Carbon Dioxide Sorbed Patents (Class 95/236)
  • Patent number: 8123842
    Abstract: Systems and processes disclosed herein relate to the utilization of direct contact condensing to provide heat to a solvent regeneration loop in an acid gas removal process. A first direct contact condenser can be included in the upper section of a concentrator that removes acid gas from a rich solvent stream. A first slip stream can be heated in the first direct contact condenser and can be combined with the rich solvent stream in the lower section of the stripper. A second direct contact condenser can be included in the lower section of an absorber that removes acid gas from a feed gas. A second slip stream can be heated in the second direct contact condenser, and can be combined with the rich solvent stream before the rich solvent stream is provided to the concentrator.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: February 28, 2012
    Assignee: UOP LLC
    Inventors: Junfeng Pan, Richard Huang, Lamar A. Davis
  • Patent number: 8119091
    Abstract: A method of carbon dioxide capture is disclosed. In a step (a) anhydrous sodium carbonate is separated from a first aqueous solution formed by reacting carbon dioxide and an aqueous solution of sodium hydroxide. In step (b) the anhydrous sodium carbonate is treated by causticization to generate carbon dioxide and sodium hydroxide. The first aqueous solution of step (a) is formed by scrubbing a gas containing carbon dioxide with an aqueous solution of sodium hydroxide.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: February 21, 2012
    Assignee: Carbon Engineering Limited Partnership
    Inventors: David Keith, Maryam Mahmoudkhani
  • Patent number: 8118915
    Abstract: Produced natural gas containing carbon dioxide is dehydrated and chilled to liquefy the carbon dioxide and then fractionated to produce a waste stream of liquid carbon dioxide and hydrogen sulfide. Natural gas liquids may be first separated and removed before fractionation. After fractionation, the waste stream is pressurized and transmitted to a remote injection well for injection either for disposal of the waste stream and preferably to urge hydrocarbons toward the producing well. A hydrocarbon stream proceeds from fractionation to a methanol absorber system which removes carbon dioxide gas. The hydrocarbon stream is thereafter separated into at least hydrocarbon gas, nitrogen and helium. Some of the nitrogen is reintroduced into a fractionation tower to enhance the recovery of hydrocarbons. A methanol recovery system is provided to recover and reuse the methanol. The hydrocarbons are sold as natural gas and the helium is recovered and sold. Excess nitrogen is vented.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: February 21, 2012
    Inventor: Donald Leo Stinson
  • Patent number: 8105420
    Abstract: The present application includes a method for inhibiting amine degradation during CO2 capture from flue gas streams. Particularly, the present disclosure relates to a method of inhibiting O2- and/or SO2-induced degradation of amines using sodium sulfite (Na2SO3), potassium sodium tartrate tetrahydrate (KNaC4H4O6.4H2O), ethylenediaminetetraacetic acid (EDTA) or hydroxylamine (NH2OH), or analogs or mixtures thereof during CO2 capture by amines.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: January 31, 2012
    Assignee: The University of Regina
    Inventors: Raphael Idem, Paitoon Tontiwachwuthikul, Chintana Saiwan, Teeradet Supap, Purachet Pitipuech
  • Publication number: 20120017762
    Abstract: CO2 is absorbed from a gas mixture by bringing the gas mixture into contact with an absorbent that comprises water and at least one amine of the formula (I), wherein R1 and R2, independently of each other, are hydrogen or an alkyl group. According to the invention, absorption media comprise sulfolane or an ionic liquid in addition to water and an amine of the formula (I). A device according to the invention for removing CO2 from a gas mixture comprises an absorption unit, a desorption unit, and an absorption medium according to the invention that is conducted in the circuit.
    Type: Application
    Filed: January 29, 2010
    Publication date: January 26, 2012
    Applicant: Evonik Degussa GmbH
    Inventors: Matthias Seiler, Jörn Rolker, Rolf Schneider, Bernd Glöckler, Axel Kobus, Wolfgang Benesch, Thomas Riethmann, Hermann Winkler, Jens Reich, Helmut Brüggemann
  • Patent number: 8097068
    Abstract: A diamine absorbent that contains heat stable salts is regenerated using an ion exchange process wherein the concentration of heat stable salts in the feed stream provided to the cation exchange unit is limited.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: January 17, 2012
    Assignee: Cansolv Technologies Inc.
    Inventors: Matthew Campbell, John Sarlis, Vijay Bhambhani Godhwani, Melina Infantino
  • Patent number: 8088200
    Abstract: In a method for removing acid gases from a fluid stream, the fluid stream, which is in contact with an absorption medium within an absorber, is passed through a first absorption zone in the absorber to remove a majority of acid gases from the fluid stream. The fluid stream is susequently passed through a second absorption zone in the absorber to further remove acid gases from the fluid stream. The loaded absorption medium is passed into a first regeneration zone to obtain a partially regenerated absorption medium, and a part of the partially regenerated absorption medium is passed into the first absorption zone. The other part of the partially regenerated absorption medium is passed into a second regeneration zone to obtain a regenerated absorption medium. A part of the regenerated absorption medium is passed into the first absorption zone and the other part is passed into the second absorption zone.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: January 3, 2012
    Assignee: BASF SE
    Inventors: Rupert Wagner, Randolf Hugo
  • Publication number: 20110308390
    Abstract: In accordance with one aspect, the present invention provides a composition which contains the amino-siloxane structures I, or III, as described herein. The composition is useful for the capture of carbon dioxide from process streams. In addition, the present invention provides methods of preparing the amino-siloxane composition. Another aspect of the present invention provides methods for reducing the amount of carbon dioxide in a process stream employing the amino-siloxane compositions of the invention, as species which react with carbon dioxide to form an adduct with carbon dioxide.
    Type: Application
    Filed: June 17, 2010
    Publication date: December 22, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Robert James Perry, Michael Joseph O'Brien
  • Patent number: 8080089
    Abstract: A method of treating gas, such as flue gas, is provided. Flue gas is received into a vessel. The flue gas in the vessel is cooled by at least 17 degrees F. to a temperature of 120 F or lower. Also in the vessel, SOx compounds are removed such that the concentration of SOx remaining in the flue gas is between 0 ppmv and 10 ppmv. After the flue gas is cooler and SOx compounds are removed in the vessel, the flue gas is transmitted to a flue gas carbon dioxide scrubbing unit.
    Type: Grant
    Filed: April 14, 2009
    Date of Patent: December 20, 2011
    Assignee: Bechtel Power Corporation
    Inventors: Harvey W. Wen, Charles L. Kimtantas
  • Patent number: 8075673
    Abstract: A description is given of an absorption medium for removing carbon dioxide from gas streams which comprises aqueous solution of an amine of the formula I HNR2??(I) where one or both radicals R are and the other radical R is hydrogen. The absorption medium is distinguished by particular oxidation resistance.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: December 13, 2011
    Assignee: BASF SE
    Inventors: Joachim-Thierry Anders, Johann-Peter Melder, Norbert Asprion, Ole Brettschneider, Iven Clausen, Bernd Eck, Ute Lichtfers
  • Publication number: 20110296994
    Abstract: The present invention relates to reactor vessels such as absorbing or stripping columns that are suitable for capturing carbon dioxide from flue gas streams of fossil fuel fired powered stations such as coal fired power stations generating 100 to 500 MW. The side walls of the reactors are made of concrete or structural ceramics that are preferrably steel reinforced. The reactors are on a sufficiently large scale such that a flue gas stream in the order of at least 1,000 t/hr and normally greater than 2,000 or 3,000 t/hr can be scrubbed of carbon dioxide in a single absorption column and then recovered in a stripping column. The absorbing and stripping columns may be free standing structures or, alternatively, the absorbing column may be located at least partially within the stripping column.
    Type: Application
    Filed: May 12, 2008
    Publication date: December 8, 2011
    Inventors: Geoff Stevens, Barry Hooper, Craig Dugan, Paul Anthony Webley
  • Publication number: 20110296993
    Abstract: This invention relates to compounds useful as ionic liquids that are based on an N-substituted pyrrolidinone and incorporate a pendant ammonium cation that is spaced from the pyrrolidone ring by a variable length linker; and to methods of carbon dioxide removal in which they may be used.
    Type: Application
    Filed: December 4, 2009
    Publication date: December 8, 2011
    Inventors: Thomas Foo, Mark Andrew Harmer, Keith W. Hutchenson, Christopher P. Junk, Berlyn R. Mellein, Aaron Minter, Mark Brandon Shiflett
  • Patent number: 8070856
    Abstract: Novel solvents and methods of use for the removal of CO2 from flue gas, natural gas, hydrogen gas, synthesis gas, and other process and waste gas streams are provided. The solvent contains an alkali salt such as potassium carbonate and a polyamine such as piperazine (PZ) where the polyamine concentration is at least 1.5 equivalents/Kg H2O and the alkali salt concentration is at least 0.5 equivalents/Kg H2O. The preferred alkali salt/polyamine ratio is from approximately 1:2 to 2:1, and no additional alcohol is required for solubilizng the PZ. This chemical solvent and method of use provides efficient and effective removal of CO2 from gaseous streams and other sources.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: December 6, 2011
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Gary T. Rochelle, John Cullinane
  • Patent number: 8057579
    Abstract: A method and apparatus are provided for absorbing acid gases from a synthesis gas prior to combustion. In one embodiment, a vessel is provided for receiving a synthesis gas and a physical solvent. The vessel includes one or more membrane contactors that provide an interface for physical absorption of one or more acid gases from the synthesis gas into the physical solvent.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: November 15, 2011
    Assignee: General Electric Company
    Inventor: Jennifer Lynn Molaison
  • Patent number: 8043588
    Abstract: This invention relates to a method and plant for energy-efficient removal of CO2 from a gas phase by means of absorption. The invention is particularly suitable for use in connection with thermal power plants fired by fossil fuels, and is also well-suited for retrofitting in existing thermal power plants. A processing plant according to the invention comprises three sections: a primary CO2-generating process that serves as main product supplier; a CO2-capture and separation plant based on absorption and desorption of CO2 respectively by/from at least one absorbent; and a second CO2-generating process where combustion of carbonaceous fuel in pure oxygen atmosphere serves as energy supply to at least a part of the thermal energy necessary to drive the regeneration of the absorbent in the desorption column(s).
    Type: Grant
    Filed: January 12, 2007
    Date of Patent: October 25, 2011
    Assignees: CO2-Norway AS, Nebb Engineering AS
    Inventors: Carl W. Hustad, Ingo Tronstad
  • Patent number: 8038773
    Abstract: A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SOx, residual NOx particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N2 and O2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO2 with smaller amounts of H2O, Ar, N2, O2, SOX, NOX, Hg, and other trace gases.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: October 18, 2011
    Assignee: Jupiter Oxygen Corporation
    Inventors: Thomas L. Ochs, Cathy A. Summers, Steve Gerdemann, Danylo B. Oryshchyn, Paul Turner, Brian R. Patrick
  • Publication number: 20110247494
    Abstract: A method for sorbing a gas using an ionic liquid to sorb a vapor having an electric multi-pole moment. The ionic liquid comprises an anion and a cation. The electric multi-pole moment may be an electric dipole moment and/or an electric quadru-pole moment. The sorption may be an adsorption or an absorption. The ionic liquid may be a liquid that substantially contains only anions and cations, while not containing other components, such as water. Alternatively, a solution containing the ionic liquid and a solvent or further compound, such as water, may be used.
    Type: Application
    Filed: June 22, 2011
    Publication date: October 13, 2011
    Applicant: VTU Holding GmbH.
    Inventors: Paul DINNAGE, Roland KALB
  • Patent number: 8034166
    Abstract: A description is given of an absorption medium for removing carbon dioxide from a gas stream, which comprises an aqueous solution of at least one amine and at least one aminocarboxylic acid and/or aminosulfonic acid. The concomitant use of an aminocarboxylic acid or aminosulfonic acid reduces the energy required for regeneration of the absorption medium.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: October 11, 2011
    Assignee: BASF SE
    Inventors: Norbert Asprion, Iven Clausen, Ute Lichtfers, Rupert Wagner
  • Patent number: 8034168
    Abstract: Disclosed herein are combustion systems and power plants that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In both of these embodiments, the carbon dioxide capture unit and the sweep-based membrane separation unit are configured to be operated in parallel, by which we mean that each unit is adapted to receive exhaust gases from the combustion unit without such gases first passing through the other unit.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: October 11, 2011
    Assignee: Membrane Technology & Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C Merkel, Richard W. Baker
  • Patent number: 8025715
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to a carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 27, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker
  • Patent number: 8016919
    Abstract: A solution contained in a regeneration tower is supplied to a filtering unit. The filter unit filters out solid particles contained in the solution. A washing unit washes out with backwash water solid particles filtered out by the filter unit. An evaporating unit receives the backwash water containing the solid particles, and heats received backwash water thereby obtaining solid-particles concentrated backwash water.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: September 13, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Masaki Iijima, Takashi Kamijo
  • Patent number: 8016923
    Abstract: Disclosed herein are combustion systems, power plants, and flue gas treatment systems that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In yet another embodiment, the invention is a flue gas treatment system that incorporates three membrane separation units with a carbon dioxide liquefaction unit.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: September 13, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventors: Richard W. Baker, Johannes G Wijmans, Timothy C Merkel, Haiqing Lin, Ramin Daniels, Scott Thompson
  • Patent number: 8007571
    Abstract: Produced natural gas containing carbon dioxide is dehydrated and chilled to liquefy the carbon dioxide and then fractionated to produce a waste stream of liquid carbon dioxide and hydrogen sulfide. Natural gas liquids may be first separated and removed before fractionation. After fractionation, the waste stream is pressurized and transmitted to a remote injection well for injection either for disposal of the waste stream and preferably to urge hydrocarbons toward the producing well. A hydrocarbon stream proceeds from fractionation to a methanol absorber system which removes carbon dioxide gas. The hydrocarbon stream is thereafter separated into at least hydrocarbon gas, nitrogen and helium. Some of the nitrogen is reintroduced into a fractionation tower to enhance the recovery of hydrocarbons. A methanol recovery system is provided to recover and reuse the methanol. The hydrocarbons are sold as natural gas and the helium is recovered and sold. Excess nitrogen is vented.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: August 30, 2011
    Inventor: Donald Leo Stinson
  • Patent number: 8007570
    Abstract: Systems, methods, and apparatus for capturing CO2 using a solvent are provided. A gas that includes carbon dioxide may be mixed with a solvent that is operable to absorb at least a portion of the carbon dioxide from the gas. The solvent containing the carbon dioxide may be provided to at least one removal system operable to remove at least a portion of the liquid contained in the solvent. The solvent output by the removal system may be stripped to extract at least a portion of the carbon dioxide from the solvent.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: August 30, 2011
    Assignee: General Electric Company
    Inventors: Chandrashekhar G. Sonwane, Samuel D. Draper
  • Patent number: 8007569
    Abstract: The invention relates to a method for removing hydrogen sulphide and other acidic gas components from pressurized technical gases by means of a physical detergent and for obtaining sulphur from hydrogen sulphide by using a Claus system. The hydrogen sulphide and the other acidic gas components are removed in an absorbent manner from the physical detergent, the physical detergent undergoes multi-step regeneration, said multi-step regeneration comprising at least one device for CO enrichment, a device for H2S enrichment, a device for CO2 stripping and a device for thermal regeneration. The various regeneration steps consist of various pressure steps and have a lower pressure than that of the absorption. A hydrogen sulphide rich Claus gas is withdrawn from one of the regeneration steps and is guided to a Claus system where sulphur is produced. The residual gas exiting from the Claus system is hydrated and is condensed under pressure, corresponding to one of the regeneration steps.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: August 30, 2011
    Assignee: Uhde GmbH
    Inventors: Georg Saecker, Johannes Menzel
  • Publication number: 20110203174
    Abstract: A method and apparatus for extracting CO2 from air, and for delivering that extracted CO2 to controlled environments, such as a greenhouse, or to open-air agricultural fields. The present disclosure allows the delivery of CO2 to be made at times of highest demand. The present disclosure contemplates several geometric configurations to enhance the CO2 extraction process. The present disclosure also provides a method of delivering the CO2 to the controlled environment in response to demand, such as for example, by using a secondary sorbent as a buffer to store extracted CO2.
    Type: Application
    Filed: August 11, 2009
    Publication date: August 25, 2011
    Inventor: Klaus S. Lackner
  • Patent number: 7993433
    Abstract: The invention relates to a new method for removing and recovering of acid gases from a gaseous mixture in an absorption plant by adding an organic acid to a stream of the rich absorbent in the desorber in order to release acid gas by shifting the acid gas equilibrium towards the gas side, and the organic acid is subsequently separated from the absorbent. With this method, the energy consumption of the process is substantially reduced. The invention also relates to an apparatus for performing this method.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: August 9, 2011
    Assignee: NTNU Technology Transfer AS
    Inventors: Hallvard F. Svendsen, Finn Andrew Tobiesen, Thor Mejdell, Karl Anders Hoff, Olav Juliussen
  • Patent number: 7981196
    Abstract: An apparatus and method for absorbing and recovering carbon dioxide from flue gas using ammonia water as an absorbent, including an absorption column and a circulation cooler connected to the absorption column so that a high-temperature absorbent is recovered from the absorption column, cooled to a preset temperature, and then supplied again into the absorption column, in order to dissipate absorptive heat generated when carbon dioxide is absorbed from the flue gas.
    Type: Grant
    Filed: June 2, 2008
    Date of Patent: July 19, 2011
    Assignees: POSCO, Research Institute of Industrial Science & Technology
    Inventors: Ki Joon Kang, Young Bong Lee, Kwang Hyun Kim, Je Young Kim
  • Patent number: 7975651
    Abstract: The present invention provides a method of sequestering carbon dioxide in aqueous environments. In a first step, an area is assessed to determine whether the area is capable of supporting the addition of organisms of higher trophic level (OHTL). Next, OHTL are added to the area in order to produce enough rapidly sinking and refractory particulate matter (PM) to sequester carbon dioxide above the level of carbon dioxide sequestration that exists before the addition of OHTL. Preferably, the PM produced by the OHTL sinks at rates significantly greater than and/or is significantly less biodegradable than that produced by other components of the biological carbon pump. Finally, this increase in the level of carbon dioxide sequestration is quantified. The method of the present invention may also include the step of reporting the quantified increase in the level of carbon dioxide sequestration.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: July 12, 2011
    Inventor: Michael J. Lutz
  • Patent number: 7972423
    Abstract: An apparatus for stripping and strengthening and subsequent condensing and final strengthening of an easily vaporizable component of a preferably aqueous mixture permits the heat necessary for stripping and strengthening to be transferred through a common heat transmission body (3), where the heat is derived from condensing the vapor generated by stripping and strengthening, which vapor via compression using a heat pump (26) has obtained the increase in boiling point necessary for condensation. The apparatus is comprised of two sections, namely a stripping and strengthening section or first section (1) and a condensing and final strengthening section or second section (2), said sections being joined around a common heat transmission body (3) forming a dividing wall, each section being further defined by a horizontal partially cylindrical housing (13) and an end wall at each end.
    Type: Grant
    Filed: April 28, 2006
    Date of Patent: July 5, 2011
    Assignee: Holm Christensen Biosystemer APS
    Inventor: Erik Jensen
  • Publication number: 20110159574
    Abstract: A separation and scrubbing system for exhaust gases includes a plurality of industrial discharge outlets, a separation unit, pipelines to direct exhaust gases from the industrial discharge outlets to the separation unit and pipelines to return treated exhaust gases to stacks corresponding to the industrial discharge outlets.
    Type: Application
    Filed: May 22, 2009
    Publication date: June 30, 2011
    Inventors: Quinn D. Rebryna, Ron E. Cookson
  • Patent number: 7967896
    Abstract: The invention provides a process and system for regenerating a solvent used to remove carbon dioxide from feed gases, such as natural gas and synthesis gas. The invention employs one or more hydraulic turbochargers to transfer energy from a higher energy solvent stream to a lower energy solvent stream. This provides for a significant reduction in operating expenses.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: June 28, 2011
    Assignee: UOP LLC
    Inventors: William J. Lechnick, Nagaraju Palla, Paul A. Sechrist, Lamar A. Davis, Michael R. Van de Cotte
  • Patent number: 7967895
    Abstract: For regenerating the loaded washing (scrubbing) agent (6, 7) from a physical gas wash (T1), in which one or more gas components are removed, to a large extent selectively, from a gas mixture (1) to be purified at least in a first of at least two successive washing steps, the loaded washing agent (7) withdrawn from the first washing step is, independently of the remaining quantity of loaded washing agent (6), subjected to a regeneration step (T2a) for separating the gas components (11) which have been selectively removed from the raw gas in the first washing step.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: June 28, 2011
    Assignee: Linde AG
    Inventors: Ulrich Prüssner, Horst Weiss
  • Patent number: 7964025
    Abstract: Systems and techniques for the reclamation of carbon dioxide from boiler flue gas as well as for the liquefaction of the reclaimed carbon dioxide for well injection oil recovery are provided. A system can include a boiler, tower scrubber, carbon dioxide absorber, regenerator, reboiler, rectifying tower, condenser and mixing tank. Mixed gases of carbon dioxide and nitrogen for well injection may be reclaimed from boiler flue gas when steam is produced resulting in an increase of crude oil output increase while lessening environmental impact. Related systems, apparatus, methods, and articles are also described.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: June 21, 2011
    Assignee: Liaohe Petroleum Exploration Bureau, CNPC
    Inventors: Fengshan Zhang, Yuanwen Gao
  • Patent number: 7964020
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves flowing the flue gas stream to be treated across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: June 21, 2011
    Assignee: Membrane Technology & Research, Inc
    Inventors: Richard W Baker, Johannes G Wijmans, Timothy C Merkel, Haiqing Lin, Ramin Daniels, Scott Thompson
  • Patent number: 7938889
    Abstract: A CO2 recovery system includes an absorption tower that removes CO2 from exhaust gas, a regeneration tower that regenerates a rich solution, and a separation drum that condensates steam in CO2 gas released from the regeneration tower and separates water. The CO2 recovery system further includes a filtration membrane apparatus that filters solid content remaining in the lean solution using a filter, and cleans the filter using condensed water as cleaning water and again return the condensed water into the system. The CO2-absorbing solution attached to the filter is collected and the filter is cleaned without diluting the CO2-absorbing solution upon replacement of the filter.
    Type: Grant
    Filed: August 28, 2008
    Date of Patent: May 10, 2011
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventor: Masaki Iijima
  • Patent number: 7938887
    Abstract: Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: May 10, 2011
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gary Rochelle, Marcus Hilliard
  • Publication number: 20110100218
    Abstract: Carbon Dioxide capture processes utilizing ammonia, or ammonia in water as the capture fluid for carbon dioxide generate concentrated solutions of ammonium carbonate species in water, which are subsequently decomposed to capture the carbon dioxide and recycle the ammonia. Forward osmosis processes utilize ammonium carbonate species as draw solutions to pull water from saline solutions such as seawater in the ammonium carbonate solution. The ammonium carbonate solution is then heated to decompose the ammonium carbonate to ammonia and CO2 which are both reused, while a portion of the aqueous stream is recovered as pure water. Combination of carbon capture process with an integrated forward osmosis process provide great economies over standalone operations. Furthermore, the very high concentrations of ammonium carbonate provide a further opportunity to include osmotic power recovery cycles with the integrated forward osmosis and carbon capture process.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Inventor: Thomas D. Wolfe
  • Patent number: 7935178
    Abstract: The invention provides a process and system for regenerating a solvent used to remove carbon dioxide from feed gases, such as natural gas and synthesis gas. The process and system employ a biphasic turbine to recover energy following pressure let down.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: May 3, 2011
    Assignee: UOP LLC
    Inventors: William J. Lechnick, Paul A. Sechrist, Douglas E. Kuper, Lamar A. Davis
  • Publication number: 20110094381
    Abstract: Absorption medium for acid gases comprising an oligoamine (A) of the general formula (I) and a piperazine derivative (B) of the general formula (II) in which the weight ratio of oligoamine (A) to the piperazine derivative (B) is 0.2 to 25, and also process for removing acid gases from a gas stream by contacting the gas stream at a pressure of 0.05 to 10 MPa abs with an aqueous solution of said absorption medium which is brought to and maintained at a temperature of 20 to 80° C.
    Type: Application
    Filed: June 9, 2009
    Publication date: April 28, 2011
    Applicant: BASF SE
    Inventors: Ute Lichtfers, Robin Thiele, Susanna Voges, Georg Sieder, Oliver Spuhl, Hugo Rafael Garcia Andarcia
  • Patent number: 7927403
    Abstract: The invention relates to a method for the absorption of acid gases, such as CO2 and H2S, from gas mixtures. According to the invention, acid gases are absorbed from a gas mixture by contacting this gas mixture with a liquid in which is dissolved so high a concentration of an amino acid or a salt thereof that a precipitate is formed. The contact takes place in a column of the packing-free type or a column suitable for processing slurries.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: April 19, 2011
    Assignee: Nederlandse Organisatie voor Natuurwetenschappelijk Onderzoek TNO
    Inventors: Geert Frederil Versteeg, Paramasivam Senthil Kumar, Johannes Antonius Hogendoorn, Paul Hubert Maria Feron
  • Publication number: 20110084020
    Abstract: A method for removing methane from biogas is described. The method includes: (i) receiving biogas including methane and other components into a first tank; (ii) receiving water into the first tank; (iii) contacting the biogas with the water inside the first tank; (iv) dispensing methane gas from an outlet of the first tank; and (v) producing from the tank an effluent stream that includes other components of the biogas.
    Type: Application
    Filed: October 9, 2009
    Publication date: April 14, 2011
    Inventor: Christopher OTT
  • Patent number: 7922792
    Abstract: A neutralization/sequestration process is provided for concomitantly addressing capture and sequestration of both CO2 and SO2 from industrial gas byproduct streams. The invented process concomitantly treats and minimizes bauxite residues from aluminum production processes and brine wastewater from oil/gas production processes.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: April 12, 2011
    Assignee: U.S. Department of Energy
    Inventors: Yee Soong, Douglas E. Allen, Chen Zhu
  • Patent number: 7918926
    Abstract: A CO2 recovery system includes an absorption tower and a regeneration tower. CO2 rich solution is produced in the absorption tower by absorbing CO2 from CO2-containing gas. The CO2 rich solution is conveyed to the regeneration tower where lean solution is produced from the rich solution by removing CO2. A regeneration heater heats lean solution that accumulates near a bottom portion of the regeneration tower with saturated steam thereby producing steam condensate from the saturated steam. A steam-condensate heat exchanger heats the rich solution conveyed from the absorption tower to the regeneration tower with the steam condensate.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: April 5, 2011
    Assignees: Mitsubishi Heavy Industries, Ltd., Kansai Electric Power Co., Inc.
    Inventors: Masaki Iijima, Takashi Kamijo, Takahito Yonekawa, Tomio Mimura, Yasuyuki Yagi
  • Patent number: 7909914
    Abstract: The present invention relates to a method of removing acid gases, notably carbonyl sulfide, contained in gaseous effluents, comprising: an acid gas absorption stage by contacting the gaseous effluent with an aqueous solution comprising 2-[2-amino-1-(aminomethyl)ethoxy]ethanol, and possibly another alkanolamine and an organic compound, and at least one aqueous solution regeneration stage. The method can comprise a second aqueous solution regeneration stage. The regeneration stages are carried out by expansion and/or thermal regeneration.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: March 22, 2011
    Assignee: IFP
    Inventors: Renaud Cadours, Julia Magne-Drisch, Bruno Delfort
  • Patent number: 7901488
    Abstract: Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a “matrix” pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: March 8, 2011
    Assignee: Board of Regents, The University of Texas System
    Inventors: Gary T. Rochelle, Babatunde A. Oyenekan
  • Patent number: 7901487
    Abstract: An acid gas such as carbon dioxide, hydrogen sulfide, or a mixture thereof is removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a multipressure stripper (51) that combines acid gas compression with stripping, less energy is consumed. The multipressure stripper is a multistage flash (52, 55, 59) in which the total vapor flow from each stage is compressed and fed to the bottom of the previous flash stage at a higher pressure. In this process, the heat in the water content of the vapor exiting each stage is utilized at a higher pressure in the previous stage. The described stripping process generates the acid gas at a higher pressure without operating the stripper at a higher temperature, thereby reducing the energy consumption of the system.
    Type: Grant
    Filed: March 4, 2004
    Date of Patent: March 8, 2011
    Assignee: Board of Regents, The University of Texas System
    Inventor: Gary T. Rochelle
  • Patent number: 7892324
    Abstract: Methods and systems for handling sour carbon dioxide (CO2) streams are provided. In one aspect, a method for sequestering an emissions-heavy gas includes removing at least a portion of an acid gas from a rich solvent in an acid gas stripper to create the emissions-heavy gas, and channeling the emissions-heavy gas to a storage system.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: February 22, 2011
    Assignee: General Electric Company
    Inventors: Arnaldo Frydman, Pradeep Thacker, Sachin Naphad, Aaron John Avagliano
  • Patent number: 7887620
    Abstract: A description is given of a process for removing carbon dioxide from gas streams in which the partial pressure of the carbon dioxide is less than 200 mbar, in particular flue gases, the gas stream being contacted with a liquid absorption medium which comprises an aqueous solution (A) of a tertiary aliphatic alkanolamine and (B) an activator of the formula R1—NH—R2—NH2, where R1 is C1-C6-alkyl and R2 is C2-C6-alkylene, the sum of the concentrations of A and B being 2.5 to 7 mol/l, and the molar ratio of B to A being in the range of 1:3 to 1.5:1. The activator is, for example, 3-methylaminopropylamine, the tertiary aliphatic amine methyldiethanolamine, methyldiisopropanolamine or n-butyldiethanolamine. The process permits substantial removal of carbon dioxide and the regeneration of the absorption medium is possible with relatively low energy consumption.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: February 15, 2011
    Assignee: BASF SE
    Inventors: Norbert Asprion, Iven Clausen, Ute Lichtfers
  • Patent number: 7883569
    Abstract: Produced natural gas containing carbon dioxide is dehydrated and chilled to liquefy the carbon dioxide and then fractionated to produce a waste stream of liquid carbon dioxide and hydrogen sulfide. Natural gas liquids may be first separated and removed before fractionation. After fractionation, the waste stream is pressurized and transmitted to a remote injection well for injection either for disposal of the waste stream and preferably to urge hydrocarbons toward the producing well. A hydrocarbon stream proceeds from fractionation to a methanol absorber system which removes carbon dioxide gas. The hydrocarbon stream is thereafter separated into at least hydrocarbon gas, nitrogen and helium. Some of the nitrogen is reintroduced into a fractionation tower to enhance the recovery of hydrocarbons. A methanol recovery system is provided to recover and reuse the methanol. The hydrocarbons are sold as natural gas; and the helium is recovered and sold. Excess nitrogen is vented.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: February 8, 2011
    Inventor: Donald Leo Stinson