Oxygen Permeates Barrier Patents (Class 95/54)
  • Patent number: 8007567
    Abstract: The present invention is a biogas processing system having a compressor having a biogas input and output, a pump having a water input and output, a scrubber tower having a mixing chamber connected to a biogas input, a water pump input, a water output, and a processed biogas output, and a filtration member connected to the water output to remove contaminants from the water exiting the first scrubber tower. The system also includes devices for heating and cooling the recycled flow of water to enhance the ability of the water to absorb contaminants from the biogas and the ability of a stripper to remove absorbed contaminants from the water in a closed loop water system, and a controller for closely controlling the operating parameters of the system to achieve safe and optimal operation of the system.
    Type: Grant
    Filed: August 13, 2008
    Date of Patent: August 30, 2011
    Assignee: A & B Process Systems Corporation
    Inventors: Kevin L. Roe, David J. Mandli, Amanda M. Neuhalfen
  • Patent number: 7964019
    Abstract: A membrane for gas separation includes a porous support layer and a separation layer. The separation layer comprises a mixture of one or more saccharide derivatives and one or more homopolymers. The saccharide derivative(s) may have a cyclic structure with five or six ring atoms, or a linear structure, or may include monosaccharide derivatives which are bound via glycoside bonds, and the number of monosaccharides bound in this manner may be 2 to 1,000. A membrane can be produced by preparing a homogeneous solution which comprises a saccharide derivative and a homopolymer in a solvent; and pouring the homogenous solution onto a support layer. The membrane may be used in a gas separation module the operation of which makes use of the membrane.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: June 21, 2011
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Jun Qiu, Klaus-Viktor Peinemann, Jan Wind, Holger Pingel
  • Patent number: 7959715
    Abstract: Various embodiments of the present invention are directed to limiting a presence of air bubbles in fluidic media in a reservoir. Air passages may allow air to escape from fluidic media in a reservoir. Membranes may allow for trapping air bubbles in fluidic media before fluidic media enters a reservoir. A membrane may allow air to flow from a first reservoir containing fluidic media to a second reservoir while plunger heads within each of the reservoirs are moved within the reservoirs. An inner reservoir with a membrane may be moveable within an outer reservoir to allow air to move from the outer reservoir to the inner reservoir. An inner reservoir containing pressurized gas may allow fluidic media to be transferred to an outer reservoir.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: June 14, 2011
    Assignee: Medtronic Minimed, Inc.
    Inventors: Julian D. Kavazov, Rafael Bikovsky, Arsen Ibranyan, David Hezzell, Christopher G. Griffin, Mike Lee, Truong Gia Luan, Benjamin X. Shen, Thomas Miller
  • Patent number: 7955423
    Abstract: Solid-state membrane modules comprising at least one membrane unit, where the membrane unit has a dense mixed conducting oxide layer, and at least one conduit or manifold wherein the conduit or manifold comprises a dense layer and at least one of a porous layer and a slotted layer contiguous with the dense layer. The solid-state membrane modules may be used to carry out a variety of processes including the separating of any ionizable component from a feedstream wherein such ionizable component is capable of being transported through a dense mixed conducting oxide layer of the membrane units making up the membrane modules. For ease of construction, the membrane units may be planar.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: June 7, 2011
    Assignee: Air Products and Chemicals, Inc.
    Inventors: John Howard Gordon, Dale M. Taylor
  • Patent number: 7954458
    Abstract: A system is described wherein a boiler 10 is integrated with an oxygen producing device 12. Combustion heat generated in the boiler 10 is used to generate steam in the boiler and is also applied to at least one of a sweep gas stream 13 and a feed gas stream 15 to ensure that the sweep gas and feed gas streams 12, 15 are provided at the appropriate temperature to the oxygen producing device 12. Flue gas generated by fuel combustion within the combustion chamber 14 may be used as the sweep gas stream 13, in which case, the flue gas exiting the oxygen producing device 12 includes the oxygen removed from the feed gas stream. The flue gas/oxygen mixture may be used for fuel combustion within the combustion chamber, and may be provided to an oxygen separator 28 for removing oxygen from the flue gas. Sensible heat contained in the oxygen depleted feed gas from the oxygen producing device 12 may be recovered by the feed gas stream 15.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: June 7, 2011
    Assignee: Alstom Technology Ltd
    Inventors: Carl R. Bozzuto, Mark Palkes
  • Patent number: 7947113
    Abstract: An artificial lung includes a housing, a tubular hollow fiber membrane bundle contained in the housing and providing a multiplicity of hollow fiber membranes having a gas exchange function, a gas inflow port and a gas outflow port communicating with each other through hollow portions of the hollow fiber membranes, and a blood inflow port and a blood outflow port through which blood is distributed. The tubular hollow fiber membrane bundle has a cylindrical overall shape, and a filter member having a bubble-trapping function is provided on an outer peripheral portion of the tubular hollow fiber membrane bundle.
    Type: Grant
    Filed: September 8, 2008
    Date of Patent: May 24, 2011
    Assignee: Terumo Kabushiki Kaisha
    Inventors: Mitsuaki Ogihara, Hidetaka Nakayama
  • Patent number: 7947115
    Abstract: An integrated gasification combined cycle system. In one embodiment (FIG. 2) a system (200) includes an ion transport membrane air separation unit (210) for producing oxygen-enriched gas (209) and oxygen-depleted air (227), a gasification system (5) for generating syngas with the oxygen-enriched gas (209), a gas combustor (234) for reacting the syngas (224), and a subsystem configured to provide a first stream of air to the combustor (234) at a first pressure and to provide a second stream of air to the air separation unit (210) at a second pressure greater than the first pressure. The subsystem includes a compressor (230) having multi-pressure outlets (203, 204).
    Type: Grant
    Filed: November 16, 2006
    Date of Patent: May 24, 2011
    Assignee: Siemens Energy, Inc.
    Inventor: Terrence B. Sullivan
  • Patent number: 7947112
    Abstract: A method for degassing a fluid includes providing a degassing system having a degassing module and a fluid pump apparatus having a fluid reservoir, wherein the fluid pump apparatus is operated in a discontinuous mode involving one or more discrete pumping cycles having a first cycle time. The fluid pump apparatus is calibrated to deliver a predetermined volume of the fluid from the fluid reservoir during each of the pumping cycles, and the degassing module is adapted to operably move gas from the fluid to an extent sufficient to render the fluid volume to a desired degassed condition within a period of time that is not greater than the first cycle time.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: May 24, 2011
    Assignee: Rheodyne, LLC
    Inventors: Yuri Gerner, Carl W. Sims, Jonathan Thompson
  • Patent number: 7938940
    Abstract: A support for an oxygen separation membrane element to support a dense and cylindrical electrolytic membrane having oxygen ion permeability, comprises a base axially extending and having a cylindrical surface extending axially, and a plurality of ribs formed on the cylindrical surface of the base, radially projecting and axially extending, for supporting the electrolytic membrane at their ends being radially distant from the cylindrical surface of the base.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: May 10, 2011
    Assignees: Noritake Co., Limited, Chubu Electric Power Co., Inc.
    Inventors: Akihiro Kawahara, Shigeo Nagaya, Hiroshi Seo
  • Patent number: 7927578
    Abstract: A method for separation of molecular hydrogen from a gaseous mixture containing the molecular hydrogen, which method employs a dense mixed oxide ion/electronic/hydrogen atom conducting membrane or separator having a feed side and a permeate side that enables two mechanisms for hydrogen separation—ambi-polar conduction and hydrogen atom conduction. In this method, at least a portion of the molecular hydrogen is converted on the feed side of the membrane to hydrogen atoms, which hydrogen atoms are conducted through the membrane to the permeate side thereof where they are converted back to molecular hydrogen. The permeate side of the membrane is contacted with steam, forming water and/or steam on the feed side of the membrane and additional molecular hydrogen on the permeate side of the separator.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: April 19, 2011
    Assignee: Gas Technology Institute
    Inventors: Kevin Krist, Estela T. Ong
  • Patent number: 7927405
    Abstract: Porous composites comprise a porous membrane having a structure defining a plurality of pores extending therethrough, nonporous discontinuous surface layer affixed to said porous membrane, in which the nonporous discontinuous surface layer forms regions of gas permeability, and regions of gas impermeability, and a coating disposed upon the porous composite which renders at least a portion of the porous composite oleophobic.
    Type: Grant
    Filed: April 23, 2007
    Date of Patent: April 19, 2011
    Assignee: Gore Enterprise Holdings, Inc
    Inventors: John E. Bacino, John L. DiMeo, Alex R. Hobson, Klaus Meindl
  • Patent number: 7922795
    Abstract: A nanoscale membrane exposed on opposite sides thereof and having an average thickness of less than about 100 nm, and a lateral length to thickness aspect ratio that is more than 10,000 to 1 is disclosed. Also disclosed are methods of making such membranes, and use thereof in a number of devices including fuel cells, sensor devices, electrospray devices, and supports for examining a sample under electron microscopy.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 12, 2011
    Assignee: University of Rochester
    Inventors: Christopher C. Striemer, Philippe M. Fauchet
  • Publication number: 20110079147
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 7, 2011
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Publication number: 20110079146
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 7, 2011
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Publication number: 20110079144
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 7, 2011
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Publication number: 20110081710
    Abstract: A method and apparatus for extracting CO2 from air comprising an anion exchange material formed in a matrix exposed to a flow of the air, and for delivering that extracted CO2 to controlled environments. The present invention contemplates the extraction of CO2 from air using conventional extraction methods or by using one of the extraction methods disclosed; e.g., humidity swing or electro dialysis. The present invention also provides delivery of the CO2 to greenhouses where increased levels of CO2 will improve conditions for growth. Alternatively, the CO2 is fed to an algae culture.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 7, 2011
    Inventors: Allen B. Wright, Klaus S. Lackner, Ursula Ginster
  • Publication number: 20110067405
    Abstract: Integrated gas turbine combustion engine and ion transport membrane system comprising a gas turbine combustion engine including a compressor with a compressed oxygen-containing gas outlet; a combustor comprising an outer shell, a combustion zone in flow communication with the compressed oxygen-containing gas outlet, and a dilution zone in flow communication with the combustion zone and having one or more dilution gas inlets; and a gas expander. The system includes an ion transport membrane oxygen recovery system with an ion transport membrane module that includes a feed zone, a permeate zone, a feed inlet to the feed zone in flow communication with the compressed oxygen-containing gas outlet of the compressor, a feed zone outlet, and a permeate withdrawal outlet from the permeate zone. The feed zone outlet of the membrane module is in flow communication with any of the one or more dilution gas inlets of the combustor dilution zone.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Applicants: CONCEPTS ETI, INC., AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Phillip A. Armstrong, Elia P. Demetri
  • Patent number: 7909917
    Abstract: A porous substrate with a seed crystal-containing layer for manufacturing a zeolite membrane includes: a ceramic porous substrate, and a seed crystal-containing layer containing a zeolite powder to function as a seed crystal for forming a zeolite membrane and a ceramic powder and being loaded on a surface of the ceramic porous substrate and fired to fix the seed crystal-containing layer on the porous substrate. The porous substrate with a seed crystal-containing layer used for manufacturing a zeolite membrane inhibits a defect such as a crack from being generated in the zeolite layer upon manufacture or use by manufacturing a zeolite membrane by the use of the substrate which then can be subjected to air-spraying, washing, and processing for the purpose of removing a foreign substance, etc., prior to hydrothermal synthesis.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: March 22, 2011
    Assignee: NGK Insulators, Ltd.
    Inventors: Hisayoshi Nonaka, Kunio Nakayama, Kenji Yajima
  • Patent number: 7892321
    Abstract: An integrated heating system for adding heat to a feed fuel within a module by way of an integrated heating element within the body or casing of the module. The heat may be selectively added to maintain a selected temperature.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 22, 2011
    Assignee: Intelligent Energy, Inc.
    Inventors: Diane Lee Aagesen, Kandaswamy Duraiswamy
  • Patent number: 7875101
    Abstract: A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: January 25, 2011
    Assignee: Sandia Corporation
    Inventors: Chad L. Staiger, Mark R. Vaughn, A. Keith Miller, Christopher J. Cornelius
  • Patent number: 7867324
    Abstract: A fuel system includes a fuel deoxygenator for removing oxygen from a liquid fuel. A vaporizer is in fluid communication with the fuel deoxygenator. The vaporizer vaporizes at least a portion of the liquid fuel to produce vaporized fuel. At least a portion of the vaporized fuel pre-mixes with oxidizer to reduce formation of undesirable emissions.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: January 11, 2011
    Assignee: United Technologies Corporation
    Inventors: Alexander G Chen, Jeffrey M. Cohen
  • Patent number: 7846236
    Abstract: An oxygen generator is controlled to producing oxygen during a period t at a pressure P2 higher than P1, or during a period t? with a flow rate D2 higher than D1, optionally with a pressure P2 higher than P1.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: December 7, 2010
    Assignee: L'Air Liquide Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Pascal Del-Gallo, Guylaine Gouriou
  • Patent number: 7837764
    Abstract: An oxygen exchange manifold converts oxygenate air into an oxygen depleted air stream for use in inerting an otherwise flammable environment. A system including the oxygen exchange manifold may be utilized to inert fuel tanks of an aircraft or another environment. Methods of inerting such environments are also disclosed.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: November 23, 2010
    Assignee: The Boeing Company
    Inventor: William C. Sanford
  • Patent number: 7833314
    Abstract: Purification method and apparatus for purifying a gas stream by oxygen removal. The apparatus includes primary and secondary oxygen separation zones and tubular electrically driven oxygen separation elements. There are more elements in the primary zone than the secondary zone so that low concentrations of oxygen can be obtained in a purified stream and turbulent flow conditions can also be obtained that will permit purification to very low levels. In addition, a junction is provided to connect the tubular separation elements to metallic elements such as manifolds.
    Type: Grant
    Filed: April 30, 2008
    Date of Patent: November 16, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Jonathan Andrew Lane, David M. Reed
  • Patent number: 7828874
    Abstract: An on-board inert gas generation system is disclosed that includes an air separation module that is configured to produce nitrogen enriched air from a non-enriched air. The non-enriched air to the air separation module has a desired operating temperature range. A compressor system is in fluid communication with the air separation module. The compressor system is configured to rotate at a speed and provide the non-enriched air to the air separation module. A controller is in communication with the compressor system and is configured to reduce the speed in response to a parameter reaching an undesired value, which would result in a non-enriched air temperature that would exceed the desired operating temperature range. The reduced speed is selected to maintain the non-enriched air temperature within the desired operating temperature range.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: November 9, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Eric Surawski, Brigitte B. Falke, James P. Hurst
  • Patent number: 7824470
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with a multitude of flow impingement elements which are interleaved to provide a fuel channel with intricate two-dimensional flow characteristics. The flow impingement elements break up the boundary layers and enhance the transport of oxygen from the core of the of the fuel flow within the fuel channel to the oxygen permeable membrane surfaces by directing the fuel flow in a direction normal to the oxygen permeable membrane. The rapid mixing of the relatively rich oxygen core of the fuel with the relatively oxygen-poor flow near the oxygen permeable membrane enhances the overall removal rate of oxygen from the fuel. Because this process can be accomplished in fuel channels of relatively larger flow areas while maintaining laminar flow, the pressure drop sustained is relatively low.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 2, 2010
    Assignee: United Technologies Corporation
    Inventors: Louis Chiappetta, Louis J. Spadaccini, He Huang, Mallika Gummalla, Dochul Choi
  • Patent number: 7815712
    Abstract: The present invention discloses a novel method of making high performance mixed matrix membranes (MMMs) using stabilized concentrated suspensions of solvents, uniformly dispersed polymer stabilized molecular sieves, and at least two different types of polymers as the continuous blend polymer matrix. MMMs as dense films or asymmetric flat sheet or hollow fiber membranes fabricated by the method described in the current invention exhibit significantly enhanced permeation performance for separations over the polymer membranes made from the continuous blend polymer matrix. MMMs of the present invention are suitable for a wide range of gas, vapor, and liquid separations such as alcohol/water, CO2/CH4, H2/CH4, O2/N2, CO2/N2, olefin/paraffin, iso/normal paraffins, and other light gases separations.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: October 19, 2010
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Man-Wing Tang, Stephen T. Wilson, David A. Lesch
  • Patent number: 7811359
    Abstract: A membrane and method for separating carbon dioxide from a mixture of gases, where the membrane includes expanded polytetrafluoroethylene and polysiloxane. The membrane is highly stable and can separate carbon dioxide at high flux in harsh environments and high temperatures, such as exhaust gases from power plants.
    Type: Grant
    Filed: January 18, 2007
    Date of Patent: October 12, 2010
    Assignee: General Electric Company
    Inventors: Kunj Tandon, Umakant Rapol, Ullash Kumar Barik, Rajappan Vetrivel
  • Publication number: 20100251888
    Abstract: An oxygen-ion conducting membrane structure comprising a monolithic inorganic porous support, optionally one or more porous inorganic intermediate layers, and an oxygen-ion conducting ceramic membrane. The oxygen-ion conducting hybrid membrane is useful for gas separation applications, for example O2 separation.
    Type: Application
    Filed: November 14, 2008
    Publication date: October 7, 2010
    Inventors: Curtis Robert Fekety, Yunfeng Gu, Lin He, Youchun Shi, Zhen Song
  • Patent number: 7806967
    Abstract: A fuel cell separator is provided with a separator substrate made of metal which has at least one open portion through which a fluid can pass provided in a predetermined position, and a film coating member that coats a predetermined area including the open portion of the separator substrate. A portion of the film coating member that corresponds to at least a peripheral edge portion of the open portion is adhesion treated.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: October 5, 2010
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tomoharu Sasaoka
  • Patent number: 7806962
    Abstract: The present invention is for novel high performance cross-linkable and cross-linked mixed matrix membranes and the use of such membranes for separations such as for CO2/CH4, H2/CH4 and propylene/propane separations. More specifically, the invention involves the preparation of cross-linkable and cross-linked mixed matrix membranes (MMMs). The cross-linkable MMMs were prepared by incorporating microporous molecular sieves or soluble high surface area microporous polymers (PIMs) as dispersed microporous fillers into a continuous cross-linkable polymer matrix. The cross-linked MMMs were prepared by UV-cross-linking the cross-linkable MMMs containing cross-linkable polymer matrix such as BP-55 polyimide. Pure gas permeation test results demonstrated that both types of MMMs exhibited higher performance for CO2/CH4 and H2/CH4 separations than those of the corresponding cross-linkable and cross-linked pure polymer matrices.
    Type: Grant
    Filed: August 19, 2008
    Date of Patent: October 5, 2010
    Assignee: UOP LLC
    Inventors: Chunqing Liu, Jeffrey J. Chiou, Stephen T. Wilson
  • Publication number: 20100242723
    Abstract: The present invention discloses blend polymer membranes comprising thermally rearranged polymers derived from aromatic polyimides containing ortho-positioned functional groups and methods for making and using these blend polymer membranes. The blend polymer membranes described in the current invention are prepared by heat treatment of blend polymer membranes comprising aromatic polyimides containing ortho-positioned functional groups such as —OH or —SH groups. In some instances, an additional crosslinking step is performed to improve the selectivity of the membrane. These blend polymer membranes have improved flexibility, reduced cost, improved processability, and enhanced selectivity and/or permeability compared to the comparable polymer membranes that comprise a single polymer.
    Type: Application
    Filed: March 27, 2009
    Publication date: September 30, 2010
    Inventors: Chunqing Liu, Man-Wing Tang
  • Publication number: 20100242725
    Abstract: An oxygen scavenger is provided. An oxygen scavenger comprises iron, malic acid, and a wicking agent. A method for scavenging oxygen from an enclosed container comprises providing an oxygen scavenger compound comprising iron, malic acid, and a wicking agent, sealing the composition in an oxygen permeable, water impermeable container, and activating the composition by injecting water into the container.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 30, 2010
    Inventors: Marcus Dukes, John Hart
  • Patent number: 7803214
    Abstract: The present invention relates to an asymmetric hollow-fiber gas separation membrane made of a polyimide having a specific repeating unit, an improved tensile elongation at break of 15% or more as a hollow-fiber membrane itself, an oxygen gas permeation rate (P?O2) of 4.0×10?5 cm3(STP)/cm2·sec·cmHg or more and a gas ratio of permeation rate of oxygen to nitrogen (P?O2/P?N2) of 4 or more that are measured at 50° C., a gas separation method and a gas separation membrane module using the asymmetric hollow-fiber gas separation membrane. In addition, the present invention relates to an asymmetric hollow-fiber gas separation membrane obtained by heat-treating the asymmetric hollow-fiber gas separation membrane at a maximum temperature of from 350 to 450° C. The asymmetric hollow-fiber gas separation membrane has sufficient mechanical strength even after the heat-treatment at a maximum temperature of from 350 to 450° C.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: September 28, 2010
    Assignee: UBE Industries, Ltd.
    Inventors: Yoji Kase, Toshimune Yoshinaga, Kenji Fukunaga, Harutoshi Hoshino
  • Patent number: 7771518
    Abstract: An asymmetric hollow-fiber gas separation membrane is made of a soluble aromatic polyimide that is composed of a specific repeating unit. The tetracarboxylic acid component of the unit has a diphenylhexafluoropropane structure and a biphenyl structure. The diamine component of the unit essentially contains diaminobenzoic acids and any of diaminodibenzothiophenes, diaminodibenzothiophene=5,5-dioxides, diaminothioxanthene-10,10-diones, and diaminothioxanthene-9,10,10-triones.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: August 10, 2010
    Assignee: Ube Industries, Ltd.
    Inventors: Toshimune Yoshinaga, Kenji Fukunaga, Yutaka Kanetsuki, Hiroshi Uchida, Minoru Shigemura, Nozomu Tanihara
  • Patent number: 7771519
    Abstract: Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: August 10, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Christopher Francis Miller
  • Patent number: 7766995
    Abstract: The present invention provides for an improved process for producing ozone which can be used to remove contaminants from gas streams in industrial processes. The improved process uses a separation device after the ozone generating system to separate the ozone from the oxygen gas and directs the ozone to the industrial process and the oxygen back to the feedstream entering the ozone generating system. The improved process further provides for the use of ozone so generated to removed contaminants from industrial process flue gas streams.
    Type: Grant
    Filed: April 10, 2007
    Date of Patent: August 3, 2010
    Assignee: Linde LLC
    Inventors: Naresh J. Suchak, Ravi Jain, Kelly Visconti, Steven Finley
  • Patent number: 7763097
    Abstract: A device for removal of at least a portion of carbon dioxide from an aqueous fluid includes at least one membrane through which carbon dioxide can pass to be removed from the fluid and immobilized carbonic anhydrase on or in the vicinity of a first surface of the membrane to be contacted with the fluid such that the immobilized carbonic anhydrase comes into contact with the fluid. The first surface exhibits carbonic anhydrase activity of at least 20% of maximum theoretical activity of the first surface of the membrane based on monolayer surface coverage of carbonic anhydrase in the case that the carbonic anhydrase is immobilize on the first surface.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: July 27, 2010
    Assignee: University of Pittsburgh—of the Commonwealth System of Higher Education
    Inventors: William J. Federspiel, Alan J. Russell, Heung-Il Oh, Joel L. Kaar
  • Patent number: 7758670
    Abstract: A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: July 20, 2010
    Assignee: Membrane Technology and Research, Inc
    Inventors: Nicholas P. Wynn, Donald A. Fulton, Kaaeid A. Lokhandwala, Jurgen Kaschemekat
  • Patent number: 7749312
    Abstract: An air conditioning system comprising a gas-impermeable wall defining a space for air conditioning, and a selective separating member disposed in the wall as a part of the wall, having a function of allowing preferential permeation of oxygen and carbon dioxide and at the same time, blocking the permeation of hydrocarbon, nitrogen oxide, sulfur oxide and a fine solid component, in which the selective separating member comprises an organic polymer and satisfies the relationship of P1/P2>10 wherein P1 is the permeation coefficient of oxygen and carbon dioxide and P2 is the permeation coefficient of hydrocarbon, nitrogen oxide, sulfur oxide and a fine solid component.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: July 6, 2010
    Assignee: Denso Corporation
    Inventors: Kenji Takigawa, Tetsuo Toyama, Hitoshi Hayashi
  • Publication number: 20100133192
    Abstract: The present invention discloses a new type of high performance polymer membranes prepared from aromatic polyimide membranes by thermal treating and crosslinking and methods for making and using these membranes. The polymer membranes were prepared from aromatic polyimide membranes by thermal treating under inert atmosphere followed by crosslinking preferably by using a UV radiation source. The aromatic polyimide membranes were made from aromatic polyimide polymers comprising both pendent hydroxy functional groups ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone. The membranes showed significantly improved selectivity and permeability for gas separations compared to the aromatic polyimide membranes without any treatment. The membranes can be fabricated into any convenient geometry and are not only suitable for a variety of liquid, gas, and vapor separations, but also can be used for other applications such as for catalysis and fuel cell applications.
    Type: Application
    Filed: March 27, 2009
    Publication date: June 3, 2010
    Inventors: Chunqing Liu, Peter K. Coughlin, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
  • Publication number: 20100133186
    Abstract: In the present invention high performance cross-linked polybenzoxazole and polybenzothiazole polymer membranes and methods for making and using these membranes have been developed. The cross-linked polybenzoxazole and polybenzothiazole polymer membranes are prepared by: 1) first synthesizing polyimide polymers comprising pendent functional groups (e.g., —OH or —SH) ortho to the heterocyclic imide nitrogen and cross-linkable functional groups in the polymer backbone; 2) fabricating polyimide membranes from these polymers; 3) converting the polyimide membranes to polybenzoxazole or polybenzothiazole membranes by heating under inert atmosphere such as nitrogen or vacuum; and 4) finally converting the membranes to high performance cross-linked polybenzoxazole or polybenzothiazole membranes by a crosslinking treatment, preferably UV radiation. The membranes can be fabricated into any convenient geometry.
    Type: Application
    Filed: March 27, 2009
    Publication date: June 3, 2010
    Inventors: Chunqing Liu, Man-Wing Tang, Raisa Serbayeva, Lubo Zhou
  • Patent number: 7722701
    Abstract: The subject of the invention is method and envelope structure for handling gas diffusion of airships and other balloons to significantly decrease, respectively fully eliminate envelope diffusion of gases through envelopes of airships and other balloons. During the method according to the invention the gases diffused through the envelope (8, 9) of airships and other balloons are collected into a separator space (2). These gases are separated from the mixture of this separator space by physical and/or chemical action and forwarded back to their sources. The invention is further an envelope structure for handling gas diffusion of airships and other balloons for applying methods according to the invention.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 25, 2010
    Inventor: Imre Nehez
  • Patent number: 7717983
    Abstract: An air separation module comprising a bundle of hollow elongated membranes, and a pressure vessel enclosing the bundle. The pressure vessel includes an outer tube, end caps at opposite ends of the tube, and an inner tube located within the fiber bundle. The inner tube is fixedly mechanically connected at opposite ends to the end caps to form a structural spine of the pressure vessel, whereby loads acting on the air separation module are transferred between the end caps primarily by the center tube.
    Type: Grant
    Filed: October 18, 2006
    Date of Patent: May 18, 2010
    Assignee: Parker-Hannifin Corporation
    Inventors: Dan Semmere, Dan E. Linker, Scott D. Pearson
  • Publication number: 20100116132
    Abstract: A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.
    Type: Application
    Filed: November 12, 2008
    Publication date: May 13, 2010
    Inventors: Chad L. Staiger, Mark R. Vaughn, A. Keith Miller, Christopher J. Cornelius
  • Patent number: 7708810
    Abstract: A gas permeable, carbon based, nanocomposite membrane comprises a nanoporous carbon matrix comprising a pyrolyzed polymer, and a plurality of nanoparticles of carbon or an inorganic compound disposed in the matrix. The matrix is prepared by pyrolyzing a polymer, and nanoparticles of the particulate material are disposed in the polymer prior to pyrolysis. The particles may be disposed in a precursor of the polymer, which precursor is subsequently polymerized, or in the polymer itself.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: May 4, 2010
    Assignee: The Penn State Research Foundation
    Inventors: Henry C. Foley, Ramakrishnan Rajagopalan, Anna R. Merritt
  • Patent number: 7708811
    Abstract: A degassing apparatus is provided that accomplishes the connecting of a degassing element and a connecting member and/or the joining of a vacuum (reduced-pressure) chamber and the connecting member without using a fastening structure screwed together with the connecting member. A degassing apparatus includes: a reduced-pressure chamber having a through port for flowing a degassing target liquid therethrough; a degassing element, accommodated in the chamber, for passing the liquid therethrough; and a tubular connecting member joined to the chamber at the through port. The degassing element includes a gas-permeable tube, for passing the liquid therethrough, being covered with a joint piece at an end portion of the gas-permeable tube. The degassing element is fixed to the chamber by heat sealing the connecting member and the joint piece together.
    Type: Grant
    Filed: May 1, 2007
    Date of Patent: May 4, 2010
    Assignee: Nitto Denko Corporation
    Inventor: Hajime Ooya
  • Patent number: 7699911
    Abstract: Ozone resistant O2/N2 gas separation membranes comprise a polymer membrane and an ozone reacting component, such as an antioxidant. The antioxidant may be included in the support layer of a composite membrane or included in the entire structure of an asymmetric membrane. The antioxidants in the separation membrane reduce oxidation and deterioration of the actual separation layer of the membrane.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: April 20, 2010
    Assignee: Honeywell International Inc.
    Inventors: Shaojun J. Zhou, Stephen F. Yates
  • Patent number: 7686867
    Abstract: A degasifier is provided in which the deterioration in sealing property (deterioration in airtightness) is prevented while sealing members to be placed between a container and covers that compose a decompression chamber can be omitted. A degasifier includes a decompression chamber provided with a container and covers, and a gas-permeable tube. The container is a tubular body extending along the central axis. The covers seal the openings of the ends of the tubular body. The gas-permeable tube is contained in the decompression chamber in such a manner that a liquid to be degassed that has entered from the outside of the decompression chamber flows therethrough and the liquid to be degassed that has flowed therethrough flows out of the decompression chamber.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: March 30, 2010
    Assignee: Nitto Denko Corporation
    Inventor: Hajime Ooya
  • Patent number: 7682422
    Abstract: A method for separating and recovering oxygen-rich air from the air, comprising, using a gas separation membrane module where a laminate consisting of a permeate-side spacer for forming a permeate gas channel communicated with a hollow section in a core tube for collecting and discharging a permeate gas and two flat-film gas separation membranes sandwiching the spacer and a feed-side spacer for forming a feed gas channel are spirally wound around the core tube such that the laminate and the feed-side spacer are alternately superimposed, vacuuming the hollow section of the core tube to 95 kPaA (absolute pressure) or less by vacuuming means while feeding the air into the feed gas channel by air feed means such that a maximum feed-air flow rate and a maximum static pressure divided by an effective membrane area of the gas separation membrane are 100 m3/min·m2 or less and 4000 Pa/m2 or less, respectively, to separate and recover oxygen-rich air from the hollow section of the core tube.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: March 23, 2010
    Assignee: UBE Industries, Ltd.
    Inventor: Nozomu Tanihara