Injection, Per Se, Without Separation Patents (Class 95/89)
  • Patent number: 11275066
    Abstract: A liquid chromatograph that ionizes a sample eluted from a column 113 using an ionization probe 211 connected to the column 113 and analyzes the sample using an ion analyzer 200, the liquid chromatograph includes: a column oven 114 in which the column 113 is accommodated; and a guide mechanism 1, 1141a that is provided inside the column oven 114, permits the column 113 to move in a predetermined direction following movement of the ionization probe 211, and regulates movement in other directions.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: March 15, 2022
    Assignee: SHIMADZU CORPORATION
    Inventor: Wataru Fukui
  • Patent number: 10466264
    Abstract: A dispensing assembly comprising a cartridge holder is presented. The cartridge holder can receive a cartridge for dispensing a fluid. The cartridge can comprise a reservoir for receiving the fluid. The reservoir can comprise an outlet. The reservoir can have an adjustable volume for forcing the fluid through the outlet. The cartridge can further comprise a nozzle for dispensing the fluid. The nozzle can be connected to the outlet. The dispensing assembly can further comprise an actuator for actuating the adjustable volume. The dispensing assembly can further comprise an impulse generator for imparting an impulse to the nozzle. The impulse generator can comprise an actor for contacting the nozzle. The dispenser assembly can further comprise a controller for controlling the actor and the impulse generator.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: November 5, 2019
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Stefan Borja Bammesberger, Andreas Ernst, Peter Koltay, Nadine Losleben, Laurent Tanguy
  • Patent number: 9027421
    Abstract: A liquid-metering device comprising a droplet generator including a reservoir and, connected to the latter, a displacement space which is modifiable by an electromechanical transducer and which has an outlet opening and, upon excitation of the transducer, shoots a liquid droplet from a cold area into a heatable area through or counter to a gas stream generated by a gas source. To make the device suitable for automatic and quasi-continuous liquid metering in process analysis, a heatable evaporation chamber is provided through which the liquid to be metered flows via valves, and, between the evaporation chamber and the reservoir, a condensate chamber is connected via further valves. The condensate chamber and the reservoir are connected via additional valves and a pressure regulator to the gas source.
    Type: Grant
    Filed: December 21, 2010
    Date of Patent: May 12, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Udo Gellert
  • Publication number: 20150059439
    Abstract: Certain embodiments described herein are directed to chromatography systems that include a microfluidic device configured to provide three-way switching or switching between three or more inputs or outputs. The microfluidic device can be fluidically coupled to one or more switching valves to provide for selective control of fluid flow in the chromatography system.
    Type: Application
    Filed: August 4, 2014
    Publication date: March 5, 2015
    Inventor: Andrew Tipler
  • Patent number: 8882894
    Abstract: The invention relates to a vaporization injector for a gas chromatograph, said injector comprising a structure (11) mounted in a detachable manner on the gas chromatograph body and including the sample introduction means, the vaporization chamber and pneumatic connections for feeding the carrier gas to the vaporization chamber and to the septum purge means, as well as pneumatic connections for evacuating the splitted sample and carrier gases.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: November 11, 2014
    Assignee: Thermo Fisher Scientific S.p.A.
    Inventors: Stefano Pelagatti, Eric Phillips, Paolo Magni
  • Patent number: 8845794
    Abstract: A non-seizing taper used for purged capillary tubing connections in gas chromatography that stops capillary tubing at a predictable position within the taper during installation and maintains space for gas to flow past the capillary tubing. The disclosed taper is an improved component of commonly used purged devices such as inlet liners and purged unions. The arresting aspect of the taper simplifies the process of capillary tubing installation while ensuring that the tubing will reproducibly be positioned in the taper. One or more features of the taper prevent tubing from seizing within the taper so that the devices can be reused and ensure that there is open space for a portion of gas to flow around and past the tubing. The angle of the taper, the dimensions of the taper, and the nature of the features within the taper can be adjusted to meet specific performance, usability and/or manufacturability requirements.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: September 30, 2014
    Inventor: Matthew Spangler Klee
  • Patent number: 8784543
    Abstract: A non-seizing taper used for purged capillary tubing connections in gas chromatography that stops capillary tubing at a predictable position within the taper during installation and maintains space for gas to flow past the capillary tubing. The disclosed taper is an improved component of commonly used purged devices such as inlet liners and purged unions. The arresting aspect of the taper simplifies the process of capillary tubing installation while ensuring that the tubing will reproducibly be positioned in the taper. One or more features of the taper prevent tubing from seizing within the taper so that the devices can be reused and ensure that there is open space for a portion of gas to flow around and past the tubing. The angle of the taper, the dimensions of the taper, and the nature of the features within the taper can be adjusted to meet specific performance, usability and/or manufacturability requirements.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 22, 2014
    Inventor: Matthew Spangler Klee
  • Patent number: 8470072
    Abstract: The pressure of a carrier gas entering a gas chromatography (GC) column is controlled by increasing or decreasing the gas pressure over a pressure change cycle by which a desired gas pressure is obtained while avoiding pressure pulses in the column. The pressure change cycle may follow a function that dictates the rate of pressure change. A gas flow controller that controls the gas pressure at the inlet or head of the column may be operated to implement the pressure change cycle. The gas flow controller may be controlled by an electronic controller.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: June 25, 2013
    Assignee: Bruker Daltonik, GmbH
    Inventor: Norbert Alfred Reuter
  • Patent number: 8366814
    Abstract: A gas chromatography inlet liner comprises a glass tube formed by a glass wall, the glass wall having pore channels formed therein, and an indicator present in the pore channels in at least part of the inlet liner. The indicator may be any element, compound, dopant, or mixture additive that modifies color or transparency of the inlet liner.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 5, 2013
    Assignee: Restek Corporation
    Inventors: Brian A. Jones, Thomas E. Kane
  • Patent number: 8343258
    Abstract: A device for providing a constant mass flow rate to a downstream column system of a gas chromatograph includes a small full scale mass flow controller that controls carrier gas to flow at a first mass flow rate and a flow resistance element, including an inlet port connected to a sample inlet, an outlet port connected to the downstream column system, and a pressure sensing port in fluid communication with the outlet port and the mass flow controller. A sample inlet pressure controller controls the sample inlet at a first pressure, and a pressure sensor measures a second pressure of the carrier gas at the pressure sensing port. A set point of the first pressure is determined as a function of the second pressure, flow resistance of the flow resistance element, and a second mass flow rate from the inlet port to the outlet port of the flow resistance element.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: January 1, 2013
    Assignee: Agilent Technologies, Inc.
    Inventor: Xiaosheng Guan
  • Patent number: 8308854
    Abstract: A system for recycling helium carrier gas comprises: a bladder, the bladder interior fluidically configured so as to receive helium-bearing gas output from at least one of a split vent and a septum purge vent of a gas chromatograph; a compartment containing the bladder; a source of pressurized air or gas operable so as to supply pressurized air or gas into the compartment interior so as to compress the bladder containing the helium-bearing gas; a gas reservoir fluidically coupled to the bladder interior so as to receive the helium bearing gas from the compressed bladder interior; and at least one gas purification module configured so as to receive the helium-bearing gas from the gas reservoir and operable to remove contaminants from the helium-bearing gas, an output of the at least one gas purification module being fluidically coupled to a carrier gas inlet of the gas chromatograph.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 13, 2012
    Assignee: Thermo Finnigan LLC
    Inventors: Edward B. McCauley, Matt A. Lasater
  • Patent number: 8240334
    Abstract: An arrangement for metering a gaseous sample in a carrier gas stream has a sample gas path and a carrier gas path, both paths being connected to a carrier gas source. By introducing different pressures into the sample gas path and the carrier gas path, a metered amount is extracted from a sample slug and diverted into the carrier gas stream via a connection gas path through the carrier gas path. The sample gas path has two flow resistances in front of and behind a branch point of a connection gas path. One resistance lies between the carrier gas source and a metering unit and a gas volume of the sample gas path between the branch point of the connection gas path and the other flow resistance is dimensioned such that the sample slug only reaches the second resistance after extraction and diversion of the metered amount.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: August 14, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Udo Gellert
  • Patent number: 8192692
    Abstract: A sorption liner (100) has a sorbent material coating (150) on an inside surface (106). Sample components are adsorbed on the coating (150), the liner (100) is attached to an analytical device, such as a gas chromatograph, and the components desorbed.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: June 5, 2012
    Assignee: VICI Gig Harbor Group, Inc.
    Inventors: Robert H. Wohleb, Martin Okiro
  • Patent number: 8178047
    Abstract: An apparatus, according to one aspect, may include a chromatograph and a bulk acoustic resonator. The chromatograph may include a channel that is defined at least partially in a monolithic substrate. The channel may have an inlet to receive a sample and an outlet. A chromatography material may be included in the channel. The bulk acoustic resonator may have a first electrode and a second electrode that has a chemically functionalized surface. The chemically functionalized surface may be included in a chamber that is defined at least partially in the monolithic substrate and that is coupled with the outlet of the channel. Methods of making and using such apparatus, and systems including such apparatus, are also disclosed.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: May 15, 2012
    Assignee: Intel Corporation
    Inventors: Li-Peng Wang, Qing Ma
  • Publication number: 20120048108
    Abstract: Methods and related systems are described for improving component separations in chromatography through novel techniques. The improvements in separation is due primarily to the provision of differential acceleration of the components being separated. Various systems and methods for providing differential acceleration are described including: increasing the cross section of the column towards the column outlet, changing the thickness or other composition of stationary phase within the column, and providing a temperature and/or mobile phase velocity gradient along the column.
    Type: Application
    Filed: November 7, 2011
    Publication date: March 1, 2012
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: William H. Steinecker, Jagdish Shah, Oleg Zhdaneev, Gordon R. Lambertus, Hua Chen
  • Patent number: 7959865
    Abstract: The invention relates to a miniaturized gas chromatograph and injector for the same. Said micro-GC is compact and simple and economical to construct. Dead volumes are largely avoided in order to achieve reliable and reproducible measured results. Said miniaturized gas chromatograph comprises at least one injector, one separation column and a detector which are combined on a circuit board to give a gas chromatography module. The injector comprises a first sheet with channels, which is provided with a second sheet with channels and which may be displaced relative to the latter, whereby at least one of the sheets is provided with a layer of plastic, in particular a chemically inert plastic on the side of the sheet facing the other side.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: June 14, 2011
    Assignee: SLS Micro Technology GmbH
    Inventors: Tobias Schmidt, Mathias Mahnke, Uwe Lehmann
  • Patent number: 7928370
    Abstract: An open probe method for sample introduction into a mass spectrometer is disclosed, comprising the steps of: loading a sample holder with sample compounds to be analyzed; heating a probe oven; introducing said sample compounds in said sample holder into said heated probe oven; flowing inert gas into said heated probe oven; vaporizing said sample in said heated probe oven by the combined effect of oven temperature and inert gas flow; entraining said vaporized sample in said inert gas; and, transferring said vaporized sample in inert gas into an ion source of a mass spectrometer; wherein said heated probe oven remains open to the ambient atmosphere during sample introduction and analysis; said inert gas is flowing in said heated probe oven in two directions of a transfer line to a mass spectrometer ion source and to the oven opening; said vaporized sample in inert gas is transferred through a heated transfer line directly into the ionization chamber of an ion source of a mass spectrometer.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: April 19, 2011
    Assignee: Aviv Amirav
    Inventors: Aviv Amirav, Alexander Gordin
  • Patent number: 7791042
    Abstract: An ion source includes structure having separate first and second ion volumes therein, and electron source structure having first and second portions that selectively supply electrons to the first and second ion volumes, respectively. The electron source structure has a first operational mode in which the second portion substantially prevents a supply of electrons to the second ion volume and in which electrons are supplied to the first ion volume under control of the first portion, and has a second operational mode in which the first portion substantially prevents a supply of electrons to the first ion volume and in which electrons are supplied to the second ion volume under control of the second portion.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: September 7, 2010
    Assignee: Thermo Finnigan LLC
    Inventors: Edward B. McCauley, Scott T. Quarmby
  • Patent number: 7695681
    Abstract: An apparatus, according to one aspect, may include a chromatograph and a bulk acoustic resonator. The chromatograph may include a channel that is defined at least partially in a monolithic substrate. The channel may have an inlet to receive a sample and an outlet. A chromatography material may be included in the channel. The bulk acoustic resonator may have a first electrode and a second electrode that has a chemically functionalized surface. The chemically functionalized surface may be included in a chamber that is defined at least partially in the monolithic substrate and that is coupled with the outlet of the channel. Methods of making and using such apparatus, and systems including such apparatus, are also disclosed.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 13, 2010
    Assignee: Intel Corporation
    Inventors: Li-Peng Wang, Qing Ma
  • Patent number: 7585357
    Abstract: A new septum for multiple use injection ports enabling the introduction of fluid materials by needle injection into a gas chromatograph or other system under positive pressure. The injection port utilizes a special septum to seal the port while accommodating passage of an injection needle. The septum is provided with an axial through passage, preferably of greater diameter than the injection needle. The septum, which is formed of elastomeric material, is placed under axial compression sufficient to inwardly displace the material surrounding the preformed opening, to tightly close and seal the opening against the pressure of the system. The septum may be penetrated multiple times by injection needles without coring or otherwise damaging the septum. Greater operating life is achieved and contamination of the system is minimized.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: September 8, 2009
    Assignee: Pawling Corporation
    Inventors: Douglas E. Tanner, Craig Busby, Albert J. Corey
  • Patent number: 7572319
    Abstract: An analyte pre-concentrator for gas chromatography is disclosed generally comprising a tube packed with an adsorbent, wherein the tube may serve as the liner of a chromatographic injector, as an adsorbent trap coupled to a chromatographic column, and/or as an adsorbent trap coupled to a headspace sampler. Preferably, a heating device allows the tube to be heated. In a preferred embodiment, the analyte pre-concentrator further comprises a column isolating accessory so that a chromatographic column can be temporarily isolated from substances flowing through the tube.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: August 11, 2009
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Gary Campbell, Mark Collins
  • Publication number: 20090101017
    Abstract: Disclosed is a gas flow path switching unit including a gas passage section with a target gas passage for allowing said target gas to pass therethrough. The target gas passage includes a main passage having a proximal end serving as said gas inlet and a number n of branch passages each provided with a respective gas outlet at a terminal end thereof. The branch passages are formed by repeating two or more times a branching process of branching said main passage into two sub passages at a branch point at a distal end of said main passage and further branching at least one of said sub passages into two sub-sub passages at a branch point defined by a distal end of said sub passage. The target gas passage also includes at least a number n of switching-gas supply passages connected to respective intermediate positions of said n branch passages.
    Type: Application
    Filed: May 8, 2008
    Publication date: April 23, 2009
    Applicant: SHIMADZU CORPORATION
    Inventor: Masanao FURUKAWA
  • Patent number: 7517395
    Abstract: An inlet assembly for introducing a sample into a carrier gas stream for gas chromatography is disclosed including a housing having a bore that receives a liner. A sealing member having a core with a surface layer is positioned within the bore in sealing engagement with the bore and the liner. The surface layer of the sealing member has a lower adhesion to the housing than the core. The surface layer facilitates removal of the sealing member and the liner from the bore. A method of replacing an existing liner in an inlet assembly for chromatography is also disclosed. The method includes providing a liner with a sealing member having a core with a surface layer having a lower adhesion to the housing than the core, removing the existing liner from the bore and inserting a new liner with a new sealing member into the bore.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: April 14, 2009
    Assignee: Agilent Technologies, Inc.
    Inventor: Thomas M. Logan
  • Patent number: 7384457
    Abstract: A seal forming a fluid tight connection between a gas chromatography column and a sample inlet assembly is disclosed. The seal is formed by a metal injection molding process. The seal has a first surface adapted for sealing with the sample inlet assembly and a second surface adapted for sealing with the column. The seal has an aperture extending between the first and second surfaces. A method of sealing a connection between a gas chromatography sample inlet assembly and a gas chromatography column is also disclosed. The method includes providing a seal as described above, compressing the first surface of the seal against an end of the inlet assembly, positioning the column in fluid communication with the aperture, and engaging the column with the second surface.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: June 10, 2008
    Assignee: Agilent Technologies, Inc.
    Inventors: William James Emmons, Wesley Miles Norman, Matthew S. Klee
  • Patent number: 7360394
    Abstract: A multi-purpose modular pyrolysis and thermal processing system (MPMPTPS) for pyrolyzing and/or vaporizing liquids and solids to create an evolved vapor suitable for introduction into a gas-chromatography and/or vapor detection system, thereby allowing detection, classification and/or identification characteristics of threat agents. The MPMPTPS system is capable of pyrolyzing and/or vaporizing liquid (in solution, suspension or colloidal form) and solid (in aerosol or powder form) form of biological and chemical threat agents in a manner that the evolved vapor may be introduced into Gas-Chromatography systems and/or vapor detection systems, without the use of any reagents and/or bottled gases.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: April 22, 2008
    Inventors: Dhirajlal G. Parekh, Waleed Maswadeh, Amit Limaye
  • Patent number: 7316730
    Abstract: An inlet seal assembly for sealing an injection port member in a chromatography instrument , comprising an injection port member having a raised metal ring, an inlet seal member with an upper surface, a peripheral groove formed in the inlet seal member upper surface, a soft resinous plastic material ring positioned in the peripheral groove opposite the raised metal sealing ring, a reducing nut holding the inlet seal member against the injection port member, and threads connecting the reducing nut to the injection port member whereby to press the soft ring against the raised metal sealing ring to form a seal. The inlet seal assembly also may have a bottom seal between the inlet seal member and the reducing nut. A method of making and using the inlet seal assembly.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: January 8, 2008
    Assignee: Restek Corporation
    Inventors: Bradley R. Rightnour, Michael A. Goss, Paul H. Silvis, Christopher S. Cox
  • Patent number: 7311757
    Abstract: An analyte pre-concentrator for gas chromatography is disclosed generally comprising a tube having a restricted outlet and packed with an adsorbent, wherein the tube serves as the liner of a chromatographic injector, as an adsorbent trap coupled to a chromatographic column, and/or as an adsorbent trap coupled to a headspace sampler. Preferably, a heating device allows the tube to be heated. In a preferred embodiment, the analyte pre-concentrator further comprises a column isolating accessory so that a chromatographic column can be temporarily isolated from substances flowing through the tube.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: December 25, 2007
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Gary Campbell, Mark Collins
  • Patent number: 7306649
    Abstract: The present invention relates to a three dimensional preconcentrator and inlet heater. The preconcentrator consists of a substrate with passageways, a conductive material coated to the top and the bottom of the substrate and an adsorbent coating covering the entire substrate. This substrate is suspended in a holding frame by a connecting bridge. The preconcentrator may also include a resistor and a proportional-integral-differential controller. The device may be used inline with a detector and can be retrofitted to existing devices. An array of preconcentrators may also be formed. The invention also relates to methods of use of the preconcentrator and methods of manufacture. A method of use includes contacting an analyte and a preconcentrator, allowing the analyte to adsorb to the preconcentrator and then desorbing the analyte. A method of manufacture involves applying the adsorbent coating by misted chemical deposition.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: December 11, 2007
    Assignee: Advance Nanotech, Inc.
    Inventors: Paul Boyle, David Ruiz-Alonso, Andrew Koehl, Martyn Rush, Russell Parris, Ashley Wilks
  • Patent number: 7273518
    Abstract: An inlet includes a bottom assembly and a top assembly. The bottom assembly includes at least one male unit, and the top assembly has at least one beveled surface and includes at least one female unit and a lateral driving unit. The top assembly is placed inside the bottom assembly by aligning the female unit of the top assembly with the male unit of the bottom assembly. The lateral driving unit laterally drives the top assembly and causes the beveled surface of the top assembly to rise against the male unit of the bottom assembly, allowing the top assembly to seal with the bottom assembly.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: September 25, 2007
    Assignee: Agilent Technologies Inc.
    Inventors: Wei-Liang Song, Lee Xu, Guo-Chen He
  • Patent number: 7247189
    Abstract: A fluidic switching device is particularly for use in chromatography is described. The device allows a rapid switching between chromatographic columns; particularly, in gas chromatography.
    Type: Grant
    Filed: May 6, 2004
    Date of Patent: July 24, 2007
    Assignee: Oakland University
    Inventor: John V. Seeley
  • Patent number: 7221861
    Abstract: The present invention provides universal transfer apparatus and method to use this universal transfer apparatus. This invention further provides a method to obtain speciation data for organometals in a complex matrix, such as cigarette smoke. Our data demonstrate that gas chromatography linked to inductively coupled plasma mass spectrophotometer with the universal transfer apparatus provides metal speciation information for samples of tobacco smoke. The organometals include lead, tin, arsenic and cadmium.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: May 22, 2007
    Assignee: Arkasas State University - Research and Development Institute (ASU-RDI)
    Inventors: Robyn Hannigan, David Clarke
  • Patent number: 7157055
    Abstract: The invention relates to an apparatus for sample preparation and/or sample delivery for an injection system of a chromatograph, having a magazine (1), which can be moved in steps, for juxtaposed sample tubes (2), and having a lifting device (6) which can be moved between two end positions perpendicular to the transport direction of the magazine (1) via a motor (11) and bears a gripper (7) for a sample tube (2), as well as having a transfer device for a sample tube (2), the lifting device comprising at least one telescopic threaded cylinder (8) which bears the gripper (7) and has a plurality of nested threaded cylinders with an inner threaded cylinder (8a) and an outer threaded cylinder (8d) of which one is arranged non-rotatably relative to the magazine (1), while the other can be rotated by the motor (11).
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: January 2, 2007
    Assignee: Gerstel Systemtechnik GmbH & Co.
    Inventor: Bernhard Rose
  • Patent number: 6955709
    Abstract: This invention concerns a method and apparatus for vaporization injection of large volumes of liquid sample (substance to be analysed+solvent) introduced by a syringe needle into a heated vaporization chamber which is part of an injector coupled operatively to a device for gas chromatographic analysis. The sample is sent in the form of a liquid band traveling through the vaporization chamber at high speed until it reaches a stopping and vaporization device positioned adjacent to the inlet of a capillary to collect the vapors. In order to inject large volumes without modifying the vaporization chamber and without partial losses of the samples, the sample vapors, in splitless mode, are drawn up from the vaporization chamber into the capillary by virtue of the local action of volume contraction caused by recondensation of at least the solvent vapors in the capillary.
    Type: Grant
    Filed: December 19, 2002
    Date of Patent: October 18, 2005
    Assignee: Thermo Electron S.p.A.
    Inventor: Paolo Magni
  • Publication number: 20040187682
    Abstract: This invention concerns a method and apparatus for vaporization injection of large volumes of liquid sample (substance to be analysed + solvent) introduced by means of the needle of a syringe onto a heated vaporization chamber which is part of an injector applied to a device for gas chromatographic analysis, the sample being sent in form of a liquid band travelling through said vaporization chamber at high speed until reaching stopping and vaporization means positioned adjacent to the inlet of a capillary to collect the vapours.
    Type: Application
    Filed: July 30, 2003
    Publication date: September 30, 2004
    Applicant: Thermo Finnigan Italia S.p.A.
    Inventors: Paolo Magni, Thomas Porzano
  • Patent number: 6779379
    Abstract: The invention concerns a device for vaporizing injections of samples into a gas chromatography analysis device, comprising a vaporization chamber elongated lengthways and heated, as well as a syringe equipped with a needle, the device being of the type in which the introduction of the sample is carried out without prior vaporization of the sample within the needle, and also foresees at least one stop and vaporization means for the liquid inside the vaporization chamber. To improve the conditions of vaporization and the transfer of the sample, the distance between the free end of the needle and the stated stop and vaporization means for the liquid is greater than 55 mm (FIG. 1).
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: August 24, 2004
    Assignee: Thermo Finnigan Italia S.p.A.
    Inventors: Konrad Grob, Fausto Munari, Paolo Magni
  • Patent number: 6719826
    Abstract: A method and an apparatus for sample injection in gas chromatography increases the injecting volume of a sample, and can analyze any of high-boiling-point compounds, low-compounds boiling-point compounds, and compounds decomposed by heat. A sample is injected into a vaporizing chamber 6 having curved or crooked outer wall 6G and sample path S and formed of continuous inner walls 6H; the sample is temporarily held in the vaporizing chamber 6; then an objective compound is vaporized, and introduced into a separation column 17.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: April 13, 2004
    Assignee: Saika Technological Institute Foundation
    Inventors: Ryoichi Sasano, Motoaki Satoh, Yutaka Nakanishi
  • Publication number: 20040050251
    Abstract: This invention concerns a method and apparatus for vaporization injection of large volumes of liquid sample (substance to be analysed+solvent) introduced by means of the needle of a syringe onto a heated vaporization chamber which is part of an injector applied to a device for gas chromatographic analysis, the sample being sent in form of a liquid band travelling through said vaporization chamber at high speed until reaching stopping and vaporization means positioned adjacent to the inlet of a capillary to collect the vapours. In order to inject large volumes without modifying the vaporization chamber and without samples parts losses, in splitless mode, a drawing up of the sample vapours from the vaporization chamber into said capillary is made by means of a local action of volume contraction, caused by recondensation of at least the solvent vapours in this capillary, said capillary being in the form of a pre-column with no stationary phase, maintained at low temperature at least during the injection.
    Type: Application
    Filed: July 30, 2003
    Publication date: March 18, 2004
    Inventor: Paolo Magni
  • Patent number: 6706091
    Abstract: A sub- to super-ambient temperature programmable microfabricated gas chromatography column enables more efficient chemical separation of chemical analytes in a gas mixture by combining a thermoelectric cooler and temperature sensing on the microfabricated column. Sub-ambient temperature programming enables the efficient separation of volatile organic compounds and super-ambient temperature programming enables the elution of less volatile analytes within a reasonable time. The small heat capacity and thermal isolation of the microfabricated column improves the thermal time response and power consumption, both important factors for portable microanalytical systems.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: March 16, 2004
    Assignee: Sandia Corporation
    Inventors: Alex L. Robinson, Lawrence F. Anderson
  • Publication number: 20040007129
    Abstract: To provide a method and an apparatus for sample injection in gas chromatography that can significantly increase the injecting volume of a sample, and can analyze any of high-boiling-point compounds, low-boiling-point compounds, and compounds decomposed by heat at a high accuracy.
    Type: Application
    Filed: July 15, 2002
    Publication date: January 15, 2004
    Inventors: Ryoichi Sasano, Motoaki Satoh, Yutaka Nakanishi
  • Patent number: 6662626
    Abstract: An assembly for desorbing sampling tubes comprises a gas chromatograph known per se provided with an injector. The sampling tubes are provided with an inflow opening and an outflow opening. The assembly comprises an adapter which is placed in the injector and which is provided with a chamber which is bounded by a heat conducting housing. The adapter is arranged for placing a sampling tube in the chamber thereof, while in a condition of a sampling tube wherein it is placed in the adapter, the inflow opening thereof is in fluid communication with a first carrier gas supply duct, while the outflow opening of the sampling tube is in fluid communication via the injector with a gas chromatography column disposed in the gas chromatograph.
    Type: Grant
    Filed: June 20, 2002
    Date of Patent: December 16, 2003
    Assignee: SGT Exploitatie
    Inventor: Marinus Frans van der Maas
  • Patent number: 6638346
    Abstract: A vaporization injector for gas chromatography analysis instruments, of the type including a vaporization chamber, heated or which may be heated, with a longitudinally elongated shape, a device for hermetically inserting the needle of a syringe containing the sample (substance to be analysed and solvent) into the chamber, a connection for feeding a carrier gas into the chamber and a gas chromatography capillary column with an upstream end open inside the vaporization chamber. In order to allow the vaporization of large sample volumes, the upstream end of the gas-chromatography column and the injection point of the sample into the vaporization chamber are both arranged adjacent to one of the longitudinal ends of the vaporization chamber and the feed connection for the carrier gas is located adjacent to the other end.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: October 28, 2003
    Assignee: Thermo Finnigan Italia S.p.A.
    Inventors: Paolo Magni, Fausto Munari, Konrad Grob
  • Patent number: 6623545
    Abstract: An extraction device for liquid—liquid extraction of at least one analyte from a sample and on-line transfer of the analyte(s) to a gas chromatography extraction unit, a sample inlet, a sample outlet, and an organic liquid inlet, wherein the extraction device also includes a needle to be connected with a gas chromatography apparatus injector for the on-line transfer of the analyte(s) from the membrane-based extraction unit to the gas chromatography apparatus via the needle, an organic liquid being immobilized as a stagnant phase in a volume of less than 20 &mgr;l in the membrame-based extraction unit.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: September 23, 2003
    Assignee: Esytech AB
    Inventors: Eddie Thordarson, Jan Norberg
  • Patent number: 6575014
    Abstract: A micro-machined back-flush injector that allows for a sample introduced into the injector to be properly injected into a gas chromatography apparatus in a short time period of between 10 and 100 milliseconds. A micro-machined injector having back-flushing capability that allows back-purging of unwanted components in the device and provides clean-up of channels in contact with the sample. Further, a method of operating an injector such that a sample is properly injected and purged from the system to which the injector is operably attached.
    Type: Grant
    Filed: June 1, 2001
    Date of Patent: June 10, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Chi K. Lo, Tak K. Wang
  • Patent number: 6565634
    Abstract: A replaceable injection liner for a gas chromatograph is disclosed having a laterally extending external flange at its input end against which an injection septum is placed. A closure cap is positioned over and around the external flange and the injection septum to seal the septum against the flange, the septum closing and sealing the input end of the injection liner. The liner has a seal positioned beyond the flange to seal the interior surface of the injector and isolate it from the atmosphere and the injector's internal pressure.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: May 20, 2003
    Assignee: Atas International BV
    Inventor: Wil van Egmond
  • Patent number: 6541272
    Abstract: An apparatus and method for separating and analyzing a component of a fluid sample that is considered to be a contaminant, and particularly, that is or may be an organic material. The invention is predicated on the introduction of the sample fluid in a pulsed manner via a first carrier fluid into a feed chamber. A membrane is located between the feed chamber and an exit chamber, and in fluid registry therewith. When the sample enters the feed chamber, the component to be separated and analyzed can permeate the membrane, and thus passes through the membrane to the exit chamber, and then enters a second carrier fluid which carries it to a detector for analysis. The detector may be a gas chromatograph (GC), mass spectrometer (MS) or the like.
    Type: Grant
    Filed: December 31, 1998
    Date of Patent: April 1, 2003
    Assignee: New Jersey Institute of Technology
    Inventor: Somenath Mitra
  • Patent number: 6537827
    Abstract: A device for carrying out solid phase microextraction is a fiber contained in a syringe. When it is desired to analyze a sample in a bottle having a septum, the needle is inserted through the septum and the plunger is depressed so that the fiber will extend into the sample. After one or two minutes, the plunger is moved to the withdrawn position so that the fiber will return to the needle and the syringe is withdrawn from the sample bottle. The syringe is then inserted through a septum in a gas injection port of a gas chromatograph. The plunger is again depressed so that the fiber will extend into the gas chromatograph and an analysis of the components on the fiber is carried out. Then, the plunger is moved to the withdrawn position and the syringe is withdrawn from the injection port.
    Type: Grant
    Filed: January 7, 1999
    Date of Patent: March 25, 2003
    Inventor: Janusz B. Pawliszyn
  • Patent number: 6498042
    Abstract: A sample inlet liner includes a novel matrix that serves to retain an injected sample. The preferred inert matrix is polytetrafluoroethylene (PTFE) that serves to retain an injected sample and is provided in lieu of a conventional packing material. The contemplated inert matrix may be selected from a range of configurations of PTFE so as to provide a supporting material capable of retaining an ample quantity of injected sample in the sample inlet liner. The contemplated matrix nonetheless provides a tortuous path for the retained quantity of injected sample so as to facilitate known injection techniques such as split/splitless injection and large volume injections.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: December 24, 2002
    Assignee: Agilent Technologies, Inc.
    Inventor: William H. Wilson
  • Patent number: 6475437
    Abstract: The invention relates to a method and device for preparing samples for gas chromatography, the sample material being guided through a liquid chromatograph (1) by a solvent and being monitored by a detector (2), and, on the basis of the detector (2) recognizing a chromatographic region of interest, the sample material of this region being removed from the stream of sample material leaving the liquid chromatograph (1) and being analyzed by gas chromatography. In this case, the stream of sample material leaving the liquid chromatograph (1) is guided through a flow-through cuvette (4), and the removal is carried out, until the end of the chromatographic region of interest, via a syringe (18) which, when the sample material of the region of interest reaches the flow-through cuvette (4), is introduced into the stream of sample material guided through the flow-through cuvette (4) and is drawn upwards at a predetermined ratio to the transport rate of the stream of sample material.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: November 5, 2002
    Assignee: Gerstel GmbH
    Inventors: Eberhard Gerstel, Ralf Bremer
  • Patent number: 6442995
    Abstract: An assembly for desorbing sampling tubes comprises a gas chromatograph known per se provided with an injector. The sampling tubes are provided with an inflow opening and an outflow opening. The assembly comprises an adapter which is placed in the injector and which is provided with a chamber which is bounded by a heat conducting housing. The adapter is arranged for placing a sampling tube in the chamber thereof, while in a condition of a sampling tube wherein it is placed in the adapter, the inflow opening thereof is in fluid communication with a first carrier gas supply duct, while the outflow opening of the sampling tube is in fluid communication via the injector with a gas chromatography column disposed in the gas chromatograph.
    Type: Grant
    Filed: May 22, 2000
    Date of Patent: September 3, 2002
    Assignee: SGT Exploitative BV
    Inventor: Marinus Frans van der Maas
  • Patent number: 6354136
    Abstract: The invention relates to a gas chromatograph having a temperature-controlled injector for containing a vaporizer tube with chemical substances, thereon to be analyzed via a gas chromatography column, which temperature-controlled injector and vaporization tube can be heated by an electric resistance coil type of heating unit and can be cooled by a cooling unit, wherein the cooling unit has a cooling coil (7) which surrounds the heating unit and which is provided via a feedline and a return line (8, 9) with an external source of liquid, cooled coolant, with provision of a pump (11) for circulating the coolant and of a drain valve for draining the cooling coil.
    Type: Grant
    Filed: March 9, 1999
    Date of Patent: March 12, 2002
    Assignee: Gerstal GmbH Co., KG
    Inventors: Ralf Bremer, Bernhard Rose