstract: A process is disclosed for removing acid gases from a gas stream, in particular from a natural gas stream, synthesis gas stream or the like, wherein the acid gases are absorbed from the gas stream by at least one absorbent. The absorbent used is a mixture of a physical scrubbing agent, a chemical scrubbing agent and water. The absorbent comprises more than 60% by weight of the physical scrubbing medium, wherein the physical scrubbing medium used is a morpholine derivative and a chemical scrubbing agent based on at least one aliphatic amine compound which includes a polyethylene glycol substituted amine.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: April 22, 2014
    Assignee: Thyssenkrupp UHDE GmbH
    Inventor: Johannes Menzel
  • Patent number: 8702839
    Abstract: Provided are a CO2 absorber that reduces CO2 contained in flue gas; a regenerator that reduces CO2 contained in rich solvent absorbing CO2 to regenerate the rich solvent, so that lean solvent having the CO2 reduced in the regenerator is reused in the CO2 absorber; a heat exchanger that allows the rich solvent to exchange heat with the lean solvent; and a controller that controls to extract rich solvent portion that is part of the rich solvent, to allow the rich solvent portion to bypass the heat exchanger, and to be supplied into the top of the regenerator without exchanging heat so as to minimize a sum of an enthalpy that is taken out of the regenerator as CO2 gas accompanying steam and an enthalpy of the lean solvent after heat exchange with the rich solvent in the heat exchanger.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: April 22, 2014
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Kouki Ogura, Masahiko Tatsumi, Yasuyuki Yagi
  • Patent number: 8696797
    Abstract: A method for removing CO2 from a pressurized gas stream with the effluent CO2 remaining at system pressure or higher is disclosed. Specifically, the removal method provides near isothermal absorption of CO2 from a gas stream in a suitable solvent at an elevated pressure and relatively low temperature. The solvent is then removed from contact with the gas stream, and the temperature is increased to such an extent that the CO2 will flash from the solvent.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: April 15, 2014
    Assignee: General Electric Company
    Inventor: Raymond Douglas Steele
  • Patent number: 8696798
    Abstract: Acid gas is removed from a feed gas using a physical solvent that is regenerated using successive flashing stages after heating of the rich solvent using low-level waste heat that is preferably produced or available within the acid gas removal plant. Especially preferred waste heat sources include compressor discharges of the refrigeration system and/or recompression system for CO2, and/or (low level) heat content from the feed gas.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: April 15, 2014
    Assignee: Fluor Technologies Corporation
    Inventor: John Mak
  • Patent number: 8689432
    Abstract: Modular amine plants and methods of installing modular amine plants are provided. The method includes providing to a site a modular amine plant having a front-end module and a back-end module in fluid communication with each other. The front-end module having pre-fabricated connections for the association of various equipment including: a filter, an absorption tower, and a flash tank. The back-end module having pre-fabricated connections for the association of other various equipment including: a heat exchanger, a distillation tower, and a reboiler. The modular amine plant having moment forces sufficient to withstand wind speeds of about 100 miles per hour.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: April 8, 2014
    Assignee: CDM Resource Management LLC
    Inventors: Glen Wind, John Kenton Thompson, Lance Perryman
  • Publication number: 20140090558
    Abstract: An absorption medium which comprises water, an amine (A) of formula (I) in which R is an n-alkyl radical having 1 to 4 carbon atoms, and an alkanolamine (B) which is a tertiary amine or a sterically hindered primary or secondary amine has a high absorption capacity for CO2 with a high absorption rate. In the absorption of acid gases from a gas mixture a separation of the absorption medium into two liquid phases or the precipitation of a solid upon absorption of CO2 and regeneration of the absorption medium can be avoided with the absorption medium, even without addition of a solvent.
    Type: Application
    Filed: May 25, 2012
    Publication date: April 3, 2014
    Applicant: Evonik Degussa GmbH
    Inventors: Jörn Rolker, Matthias Seiler, Rolf Schneider, Thibaut Lenormant
  • Patent number: 8679432
    Abstract: The invention relates to an adsorber, including a reaction chamber, an adsorbent having adsorption properties enabling the at least partial removal of water from a gas stream including NOx and/or SOx, and a coating essentially consisting of a polymer material on at least a portion of the inner metal wall of the reaction chamber, said polymer being resistant to the acidic liquids at temperatures above 150° C.
    Type: Grant
    Filed: July 5, 2011
    Date of Patent: March 25, 2014
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Ivan Sanchez-Molinero, Serge Moreau
  • Patent number: 8673135
    Abstract: The invention described herein relates to a novel process for reducing the carbon dioxide emissions from a coal and/or biomass liquefaction facility by utilizing a steam methane reformer unit in the complex designed to produce additional hydrogen which can be thereafter utilized in the process, as required for the plant fired heaters (including the SMR furnace), and for the production of plant steam. The plant light ends (C1, C2, etc.), which are normally utilized as fuel gas streams are the primary feeds to the SMR Unit along with the tail gas purge from a gasification complex within the facility.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: March 18, 2014
    Assignee: Axens
    Inventors: James J. Colyar, James B MacArthur, Michael Peluso
  • Patent number: 8673062
    Abstract: A method of removing acid gases from raw gas is disclosed in which the raw gas is supplied to an absorption column where it is contacted with a physical absorption agent, having a boiling point lower than 100° C. at atmospheric pressure, under elevated operating pressure to load, the physical absorption agent with acid gases and usable gases and then the physical absorption agent loaded with acid gases and usable gases is driven from the absorption column at its sump while drawing off at the head of the absorption column a purified top gas containing up to a few ppm of acid-gas components. Following the absorption, the physical absorption agent undergoes stripping to remove usable gases, and regeneration to remove the acid gases as well as to provide a regenerated physical absorbent which may be used to treat additional raw gas.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: March 18, 2014
    Assignee: UHDE GmbH
    Inventor: Johannes Menzel
  • Patent number: 8668766
    Abstract: The invention relates to a gas liquid contactor and effluent cleaning system and method and more particularly to individually fed nozzle banks including an array of nozzles configured to produce uniformly spaced flat liquid jets shaped to minimize disruption from a gas. An embodiment of the invention is directed towards a gas liquid contactor having a plurality of modules including a liquid inlet and outlet and a gas inlet and outlet. An array of nozzles is in communication with the liquid inlet and the gas inlet. The array of nozzles is configured to produce uniformly spaced flat liquid jets shaped to minimize disruption from a gas flow and maximize gas flow and liquid flow interactions while rapidly replenishing the liquid.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: March 11, 2014
    Assignee: Neumann Systems Group, Inc.
    Inventors: David Kurt Neumann, Keith R. Hobbs, Jeffrey L. Courtright
  • Publication number: 20140060328
    Abstract: The gaseous effluent is contacted with an aqueous solution comprising at least one amine and at least one amine degradation inhibiting compound. A stainless steel withstanding corrosion upon contact with the amine degradation inhibiting compound is first selected. Equipments whose surfaces in contact with the aqueous solution are made from this stainless steel are used.
    Type: Application
    Filed: August 26, 2013
    Publication date: March 6, 2014
    Applicant: IFP ENERGIES NOUVELLES
    Inventors: Jean KITTEL, Serge GONZALEZ, Eric LEMAIRE, Alexandre BONNEAU
  • Patent number: 8663363
    Abstract: A CO2 recovering apparatus includes: a CO2 absorber that brings flue gas containing CO2 into contact with CO2 absorbent to reduce the CO2 contained in the flue gas; a regenerator that reduces CO2 contained in rich solvent that has absorbed CO2 in the CO2 absorber to regenerate the rich solvent, so that the CO2 absorbent that is lean solvent having CO2 reduced in the regenerator is reused in the CO2 absorber; and a controller that controls to detect the absorbent concentration in the CO2 absorbent, to increase the volume of CO2 absorbent to be circulated based on a decrease in the absorbent concentration, and to adjust the volume of steam to be supplied in the regenerator based on the volume of the CO2 absorbent to be circulated.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: March 4, 2014
    Assignees: Mitsubishi Heavy Industries, Ltd., The Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Hiroshi Tanaka, Yoshiki Sorimachi, Masahiko Tatsumi, Yasuyuki Yagi, Kouki Ogura
  • Patent number: 8657925
    Abstract: A method of scrubbing flue gas includes introducing flue gas comprising an acidic gas through an inlet into a tower; spraying an acid-absorptive fluid into the tower such that the acid-absorptive fluid contacts the flue gas; accumulating the acid-absorptive fluid in a recycle tank portion of the tower; and introducing an oxygen-containing gas into the acid-absorptive fluid in the recycle tank portion of the tower, wherein the oxygen-containing gas is introduced through at least one opening of an aerator, each of the at least one openings are positioned to release the oxygen-containing gas at least at a distance greater than or equal to a predetermined radial distance from the flue gas inlet, the predetermined radial distance being equal to at least 10% of a diameter of the recycle tank portion of the tower.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 25, 2014
    Assignee: ALSTOM Technology Ltd
    Inventor: Dennis James Laslo