Helium Permeates Barrier Patents (Class 95/53)
  • Patent number: 11547968
    Abstract: The present invention provides: a gas separation method which is capable of desirably separating a slight amount of a component from a mixed gas under mild conditions such that the pressure difference between both sides of a gas separation membrane is 1 atmosphere or less; and a gas separation membrane which is suitable for use in this gas separation method. According to the present invention, in a gas separation method wherein a specific gas (A) in a mixed gas, which contains the specific gas (A) at a concentration of 1,000 ppm by mass or less, is selectively permeated with use of a gas separation membrane, an extremely thin gas separation membrane that has a film thickness of 1 ?m or less is used, so that the gas (A) is desirably separated under mild conditions such that the pressure difference between both sides of the gas separation membrane is 1 atmosphere or less.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: January 10, 2023
    Assignees: TOKYO OHKA KOGYO CO., LTD., NANOMEMBRANE TECHNOLOGIES, INC.
    Inventors: Takuya Noguchi, Takahiro Senzaki, Toshiyuki Ogata, Toyoki Kunitake, Shigenori Fujikawa, Miho Ariyoshi
  • Patent number: 11111348
    Abstract: A method is for treating a surface of a resin material layer. The method includes a first step of introducing as a substituent at least one selected from the group consisting of an acid halide and an alkyl halide into an aromatic polyether-based resin included in the resin material layer by Friedel-Crafts reaction.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: September 7, 2021
    Assignees: MITSUBISHI HEAVY INDUSTRIES, LTD., NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Koichi Hasegawa, Toshio Abe, Kiyoka Takagi, Takashi Nishino, Takuya Matsumoto, Akira Miyagaki
  • Patent number: 10843121
    Abstract: Process and apparatus for producing helium, neon, or argon product gas using an adsorption separation unit having minimal dead end volumes. A purification unit receives a stream enriched in helium, neon, or argon, and a stream is recycled from the purification unit back to the adsorption separation unit in a controlled manner to maintain the concentration of the helium, neon, or argon in the feed to the separation unit within a targeted range.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: November 24, 2020
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Cory E. Sanderson, Jason Michael Ploeger, Jin Cao, Roger Dean Whitley, Shubhra Jyoti Bhadra
  • Patent number: 10814056
    Abstract: A blood processing apparatus includes a housing, a shell, a fiber bundle, and an elastic tube. The housing has a blood inlet and a blood outlet and the shell is situated in the housing and configured to receive blood through the blood inlet. The shell includes a surface and one or more apertures extending through the surface to permit the blood to flow to an exterior of the shell. The fiber bundle includes gas exchanger hollow fibers situated about the shell such that gas flows through and the blood flows across the gas exchanger hollow fibers. The elastic tube includes a fiber web situated about the fiber bundle and configured to elastically constrain and protect the gas exchanger hollow fibers during the insertion into the housing. The fiber web has a pore size that permits the blood to flow across the fiber web without filtering micro-emboli from the blood.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: October 27, 2020
    Assignee: Sorin Group Italia S.r.l.
    Inventors: Andrea Zaniboni, Sara Menozzi, Francesco Benatti
  • Patent number: 10774273
    Abstract: A membrane unit is able to recover hydrogen from a resid waste gas stream. Two membrane units provide even greater hydrogen recovery. The membrane separation is performed at conditions that allow the pressure of the recovered hydrogen to enter into a second stage of compression, saving the expense of the first stage of compression.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: September 15, 2020
    Assignee: UOP LLC
    Inventors: Richard K. Hoehn, Eleftherios Adamopoulos
  • Patent number: 10537854
    Abstract: Disclosed herein are ceramic selective membranes and methods of forming the ceramic selective membranes by forming a selective silica ceramic on a porous membrane substrate. Representative ceramic selective membranes include ion-conductive membranes (e.g., proton-conducting membranes) and gas selective membranes. Representative uses for the membranes include incorporation into fuel cells and redox flow batteries (RFB) as ion-conducting membranes.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: January 21, 2020
    Assignee: University of Washington
    Inventors: Lilo D. Pozzo, Anthony William Moretti, Gregory M. Newbloom, Aaron West, Eden Rivers
  • Patent number: 10287163
    Abstract: Disclosed is a hydrogen water generator that is capable of preventing an increase in pH so as to prevent alkalinization of water while generating water containing plenty of hydrogen gas. A hydrogen water generator 20 includes a container 21 having water 22 and magnesium particles 23, capable of reacting with the water 22 to generate hydrogen gas, encapsulated therein, wherein the container 21 is made of an air-permeable and water-impermeable material, which allows the hydrogen gas to pass from the inside to the outside of the container and prevents the water from passing from the inside to the outside of the container. At least one kind of thermoplastic resin selected from a group consisting of (A) polyvinylidene chloride, (B) polyvinyl chloride, and (C) polyacrylonitrile may be used as the air-permeable and water-impermeable material.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: May 14, 2019
    Inventor: Takashi Takehara
  • Patent number: 10258921
    Abstract: In a gas separation system, a retentate gas discharge port of a first unit U1 and a gas inlet port of a second unit U2 are connected by a retentate gas discharge line. A permeate gas discharge port of U1 and a gas inlet port of a third unit U3 are connected by a permeate gas discharge line. A feed gas mixture supply line is connected to a gas inlet port of U1. A permeate gas discharge port of U2 and the feed gas mixture supply line are connected by a permeate gas return line. A retentate gas discharge port of U3 and the feed gas mixture supply line are connected by a retentate gas return line. At least in operation, the gas permeability of U2 is higher than that of U3, and the gas selectivity of U3 is higher than that of U2.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: April 16, 2019
    Assignee: UBE INDUSTRIES, LTD.
    Inventors: Nobuhiko Fukuda, Tomohide Nakamura
  • Patent number: 10092876
    Abstract: A method of cleaning a stream of matter that includes a C2+ fraction and a first gaseous substance and a second gaseous substance. The stream of matter is subjected to a pressure swing adsorption to remove the C2+ fraction by means of a membrane to obtain a retentate and a permeate. The first substance is enriched in retentate and depleted in permeate and the second substance is depleted in retentate and enriched in permeate.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: October 9, 2018
    Assignee: Linde Aktiengesellschaft
    Inventors: Volker Witzleb, Werner Leitmayr, Christian Voss, Akos Tota, Martin Bauer
  • Patent number: 10005043
    Abstract: A composite membrane comprising: a) a porous support; b) a gutter layer; and c) a discriminating layer; wherein at least 10% of the discriminating layer is intermixed with the gutter layer.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: June 26, 2018
    Assignee: Fujifilm Manufacturing Europe B.V.
    Inventors: Takeshi Umehara, Masatoshi Nakanishi, Yujiro Itami, Hiroyuki Noda, Akihiro Kurima, Kimiko Iwahashi
  • Patent number: 9901867
    Abstract: The invention relates to an air-separation device comprising a generally cylindrical casing housing a filtration element including a bundle of hollow oblong fibers forming a membrane, the longitudinal axis of the fibers being parallel to the longitudinal axis (A) of the cylindrical casing, said casing comprising an air inlet at a first end and an outlet for purified gas at a second end. The device comprises a member for maintaining the fiber bundle in the casing, characterized in that the maintenance member comprises at least one spring member disposed inside the casing, said spring member being loaded between an end-stop formed by the casing and a longitudinal end of the fiber bundle in order to maintain the fiber bundle longitudinally in place while allowing it to dilate and contract.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: February 27, 2018
    Assignee: L'AIR LIQUIDE SOCIETE ANONYME POUR L'ETUDE ET L'EXPLOITATION DES PROCEDES GEORGES CLAUDE
    Inventors: Xavier Roussin-Bouchard, Aurelie Caillaud, Pierre Gianese, Elodie Dumont, Jean-Marc Dejonghe
  • Patent number: 9867917
    Abstract: The present invention provides a medical material and a blood purification apparatus each having high anti-thrombotic properties and high safety. The apparatus is produced by incorporating therein a medical material which has a hydrophilic copolymerization polymer present on a surface thereof which is to be in contact with blood, wherein particulate protuberances each having a particle diameter of 50 nm or more are present on the surface which is to be in contact with blood at a density of 3 particles/?m2 or less and the relaxation time of adsorbed water in the hydrophilic copolymerization polymer is 2.5×10?8 seconds or shorter and 5.0×10?10 seconds or longer at ?40° C.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: January 16, 2018
    Assignee: Toray Industries, Inc.
    Inventors: Yoshiyuki Ueno, Masaki Fujita, Hiroyuki Sugaya, Kazuyuki Hashimoto, Hiroyuki Terasaka, Ryo Koganemaru
  • Patent number: 9764276
    Abstract: The present invention relates to a resin composition including a substance capable of reacting reversibly with a carbon dioxide gas, and a hydrocarbon-based polymer; a carbon dioxide gas separation membrane obtained from the resin composition; a carbon dioxide gas separation membrane module including the separation membrane; and a carbon dioxide gas separation apparatus including at least one type of the module.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: September 19, 2017
    Assignee: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Ayumi Aoki, Mitsunori Nodono, Kentaro Masui
  • Patent number: 9623370
    Abstract: The present invention relates a process and apparatus that recovers a helium rich stream from a mixed gas having low concentrations of helium therein. More specifically, the invention relates to an integrated process and apparatus for treating a mixed feed gas from an operating process that produces a fluid product from natural gas containing helium, such as processes that produce ammonia, methanol, or liquid hydrocarbons.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: April 18, 2017
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Joseph M. Schwartz, Khushnuma Koita, Minish M. Shah
  • Patent number: 9504962
    Abstract: A gas separation membrane module in which deformation of a tube sheet such as swelling and shrinkage can be prevented in gas separation. The gas separation membrane module includes a hollow fiber bundle provided by bundling multiple hollow fiber membranes, a module vessel in which the hollow fiber bundle is placed, and a tube sheet fixing the plurality of hollow fiber membranes at an end portion of hollow fiber bundle. The cross section of the tube sheet includes a hollow fiber membrane embedded portion in which the hollow fiber membranes are embedded and a solid portion in which no hollow fiber membrane is embedded, and the solid portion is located outside the hollow fiber membrane embedded portion. At least some of the hollow fiber membranes are wound with reinforcing fiber cloth at least within the hollow fiber membrane embedded portion.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: November 29, 2016
    Assignee: UBE INDUSTRIES, LTD.
    Inventors: Shoichi Yamaoka, Tomoyuki Suehiro, Tomohide Nakamura, Nozomu Tanihara
  • Patent number: 9486734
    Abstract: The helium gas separator material includes a base portion and a gas separation portion joined to the base portion. The base portion is composed of a porous ?-alumina material which has communication holes with an average diameter of 50 nm to 1,000 nm; the gas separation portion has a porous ?-alumina portion containing a Ni element and a silica membrane portion which is disposed on the inner wall of the communication holes in the porous portion; and the average diameter of pores surrounded and formed by the silica membrane portion is 0.27 nm to 0.60 nm.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: November 8, 2016
    Assignees: Japan Petroleum Exploration Co., Ltd., Japan Fine Ceramics Center
    Inventors: Takayuki Nagano, Koji Sato, Kazumoto Chiba, Toshiya Wakatsuki, Yusuke Takeuchi
  • Patent number: 9375677
    Abstract: Helium-containing natural gas is processed with three gas separation stages to produce a natural gas product and a Helium-containing gas that may be injected into the reservoir from which the Helium-containing natural gas is obtained. A permeate from the first gas separation membrane stage is compressed and fed to the second gas membrane stage. The permeate from the second gas separation membrane stage is recovered as the Helium-containing gas that may be injected into the reservoir. The non-permeate from the second gas separation membrane stage is fed to the third gas separation membrane stage. Non-permeates from the first and third gas separation stages are combined to produce a natural gas product. A permeate from the third gas separation membrane stage is combined with a non-permeate from the first gas separation membrane stage before it is compressed and fed to the second gas separation membrane stage.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: June 28, 2016
    Assignee: Air Liquide Advanced Technologies U.S. LLC
    Inventor: Sandeep K. Karode
  • Patent number: 9314735
    Abstract: The invention relates to a special apparatus, in particular linkage of gas separation membrane modules, and a special method for separating gas mixtures containing helium.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: April 19, 2016
    Assignee: EVONIK FIBRES GmbH
    Inventors: Joerg Balster, Markus Ungerank, Ingrid Winette Velthoen
  • Publication number: 20150094500
    Abstract: A method of making a polybenzoxazole (PBO) membrane from a self-cross-linked aromatic polyimide polymer membrane is provided. These membranes are useful in the separation of gas mixtures and liquid mixtures. The PBO membrane is made by fabricating a self-cross-linkable aromatic polyimide polymer membrane comprising both hydroxyl functional groups and carboxylic acid functional groups; cross-linking the polymer to form a self-cross-linked aromatic polyimide polymer membrane by heating the membrane at 250° to 300° C. under an inert atmosphere; and thermal heating the self-cross-linked aromatic polyimide polymer membrane at a temperature from about 350° to 500° C. under an inert atmosphere to convert the self-cross-linked aromatic polyimide polymer membrane into a PBO membrane. A membrane coating step may be added by coating the selective layer surface of the PBO membrane with a thin layer of high permeability material.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Publication number: 20150090118
    Abstract: This invention relates to self-cross-linkable and self-cross-linked aromatic polyimide polymers, their membranes and methods for making and using these polymers and membranes. The self-cross-linkable aromatic polyimide polymer described in the present invention comprises both hydroxyl functional groups and carboxylic acid functional groups. The self-cross-linked aromatic polyimide was formed via heating the self-cross-linkable aromatic polyimide polymer at ?300° C. The self-cross-linked aromatic polyimide membranes exhibit high selectivity in separation of mixtures of gases and liquids.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Angela N. Troxell
  • Publication number: 20150040758
    Abstract: The present disclosure refers to a method and an apparatus for cryogen-free concentration of a hyperpolarized noble gas in a continuously flowing stream of gas. The method comprises the following steps: providing a mixture of gases containing hyperpolarized noble gas and at least one process gas; passing the prepared gas mixture as a continuously flowing stream of gas through a gas separation device with a semipermeable membrane in order to separate the gases; and concentrating the hyperpolarized noble gas in the gas separation device, in which at least part of the at least one process gas or the hyperpolarized noble gas is separated from the continuously flowing stream of gas by means of the semipermeable membrane. It also provides for the use of a continuous stream of gas with concentrated hyperpolarized noble gas for magnetic resonance spectroscopy or magnetic resonance tomography.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Applicant: Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Arbeit, Diese
    Inventors: Wolfgang KILIAN, Lorenz MITSCHANG, Sergey KORCHAK
  • Patent number: 8926733
    Abstract: A method for preparing a polymeric material includes: providing a polymeric matrix having at least one polymer and at least one porogen; and degrading the at least one porogen at a temperature T?1.1 Tg, where Tg is a glass transition temperature of the polymeric matrix. The degrading step includes exposing the polymeric matrix to thermal degradation, chemical degradation, electrical degradation and/or radiation degradation, wherein the polymeric material has a permeability at least 1.2 times a permeability of the polymeric matrix for a gas, and a selectivity of the polymeric material is at least 0.35 times a selectivity of the polymeric matrix for a gas pair. The method preferably provides gas separation membranes that exceed Robeson's upper bound relationship for at least one gas separation pair. Novel polymeric materials, gas separation membranes and fluid component separation methods are also described.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: January 6, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Shiying Zheng, Lloyd M. Robeson, M. Keith Murphy, Jeffrey R. Quay
  • Publication number: 20150005468
    Abstract: The present invention generally relates to high permeability, UV cross-linkable copolyimide polymers and membranes for gas, vapor, and liquid separations, as well as methods for making and using these membranes. The invention provides a process for separating at least one gas from a mixture of gases using the high permeability copolyimide membrane or the UV cross-linked copolyimide membrane, the process comprising: (a) providing a high permeability copolyimide membrane or a UV cross-linked copolyimide membrane which is permeable to said at least one gas; (b) contacting the mixture on one side of the high permeability copolyimide membrane or the UV cross-linked copolyimide membrane to cause said at least one gas to permeate the membrane; and (c) removing from the opposite side of the membrane a permeate gas composition comprising a portion of said at least one gas which permeated said membrane.
    Type: Application
    Filed: May 14, 2014
    Publication date: January 1, 2015
    Applicant: UOP LLC
    Inventors: Zara Osman, Chunqing Liu, Angela N. Troxell, Carl W. Liskey
  • Publication number: 20140345457
    Abstract: The invention relates to a special apparatus, in particular linkage of gas separation membrane modules, and a special method for separating gas mixtures containing helium.
    Type: Application
    Filed: November 29, 2012
    Publication date: November 27, 2014
    Applicant: EVONIK FIBRES GMBH
    Inventors: Joerg Balster, Markus Ungerank, Ingrid Winette Velthoen
  • Publication number: 20140290478
    Abstract: The present invention discloses high performance cross-linked polyimide asymmetric flat sheet membranes and a process of using such membranes. The cross-linked polyimide asymmetric flat sheet membranes have shown CO2 permeance higher than 80 GPU and CO2/CH4 selectivity higher than 20 at 50° C. under 6996 kPa of a feed gas with 10% CO2 and 90% CH4 for CO2/CH4 separation.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 2, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Howie Q. Tran, Angela N. Troxell
  • Patent number: 8832962
    Abstract: The invention relates to a method for drying slurry-like materials, in particular sludge from wastewater treatment plants, including two drying stages, namely: a first indirect drying stage (2), supplied with hot fluid, which receives sludge having an entry dryness Se, and outputs sludge having an intermediate dryness Si and water steam, which is channelled towards a condenser (8) in which a heating fluid, in particular water, is reheated and, in turn, heats a heating gas for a second drying stage (6); and a step (5) of forming strings of sludge at the exit from the first stage; the second stage (6) of drying the strings of sludge using gas at least partially heated by the heat extracted from the condenser, said second stage outputting a slurry having a final dryness Sf; the intermediate dryness Si is controlled according to the measured entry dryness Se and the desired exit dryness Sf, for minimum consumption of the total energy used for drying, the flow rate, pressure and/or temperature of the hot fluid (3)
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: September 16, 2014
    Assignee: Degremont
    Inventor: Pierre Emmanuel Pardo
  • Patent number: 8828121
    Abstract: Disclosed herein is a process for separating components of a gas mixture using gas-separation copolymer membranes. These membranes use a selective layer made from copolymers of perfluorodioxolane monomers. The resulting membranes have superior selectivity performance for gas pairs of interest while maintaining fast gas permeance compared to membranes prepared using conventional perfluoropolymers, such as Teflon® AF, Hyflon® AD, and Cytop®.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: September 9, 2014
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Zhenjie He, Timothy C. Merkel, Yoshiyuki Okamoto, Yasuhiro Koike
  • Publication number: 20140243574
    Abstract: Helium-containing natural gas is processed with three gas separation stages to produce a natural gas product and a Helium-containing gas that may be injected into the reservoir from which the Helium-containing natural gas is obtained. A permeate from the first gas separation membrane stage is compressed and fed to the second gas membrane stage. The permeate from the second gas separation membrane stage is recovered as the Helium-containing gas that may be injected into the reservoir. The non-permeate from the second gas separation membrane stage is fed to the third gas separation membrane stage. Non-permeates from the first and third gas separation stages are combined to produce a natural gas product. A permeate from the third gas separation membrane stage is combined with a non-permeate from the first gas separation membrane stage before it is compressed and fed to the second gas separation membrane stage.
    Type: Application
    Filed: December 20, 2013
    Publication date: August 28, 2014
    Applicant: Air Liquide Advanced Technologies U.S. LLC
    Inventor: Sandeep K. KARODE
  • Patent number: 8764889
    Abstract: There is provided a silica membrane filter having performance of selectively separating an aromatic compound and performance of selectively separating an alcohol. The silica membrane filter is provided with a porous substrate and a silica membrane. The ratio of a He gas permeation amount to an N2 gas permeation amount (He gas permeation amount/N2 gas permeation amount) is 7 or less, and the ratio of the N2 gas permeation amount to a SF6 gas permeation amount (N2 gas permeation amount/SF6 gas permeation amount) is 1.5 or more.
    Type: Grant
    Filed: December 27, 2012
    Date of Patent: July 1, 2014
    Assignee: NGK Insulators, Ltd.
    Inventors: Mariko Takagi, Kenichi Noda, Nobuhiko Mori, Masaaki Kawai, Aya Satoh
  • Patent number: 8753426
    Abstract: The invention describes a polymeric material comprising repeating units of Formulae I-III and methods of preparation. Novel polymeric materials, gas separation membranes and fluid component separation methods are also described.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: June 17, 2014
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Shiying Zheng, Jeffrey Raymond Quay
  • Publication number: 20140150646
    Abstract: The present invention generally relates to gas separation membranes and, in particular, to high selectivity fluorinated ethylene-propylene polymer-comprising polymeric blend membranes for gas separations. The polymeric blend membrane comprises a fluorinated ethylene-propylene polymer and a second polymer different from the fluorinated ethylene-propylene polymer. The fluorinated ethylene-propylene polymers in the current invention are copolymers comprising 10 to 99 mol % 2,3,3,3-tetrafluoropropene-based structural units and 1 to 90 mol % vinylidene fluoride-based structural units. The second polymer different from the fluorinated ethylene-propylene polymer is selected from a low cost, easily processable glassy polymer.
    Type: Application
    Filed: February 6, 2014
    Publication date: June 5, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Changqing Lu, Andrew J. Poss, Rajiv R. Singh
  • Publication number: 20140137734
    Abstract: The present invention discloses new types of poly(amidoamine) (PAMAM) dendrimer-cross-linked polyimide membranes and methods for making and using these membranes. The membranes are prepared by cross-linking of asymmetric aromatic polyimide membranes using a PAMAM dendrimer as the cross-linking agent. The PAMAM-cross-linked polyimide membranes showed significantly improved selectivities for CO2/CH4 compared to a comparable uncrosslinked polyimide membrane. For example, PAMAM 0.0 dendrimer-cross-linked asymmetric flat sheet poly(3,3?,4,4?-diphenylsulfone tetracarboxylic dianhydride-3,3?,5,5?-tetramethyl-4,4?-methylene dianiline) (DSDA-TMMDA) polyimide membrane showed CO2 permeance of 135.2 A.U. and CO2/CH4 selectivity of 20.3. However, the un-cross-linked DSDA-TMMDA asymmetric flat sheet membrane showed much lower CO2/CH4 selectivity (16.5) and higher CO2 permeance (230.8 GPU).
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Howie Q. Tran
  • Publication number: 20140138317
    Abstract: The present invention generally relates to gas separation membranes and, in particular, to high selectivity fluorinated ethylene-propylene polymer-comprising polymeric blend membranes for gas separations. The polymeric blend membrane comprises a fluorinated ethylene-propylene polymer and a second polymer different from the fluorinated ethylene-propylene polymer. The fluorinated ethylene-propylene polymers in the current invention are copolymers comprising 10 to 99 mol % 2,3,3,3-tetrafluoropropene-based structural units and 1 to 90 mol % vinylidene fluoride-based structural units. The second polymer different from the fluorinated ethylene-propylene polymer is selected from a low cost, easily processable glassy polymer.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Changqing Lu, Andrew J. Poss, Rajiv R. Singh
  • Publication number: 20140138314
    Abstract: A fluorinated ethylene-propylene polymeric membrane comprising a copolymer comprising 2,3,3,3-tetrafluoropropene and vinylidene fluoride is disclosed. The fluorinated ethylene-propylene polymeric membranes of the invention are especially useful in gas separation processes in air purification, petrochemical, refinery, and natural gas industries.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Applicant: UOP LLC
    Inventors: Chunqing Liu, Zara Osman, Howie Q. Tran, Changqing Lu, Andrew J. Poss, Rajiv R. Singh, David Nalewajek, Cheryl L. Cantlon
  • Publication number: 20140033918
    Abstract: The invention describes a polymeric material comprising repeating units of Formulae I-III and methods of preparation. Novel polymeric materials, gas separation membranes and fluid component separation methods are also described.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Shiying Zheng, Jeffrey Raymond Quay
  • Publication number: 20140000454
    Abstract: The various embodiments of the disclosure relate generally to carbon molecular sieve membranes (CMSM) and their associated fabrication processes, and more particularly to CMSM that maintain high gas selectivities without losing productivity. Methods for enriching a mixture of gases in one gas via the use of the CMS membranes, and gas enrichment devices using the same, are also disclosed.
    Type: Application
    Filed: May 30, 2013
    Publication date: January 2, 2014
    Inventors: Rachana Singh, William John Koros
  • Patent number: 8617291
    Abstract: A method of preparing a supported gas separation membrane, comprising: preparing crystalline seeds from a synthesis mixture comprising an aluminum source, a phosphorous source, a silicon source, at least one organic templating agent and water; applying the seeds to a porous support to produce a seeded porous support; contacting the seeded porous support with a synthesis gel under hydrothermal synthesis conditions to produce a coated porous support; and calcining the coated porous support is described. A supported gas separation membrane made by this method is also described.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 31, 2013
    Assignee: Shell Oil Company
    Inventors: Brendan Dermot Murray, Paul Jason Williams
  • Patent number: 8574344
    Abstract: The present invention relates to template-free clathrasils whose framework comprises essentially SiO2, wherein the crystals of the clathrasils have the platelet-like morphology of a sheet silicate. The present invention further relates to a process for preparing these template-free clathrasils and also to their use as absorbent, as seed crystals for the synthesis of clathrasil membranes of the same zeolite type and in the form of dense layers which function as gas separation membranes having a molecular sieving action.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: November 5, 2013
    Assignee: BASF SE
    Inventors: Hartwig Voβ, Jörg Therre, Hermann Gies, Bernd Marler
  • Patent number: 8557023
    Abstract: The invention relates to a device for preparing a gas flow for introduction thereof into a mass spectrometer, wherein the gas flow contains one or more analytes and has helium as carrier gas. According to the invention, a selective separating device is provided for separating off a part of the carrier gas from the gas flow (10), to form a residual gas flow (11) and a separated carrier gas flow (12). A higher fraction of the analyte is present therein than in the gas flow and in the separated carrier gas flow there is a lower fraction of the analyte.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: October 15, 2013
    Assignee: Thermo Fisher Scientific (Bremen) GmbH
    Inventor: Reinhold Pesch
  • Publication number: 20130255483
    Abstract: A fast gas is recovered from a feed gas containing a fast gas and at least one slow gas using a gas separation membrane. A controller may control a control valve associated with a partial recycle of a permeate gas from the membrane for combining with the feed gas. A controller may control a control valve associated with the backpressure of a residue gas from the membrane.
    Type: Application
    Filed: May 20, 2013
    Publication date: October 3, 2013
    Applicant: L'Air Liquide, Societe Anonyme pour I'Etude et I'Exploitation des Procedes Georges Claude
    Inventors: Edgar S. SANDERS, JR., Sarang Gadre, Michael D. Bennett, Ian R. Roman, David J. Hassee, Indrasts Mondal
  • Publication number: 20130192461
    Abstract: Technologies are generally described for a membrane that may incorporate a graphene layer perforated by a plurality of nanoscale pores. The membrane may also include a gas sorbent that may be configured to contact a surface of the graphene layer. The gas sorbent may be configured to direct at least one gas adsorbed at the gas sorbent into the nanoscale pores. The nanoscale pores may have a diameter that selectively facilitates passage of a first gas compared to a second gas to separate the first gas from a fluid mixture of the two gases. The gas sorbent may increase the surface concentration of the first gas at the graphene layer. Such membranes may exhibit improved properties compared to conventional graphene and polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: Empire Technology Development, LLC
    Inventors: Seth A. Miller, Gary L. Duerksen
  • Publication number: 20130192460
    Abstract: Technologies are generally described for perforated graphene monolayers and membranes containing perforated graphene monolayers. An example membrane may include a graphene monolayer having a plurality of discrete pores that may be chemically perforated into the graphene monolayer. The discrete pores may be of substantially uniform pore size. The pore size may be characterized by one or more carbon vacancy defects in the graphene monolayer. The graphene monolayer may have substantially uniform pore sizes throughout. In some examples, the membrane may include a permeable substrate that contacts the graphene monolayer and which may support the graphene monolayer. Such perforated graphene monolayers, and membranes comprising such perforated graphene monolayers may exhibit improved properties compared to conventional polymeric membranes for gas separations, e.g., greater selectivity, greater gas permeation rates, or the like.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Applicant: Empire Technology Development, LLC
    Inventors: Seth A. Miller, Gary L. Duerksen
  • Publication number: 20130146538
    Abstract: The present invention is for high permeance and high selectivity blend polymeric membranes comprising poly(ethylene glycol) (PEG) and a highly permeable polymer selected from the group consisting of polymers of intrinsic microporosity (PIMs), tetrazole-functionalized polymers of intrinsic microporosity (TZPIMs), or mixtures thereof. The present invention also involves the use of such membranes for separations of liquids and gases.
    Type: Application
    Filed: October 18, 2012
    Publication date: June 13, 2013
    Applicant: UOP LLC
    Inventor: UOP LLC
  • Patent number: 8425672
    Abstract: A membrane selectively permeable to light gases comprises a membrane body formed by a first plate and a second plate. The second plate comprises a thin layer that is selectively gas-permeable. In the region of windows, this layer is exposed. There, support is provided by a porous bottom wall in the first plate or by narrow bores in the second plate. A heating device causes a radiation heating of the windows.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: April 23, 2013
    Assignee: Inficon GmbH
    Inventors: Vladimir Schwartz, Daniel Wetzig, Boris Chernobrod, Werner Grosse Bley
  • Publication number: 20130032028
    Abstract: Provided are a method for operating a gas separation device capable of performing gas separation with high separation capability and treatment amount in a small membrane area or in a small number of separation membrane modules, and a method for recovering a residual gas capable of performing more suitable detoxifying treatment or recycling by efficiently separating and recovering a mixed gas remaining in a cylinder, using the operating method. Two or more separation membrane modules are connected with each other in parallel.
    Type: Application
    Filed: April 8, 2011
    Publication date: February 7, 2013
    Applicants: National Institute of Advanced Industrial Science, Taiyo Nippon Sanso Corporation
    Inventors: Yuzuru Miyazawa, Yoko Aomura, Yoshihiko Kobayashi, Kenji Haraya, Miki Yoshimune
  • Patent number: 8361196
    Abstract: A membrane selectively permeable to light gases comprises a membrane body formed by a first plate and a second plate. The second plate comprises a thin layer that is selectively gas-permeable. In the region of windows, this layer is exposed. There, support is provided by a porous bottom wall in the first plate or by narrow bores in the second plate. A heating device causes a radiation heating of the windows.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: January 29, 2013
    Assignee: Inficon GmbH
    Inventors: Vladimir Schwartz, Daniel Wetzig, Boris Chernobrod, Werner Grosse Bley
  • Patent number: 8152898
    Abstract: Helium is recovered from gas streams containing high concentrations of hydrogen gas and low concentrations of helium gas, such as from the recycle stream from the production of ammonia. The inventive process provides for an integrated process for the recovery of both an enriched helium gas stream product and a high purity hydrogen gas stream product.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: April 10, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Ravi Prasad, Carl Joseph Heim, James Joseph Maloney
  • Publication number: 20110305310
    Abstract: The invention relates to an equipment and a system for processing a gaseous mixture by permeation. The equipment of the invention includes m*n separation modules Pij, n and n being natural integers higher than or equal to 2, i being a natural integer from 1 to m, and j is a natural interger from 1 to n. Each of the separation modules P1 includes a permeate inlet Epij, the permeate inlet Ep11 of the separation module P11 corresponding to the F inlet for supplying the gaseous mixture into said equipment, a permeate outlet Spij and a retentate outlet Srij. Furthermore, the permeate outlet Spij is connected to the permeate inlet Epi+1j of the separation module Pj+1j, and the retentate outlet Srij is connected to the permeate inlet Epij+1 of the separation module Pij+1. The equipment does not use any intermediate recycling.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 15, 2011
    Inventors: Jose Gregorio Sanchez, Alejandro Carlos Mourgues Codern
  • Publication number: 20110036238
    Abstract: The invention relates to a device for preparing a gas flow for introduction thereof into a mass spectrometer, wherein the gas flow contains one or more analytes and has helium as carrier gas. According to the invention, a selective separating device is provided for separating off a part of the carrier gas from the gas flow (10), to form a residual gas flow (11) and a separated carrier gas flow (12). A higher fraction of the analyte is present therein than in the gas flow and in the separated carrier gas flow there is a lower fraction of the analyte.
    Type: Application
    Filed: March 18, 2009
    Publication date: February 17, 2011
    Inventor: Reinhold Pesch
  • Publication number: 20100313750
    Abstract: A fast gas is recovered from a feed gas containing a fast gas and at least one slow gas using a gas separation membrane. A controller may control a control valve associated with a partial recycle of a permeate gas from the membrane for combining with the feed gas. A controller may control a control valve associated with the backpressure of a residue gas from the membrane.
    Type: Application
    Filed: July 14, 2009
    Publication date: December 16, 2010
    Applicant: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Edgar S. Sanders, JR., Sarang Gadre, Michael D. Bennett, Ian C. Roman, David J. Hasse, Indrasis Mondal