Solid Sorbent Patents (Class 95/900)
  • Patent number: 7141093
    Abstract: A method of scrubbing a gas stream with re-circulated kiln dust when the kiln dust is hydrated to form a sorbent. The sorbent is re-circulated with un-reacted flue gas stream for scrubbing.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: November 28, 2006
    Assignee: Graymont QC Inc.
    Inventor: Alain Charette
  • Patent number: 7060653
    Abstract: The gas storage method comprises a step of keeping a gas to be stored and an adsorbent in a vessel at a low temperature below the liquefaction temperature of the gas to be stored so that the gas to be stored is adsorbed onto the adsorbent in a liquefied state, a step of introducing into the vessel kept at the low temperature a gaseous or liquid medium with a freezing temperature that is higher than the above-mentioned liquefaction temperature of the gas to be stored, for freezing of the medium, so that the gas to be stored which has been adsorbed onto the adsorbent in a liquefied state is encapsulated by the medium which has been frozen, and a step of keeping the vessel at a temperature higher than the liquefaction temperature and below the freezing temperature.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: June 13, 2006
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Naoki Nakamura
  • Patent number: 7048781
    Abstract: The present invention is directed to a contaminant removal agent comprising a polyvalent metal sulfide on the surface of an inert substrate. The substrate can be a layered silicate, such as vermiculite, an aluminosilicate such as montmorillonite, or a nonlayered silicate such as a zeolite. The agent removes mercury from process streams. The ion exchange to deposit the polyvalent metal on the substrate is preferably performed at a pH above the pHZPC.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: May 23, 2006
    Assignee: ADA Technologies, Inc.
    Inventor: John Stanley Lovell
  • Patent number: 7048785
    Abstract: A fluid storage and delivery system utilizing a porous metal matrix that comprises at least one Group VIIIB metal therein. In one embodiment, the porous metal matrix forms a solid-phase metal adsorbent medium, with an average pore diameter of from about 0.5 nm to about 2 nm and a porosity of from about 10% to about 30%, which is particularly useful for sorptively storing and desorptively dispensing a low vapor pressure fluid, e.g., ClF3, HF, GeF4, Br2, etc. In another aspect, the porous metal matrix forms a solid-phase metal sorbent with an average pore diameter of from about 0.25 ?m to about 500 ?m and a porosity of from about 15% to about 95%, which can effectively immobilize low vapor pressure liquefied gas.
    Type: Grant
    Filed: July 1, 2003
    Date of Patent: May 23, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Luping Wang, Doug Neugold
  • Patent number: 7022161
    Abstract: A process for eliminating organic oxygen-containing molecules such as alcohols and organic present in an organic or gaseous effluent is characterized in that the elimination is carried out by adsorbing said organic oxygen-containing molecules onto alumina agglomerates.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: April 4, 2006
    Assignee: Axens
    Inventor: Christophe Nedez
  • Patent number: 6994743
    Abstract: A two stage air purification system is provided for the removal of airborne impurities from an airflow prior to the airflow entering a building's ductwork. In particular, a primary air filter is mounted within the hood of, for example, a cooking area and operable to receive grease-laden air and remove a portion of the impurities. The air is then sent to a secondary filter, also mounted within the hood, that removes additional impurities. The air is then sent through the building's ductwork and eventually out the building.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: February 7, 2006
    Assignee: Greenheck Fan Corporation
    Inventors: Kyle A. Brownell, Scott W. Mathews, Alan Lorenz Breitenfeldt, Emery W. Neitzel
  • Patent number: 6989044
    Abstract: A process and composition for selectively adsorbing oxygen from a gaseous mixture. The chemisorption is carried out by a porous three-dimensional transition element complex comprised of intermolecularly bound TEC units, said units further comprised of at least one multidentate ligand forming at least one five- or six-membered chelate ring on each unit.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: January 24, 2006
    Assignee: Praxair Technology, Inc.
    Inventors: Delong Zhang, Neil Andrew Stephenson
  • Patent number: 6984765
    Abstract: The present invention is a separation process for producing a methanol, ethanol and/or dimethyl ether stream from a first stream containing C3+ hydrocarbons. The first stream comprises C3+ hydrocarbons, methanol, ethanol and/or dimethyl ether. The process comprises the step of passing the first stream through an adsorbent bed having a crystalline microporous material that preferentially adsorbs methanol, ethanol and/or dimethyl ether over the C3+ hydrocarbons.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: January 10, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Sebastian C. Reyes, Venkatesan V. Krishnan, Gregory J. DeMartin, John Henry Sinfelt, Karl G. Strohmaier, Jose Guadalupe Santiesteban
  • Patent number: 6962616
    Abstract: A method of making an adsorbent which includes: a) thermally drying dewatered sewage sludge to form granulated organic fertilizer; b) treating the fertilizer with mineral oil; and c) pyrolyzing the treated fertilizer at temperatures between about 600° C. and about 1000° C. The disclosure is also directed to adsorbents made by this method and to the processes of removing acidic gas or gases from wet gas streams by putting an adsorbent in contact with the wet gas stream and allowing the adsorbent to adsorb the acidic gas or gases.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: November 8, 2005
    Assignee: Research Foundation of The City University of New York
    Inventors: Teresa J. Bandosz, Andriy Bahryeyev
  • Patent number: 6960243
    Abstract: A method and apparatus for the extraction of water from a gas stream, such as atmospheric air. The method includes contacting the gas stream with a porous adsorbent material having a surface modifying agent adsorbed on the surface of a porous support. The surface modifying agent creates a hydrophilic surface for the adsorption of the water. After the water is adsorbed into the pores, the surface modifying agent is selectively desorbed from the surface. The water then evaporates from the pore and can be collected in a condenser. The method and apparatus of the present invention advantageously operate in a substantially isothermal manner, thereby reducing the size and power consumption of the device. The device can advantageously be used to extract potable drinking water from atmospheric air.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: November 1, 2005
    Assignee: Nanopore, Inc.
    Inventors: Douglas M. Smith, James S. Dusenbury, William L. Warren
  • Patent number: 6899746
    Abstract: A granular composite material for recovering platinum particles from reaction gas flow in nitric acid production, comprising 50-75% calcium oxide by weight; 20-35% of magnesium oxide by weight; and 5-15% by weight of at least one chloride selected from the group consisting of calcium chloride and magnesium chloride; and a method of recovering platinum particles from reaction gas flow in nitric acid production comprising passing the reaction gas through a layer of a sorbent to absorb platinum particles, the sorbent being formed by the granular composite material described above, and extracting the absorbed platinum particles from the sorbent.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: May 31, 2005
    Assignee: Pryvatna Firma “Sit”
    Inventors: Antonina Oleksandrivna Lavrenko, Dleksiy Yakovych Loboyko, Grygoriy Ivanovych Gryn, Tetyana Viktorivna Fedorchenko, Pavlo Anatoliyovych Kozub
  • Patent number: 6887302
    Abstract: Compositions and methods for destroying chemical and biological agents such as toxins and bacteria are provided wherein the substance to be destroyed is contacted with finely divided metal oxide nanoparticles. The metal oxide nanoparticles are coated with a material selected from the group consisting of surfactants, waxes, oils, silyls, synthetic and natural polymers, resins, and mixtures thereof. The coatings are selected for their tendency to exclude water while not excluding the target compound or adsorbates. The desired metal oxide nanoparticles can be pressed into pellets for use when a powder is not feasible. Preferred metal oxides for the methods include MgO, SrO, BaO, CaO, TiO2, ZrO2, FeO, V2O3, V2O5, Mn2O3, Fe2O3, NiO, CuO, Al2O3, SiO2, ZnO, Ag2O, the corresponding hydroxides of the foregoing, and mixtures thereof.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: May 3, 2005
    Assignee: NanoScale Materials, Inc.
    Inventors: Shyamala Rajagopalan, Olga B. Koper, Kenneth J. Klabunde, Paul S. Malchesky, Slawomir Winecki
  • Patent number: 6824590
    Abstract: A process for separating a feed gas into at least one product gas includes: (a) providing a gas separation apparatus with at least one adsorption layer including a lithium-exchanged FAU adsorbent having water desorption characteristics, defined by drying curves, similar to those for the corresponding fully sodium-exchanged FAU, a heat of adsorption for carbon dioxide equal to or lower than that for the corresponding fully sodium-exchanged FAU at high loadings of carbon dioxide, and onto which the adsorption layer water and/or carbon dioxide adsorb; (b) feeding into the gas separation apparatus a feed gas including nitrogen, oxygen, and at least one of water and carbon dioxide; and (c) collecting from a product end of the gas separation apparatus at least one product gas containing oxygen.
    Type: Grant
    Filed: January 13, 2003
    Date of Patent: November 30, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Douglas Paul Dee, Robert Ling Chiang, Gregory John Gondecki, Roger Dean Whitley, Jane Elizabeth Ostroski
  • Patent number: 6797038
    Abstract: An adsorbent for selective adsorption of unsaturated hydrocarbons from its mixture with saturated hydrocarbons, carbon dioxide, carbon monoxide, permanent gases or mixture thereof. The adsorbent includes a silver or copper compound in an amount of 1 to 70 wt % and a substrate in 30 to 99% wt %. Also a method for the manufacture of an adsorbent, which includes impregnating or dispersing a silver (I) or copper (I) compound on a mesoporous substrate or support to form a composite material and subjecting the composite material to heat treatment. Also, a process for separating ethylene and/or propylene from gas mixtures containing them by passing a stream of the gas mixture through a mass of the adsorbent at a temperature from 0° C. to 170° C. and a pressure from 0.1 to 100 atmospheres and releasing the adsorbed ethylene and/or propylene by lowering pressure and/or increasing temperature.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: September 28, 2004
    Assignee: Indian Petrochemicals Corporation Limited
    Inventors: Nettem Venkateswarlu Choudary, Prakash Kumar, Vijayalakshmi Ravi Puranik, Sodankur Garadi Thirumaleshwara Bhat
  • Patent number: 6797041
    Abstract: A two stage air purification system is provided for the removal of airborne impurities from an airflow prior to the airflow entering a building's ductwork. In particular, a primary air filter is mounted within the hood of, for example, a cooking area and operable to receive grease-laden air and remove a portion of the impurities. The air is then sent to a secondary filter, also mounted within the hood, that removes additional impurities. The air is then sent through the building's ductwork and eventually out the building.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: September 28, 2004
    Assignee: Greenheck Fan Corporation
    Inventors: Kyle A. Brownell, Scott W. Mathews, Alan Lorenz Breitenfeldt, Emery W. Neltzel
  • Patent number: 6764755
    Abstract: A channelized sorbent material comprises porous sorbent particles characterized by an average pore diameter. Each sorbent particle has at least one interior channel of an average transverse dimension (i.e. transverse diameter) that is at least ten times larger than the average pore diameter of the porous sorbent particle. The interior channel may constitute a single cylindrical through-bore in the sorbent particle, or alternatively, an array of intersecting or non-intersecting channels. The porous sorbent particles preferably comprise bead activated carbon particles. Such channelized sorbent material is particular useful as sorbent media in an adsorption-desorption apparatus for storage and dispensing of a sorbable fluid.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: July 20, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, Steven J. Hultquist
  • Patent number: 6719828
    Abstract: A high-capacity regenerable sorbent for removal of mercury from flue gas and processes and systems for making and using the sorbent. A phyllosilicate substrate, for example vermiculite or montmorillinite acts as an inexpensive support to a thin layer for a polyvalent metal sulfide, ensuring that more of the metal sulfide is engaged in the sorption process. The sorbent is prepared by ion exchange between the silicate substrate material and a solution containing one or more of a group of polyvalent metals including tin (both Sn(II) and Sn(IV)), iron (both Fe(II) and Fe(III)), titanium, manganese, zirconium and molybdenum, dissolved as salts, to produce an exchanged substrate. Controlled addition of sulfide ions to the exchanged silicate substrate produces the sorbent. The sorbent is used to absorb elemental mercury or oxidized mercury species such as mercuric chloride from flue gas containing acid gases (e.g., SO2, NO and NO2, and HCl) and other gases over a wide range of temperatures.
    Type: Grant
    Filed: April 26, 2002
    Date of Patent: April 13, 2004
    Inventors: John S. Lovell, Craig S. Turchi, Thomas E. Broderick
  • Patent number: 6709487
    Abstract: An adsorbent, method, and apparatus involving same for the removal of moisture from a fluoride-containing fluid such as gaseous nitrogen trifluoride are disclosed herein. In certain preferred embodiments, the adsorbent of the present invention comprises an organic support having a porosity of 30% or greater and a pore size of 2 &mgr;m or less; and at least one metal fluoride disposed within at least a portion of the organic substrate.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: March 23, 2004
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Chun Christine Dong, Madhukar Bhaskara Rao, Dingjun Wu
  • Patent number: 6638347
    Abstract: A carbon-based, adsorption powder containing an effective amount of cupric chloride suitable for removing mercury from a high temperature, high moisture gas stream, wherein the effective amount of cupric chloride ranges from about 1 to about 45 wt percent. Additional additives, such as potassium permanganate, calcium hydroxide, potassium iodide and sulfur, may be added to the powder to enhance the removal of mercury from the gas stream.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: October 28, 2003
    Assignee: Merck & Co., Inc.
    Inventors: Youssef El-Shoubary, Rudy Maes, Subash C. Seth
  • Patent number: 6626981
    Abstract: A method for producing high capacity gas-storage microporous sorbents involves precursor carbonization under relatively severe heat-treatment conditions, normally followed by activation using a cyclic chemisorption-desorption process.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: September 30, 2003
    Assignee: Advanced Fuel Research, Inc.
    Inventors: Marek A. Wojtowicz, Michael A. Serio, Eric M. Suuberg
  • Patent number: 6607581
    Abstract: A passive air sampler is designed to facilitate emptying granular or particulate adsorbent from it directly into a thermal desorption tube or other vessel for use in an analytical instrument. The preferred form has an adsorbent container in a conical or funnel-like shape.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: August 19, 2003
    Assignee: SKC, Inc.
    Inventors: Donald Lee Smith, Peter M. Hall
  • Patent number: 6592651
    Abstract: An improved method for preparing monolith adsorbents and activating the adsorbents therein is disclosed. A mixture of lower temperature and higher temperature binders is used in fabricating the paper used to form the monolith structure. The finished monolith structure is heated to a temperature sufficient to remove the lower temperature binder while leaving the higher temperature binder to maintain integrity in the monolith.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: July 15, 2003
    Assignee: The BOC Group, Inc.
    Inventors: Ravi Jain, Sudhakar R. Jale
  • Patent number: 6589318
    Abstract: An adsorption powder for removing mercury and other metals, dioxins, furans and other organic compounds from metal- and organic compound-comtaminated soil and method therefor. The adsorption powder may be characterized as containing from about 1 to 97% of carbon, from about 1 to 97% of calcium hydroxide, from about 1 to 97% of cupric chloride, and from about 1 to 60% of KI3 impregnated carbon.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: July 8, 2003
    Assignee: Merck & Co., Inc.
    Inventors: Youssef El-Shoubary, Rudy Maes, Subash C. Seth
  • Patent number: 6582497
    Abstract: There is disclosed an adsorption powder effective for capturing mercury from a high temperature, high moisture gas stream comprising: about 1-97% carbon; about 1-97% of alkaline material; about 1-97% cupric chloride impregnated carbon, and about 1-60% carbon impregnated with KI3. Additionally, a method of removing mercury from high temperature, high moisture gas streams, using the adsorption powder of the invention, is disclosed.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: June 24, 2003
    Assignee: Merck & Co., Inc.
    Inventors: Rudy J. Maes, Youssef El-Shoubary, Subash Seth
  • Patent number: 6558454
    Abstract: A process for removing vapor phase contaminants from a gas stream includes the step of adding a raw carbonaceous starting material into a gas stream having an activation temperature sufficient to convert the raw carbonaceous starting material into an activated material in-situ. The raw carbonaceous starting material can be either a solid-phase, liquid phase or vapor-phase material. The activated material then adsorbs the vapor phase contaminants, and the activation material containing the vapor phase contaminants is removed from the gas stream using a particulate collection device. The process is particularly suited for the removal of vapor phase air toxics, such as mercury, from the flue gas of a combustion process. An apparatus for the removal of vapor phase contaminants from a gas stream is also described.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: May 6, 2003
    Assignee: Electric Power Research Institute, Inc.
    Inventors: Ramsay Chang, Massoud Rostam-Abadi, Sharon Sjostrom
  • Patent number: 6558642
    Abstract: A method and adsorption powder useful for the removal of mercury and other metals, as well as furans, dioxins and other organic compounds from high temperature and high moisture gaseous streams. The method utilizes an adsorption powder characterized as containing a carbon-based powder and an effective amount of cupric chloride suitable to remove metals and organic compounds. The powder may contain calcium hydroxide, sulfur, potassium permanganate, potassium iodide, and combinations thereof.
    Type: Grant
    Filed: March 29, 2001
    Date of Patent: May 6, 2003
    Assignee: Merck & Co., Inc.
    Inventors: Youssef El-Shoubary, Rudy Maes
  • Patent number: 6540815
    Abstract: Disclosed is a method for sharply reducing diurnal breathing loss emissions from automotive evaporative emissions control systems by providing multiple layers, or stages, of adsorbents. On the fuel source-side of an emissions control system canister, high working capacity carbons are preferred in a first canister (adsorb) region. In subsequent canister region(s) on the vent-side, the preferred adsorbent should exhibit a flat or flattened adsorption isotherm on a volumetric basis and relatively lower capacity for high concentration vapors as compared with the fuel source-side adsorbent. Multiple approaches are described for attaining the preferred properties for the vent-side canister region. One approach is to use a filler and/or voidages as a volumetric diluent for flattening an adsorption isotherm. Another approach is to employ an adsorbent with the desired adsorption isotherm properties and to process it into an appropriate shape or form without necessarily requiring any special provision for dilution.
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: April 1, 2003
    Assignee: MeadWestvaco Corporation
    Inventors: Laurence H. Hiltzik, Jacek Z. Jagiello, Edward D. Tolles, Roger S. Williams
  • Patent number: 6540814
    Abstract: An ion implantation process system, including an ion implanter apparatus for carrying out an ion implantation process. A supply of source gas for the ion implantation process is arranged to flow to the ion implanter apparatus, which discharges an effluent gas stream including ionization products of the source gas during the ion implantation process. The system includes an effluent abatement apparatus for removing hazardous effluent species from the effluent gas stream. The source gas may be furnished from a low pressure gas source in which the source gas is sorptively retained in a vessel on a sorbent medium having affinity for the source gas, and desorbed for dispensing to the process system. A novel scrubbing composition may be employed for effluent treatment, and the scrubbing composition breakthrough of scrubbable component may be monitored with a device such as a quartz microbalance monitor.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: April 1, 2003
    Assignee: Advanced Technology Materials, Inc
    Inventors: Michael W. Hayes, Mark R. Holst, Jose I. Arno, Glenn M. Tom
  • Patent number: 6533842
    Abstract: There is disclosed an adsorption powder effective for capturing mercury from a high temperature, high moisture gas stream comprising: about 1-97% carbon; about 1-97% calcium hydroxide; about 1-97% cupric chloride impregnated carbon, and about 1-60% carbon impregnated with KI3. Additionally, a method of removing mercury from high temperature, high moisture gas streams is disclosed.
    Type: Grant
    Filed: February 24, 2000
    Date of Patent: March 18, 2003
    Assignee: Merck & Co., Inc.
    Inventors: Rudy J. Maes, Youssef El-Shoubary, Subash Seth
  • Patent number: 6524371
    Abstract: A process for removing mercury and organic compounds from gaseous stream using an adsorption powder, characterized as containing a carbon-based powder and an effective amount of cupric chloride, the process characterized by the steps of: a) placing a solid phase mercury-containing contaminated soil into a rotary kiln/drum; b) heating the kiln/drum to form gaseous and solid components of the soil; c) transferring the gaseous component to an exhaust cleaning unit/afterburner, and transferring the soil component to a cooling unit; d) heating the gaseous component in the exhaust cleaning unit/afterburner; e) cooling the gaseous component; f) adding the adsorption powder to the gaseous component; g) transferring the powder-containing, gaseous component to a baghouse; and h) releasing the substantially mercury-free gaseous component to the atmosphere.
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: February 25, 2003
    Assignee: Merck & Co., Inc.
    Inventors: Youssef El-Shoubary, Rudy Maes, Subash C. Seth
  • Patent number: 6491740
    Abstract: The present invention provides for methods and compositions for gas separation and purification utilizing a metallo-organic polymer adsorbent in processes for separating carbon dioxide, water, nitrogen oxides and hydrocarbons from gas streams.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: December 10, 2002
    Assignee: The BOC Group, Inc.
    Inventors: Qing Min Wang, Dongmin Shen, Martin Bülow, Miu Ling Lau, Frank R. Fitch, Shuguang Deng
  • Patent number: 6490984
    Abstract: Formation of dioxins in flue gases is inhibited by contacting the flue gas with at least one of sodium phosphite, calcium phosphate, sodium hypophosphite, and calcium as reducing agents preferably at a temperature in the range of from 150° C. to 850° C. Hydrogen chlorides are also rendered harmless by the contact with the reducing agent. Also, metal ions contained in the fly ash of the flue gas are reduced to metals to reduce the occurrence of dissolution of the metals in subsequent treatment of the fly ash.
    Type: Grant
    Filed: December 28, 1998
    Date of Patent: December 10, 2002
    Assignee: Miyoshi Yushi Kabushiki Kaisha
    Inventors: Masafumi Moriya, Masatake Kawashima, Takashi Ogawa, Kazuhiro Terada
  • Patent number: 6468329
    Abstract: Adsorbents useful in the selective adsorption of unsaturated hydrocarbons, the manufacture of the adsorbents, and processes for the separation of unsaturated hydrocarbons using the adsorbents.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: October 22, 2002
    Assignees: Korea Institute of Energy Research, Indian Petrochemcials Corporation Limited
    Inventors: Soon-Haeng Cho, Sang-Sup Han, Jong-Nam Kim, Kuck-Tack Chue, Venkateswarlu Choudary Nettem, Kumar Brakash
  • Patent number: 6461411
    Abstract: The invention provides an efficient process by which trace impurities are removed from matrix hydride, inert gases and non-reactive gases, thus decreasing the concentration of the trace gases by a factor of 100-to-10,000, and more specifically to part-per-billion (ppb) or part-per-trillion (ppt) levels. Hydride gases such as ammonia, phosphine and arsine, and inert gases such as nitrogen, helium, hydrogen, and argon are purified by removing trace contaminants such as silane (SiH4), hydrogen sulfide (H2S) and germane (GeH4), along with traces of moisture. The gas purifier materials of this invention include thermally activated aluminas from organic sources, thermally activated modified organic alumina materials, and thermally activated modified aluminas from an inorganic source. The thermally activated alumina materials of this invention are activated by heating the alumina material at a temperature between about 200-1000° C.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: October 8, 2002
    Assignee: Matheson Tri-Gas
    Inventors: Tadaharu Watanabe, Dan Fraenkel
  • Patent number: 6451094
    Abstract: A process for removing vapor phase contaminants from a gas stream includes the step of adding a raw carbonaceous starting material into a gas stream having an activation temperature sufficient to convert the raw carbonaceous starting material into an activated material in-situ. The activated material then adsorbs the vapor phase contaminants, and the activation material containing the vapor phase contaminants is removed from the gas stream using a particulate collection device. The process is particularly suited for the removal of vapor phase air toxics, such as mercury, from the flue gas of a combustion process. An apparatus for the removal of vapor phase contaminants from a gas stream is also described.
    Type: Grant
    Filed: February 26, 1999
    Date of Patent: September 17, 2002
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Ramsay Chang, Massoud Rostam-Abadi, Shiaoguo Chen
  • Publication number: 20020117094
    Abstract: A method and apparatus for controlling or removing mercury, mercury compounds and high molecular weight organics, if present, from a resource recovery exhaust stream by separately adding a carbonaceous char to the flue gas while it is still within the unit. The char can be produced in situ by adding a carbonaceous material and allowing it to thermally decompose.
    Type: Application
    Filed: February 28, 2002
    Publication date: August 29, 2002
    Inventors: Aaron J. Teller, Jonathan R. Lagarenne
  • Patent number: 6436171
    Abstract: The present invention provides for novel solid state O2-selective metal complex-based adsorbents and their utility for separating oxygen from a gas stream. In particular, the invention provides for an adsorption complex which contains four-coordinate O2-selective metal complexes including oligomeric/polymeric metal complexes, and organic base-containing polymers supported on porous materials.
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: August 20, 2002
    Assignee: The BOC Group, Inc.
    Inventors: Qing Min Wang, Dongmin Shen, Miu Ling Lau, Martin Bülow, Frank R. Fitch, Norberto O. Lemcoff, Philip Connolly
  • Patent number: 6379430
    Abstract: A process, especially a PSA or TSA process, for purifying a gas containing at least carbon dioxide (CO2) as impurity, in which the carbon dioxide is adsorbed on an adsorbent comprising particles of activated alumina. According to this process, the activated alumina has a specific surface area of between 200 m2/g and 299 m2/g and contains at least 80% aluminum oxide (Al2O3), silicon oxide (SiO2), iron oxide (Fe2O3) and from 0.001% to 7.25% of at least one oxide of at least one alkali or alkaline-earth metal, such as sodium and potassium oxides. According to the invention, the gas stream to be purified is air or a synthesis gas.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: April 30, 2002
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'exploitation des procedes Georges Claude
    Inventor: Christian Monereau
  • Patent number: 6379432
    Abstract: A method for selectively absorbing nitrogen oxides NOx from gaseaous mixtures containing carbon dioxide or carbon dioxide and water and optionally contaminants chosen among CO, SO2, hydrocarbons and mixtures thereof, comprising placing the gaseous mixtures in contact with absorber compounds having formula Ba2Cu3O5+d, where d is a number from 0.6 to 1. New compounds having the above formula are characterized by high resistance to carbonatation and by specific Raman spectra.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: April 30, 2002
    Assignees: Consiglio Nazionale Delle Ricerche, Universita' Degli Studi di Bologna
    Inventors: Francesco Cino Matacotta, Gianluca Calestani
  • Patent number: 6315816
    Abstract: A group of solid adsorbents in the form of powder, granules or pellets having improved adsorptive capacity and selectivity for ethylene and/or propylene is disclosed. These adsorbents comprise (a) a silver compound and (b) a bentonite clay support bulk of which comprises SiO2 and Al2O3 and the rest being oxides of Fe, Ca, Mg, Na and K and having sufficiently high surface area on which the silver compound is dispersed or impregnated. The support may be pretreated by polymer solutions to impart sufficient mechanical strength as measured by attrition loss. Mechanical strength may also be improved by pre-heating the support. These adsorbents are highly stable and are capable of reversibly adsorbing substantial quantity of ethylene and/or propylene at room temperature. The rates of adsorption of ethylene and/or propylene are also very high in these adsorbents, which is believed to be due to the synergistic interaction between the components of the novel composition of the present invention.
    Type: Grant
    Filed: October 4, 1999
    Date of Patent: November 13, 2001
    Assignees: Korea Institute of Energy Research, Indian Petrochemicals Corp. Ltd.
    Inventors: Soon Haeng Cho, Sang Sup Han, Jong Nam Kim, Nettem Venkateswarlu Choudary, Prakash Kumar, Sodankoor Garadi Thirumaleshwara Bhat
  • Patent number: 6228150
    Abstract: The invention concerns a carbon dioxide absorbent for use in anaesthesiology, in which the absorbent comprises at least one pharmaceutically acceptable hydroxide essentially free of sodium and/or potassium hydroxide and a carbon dioxide absorbingly effective amount of a compatible humectant. Calcium hydroxide is the preferred hydroxide. The humectant may be of inorganic or organic origin. The carbon dioxide absorbent of the invention may, additionally, include an effective amount of a setting agent, preferably calcium sulphate hemihydrate and/or a compatible agent for internal generation of hydrogen, preferably aluminium metal powder. The carbon dioxide absorbent of the invention is chemically inert to sevoflurane, as well as to the anaesthetics enflurane, isoflurane and desflurane.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: May 8, 2001
    Assignee: Armstrong Medical Limited
    Inventors: John Raymond Armstrong, James Murray
  • Patent number: 6171372
    Abstract: The present invention provides a nitrogen dioxide absorbent for the exhaust gas purifying facility designed to remove by absorption or adsorption of NO2 from a gas (such as ventilation gas from road tunnels) containing NOx in low concentrations. The absorbent is composed of a porous carrier and a basic amino acid and/or organic amine compound supported thereon. The absorbent is produced by impregnating a porous carrier sequentially with two aqueous solutions each containing in an amount of, for example, 0.5-3.0 mol/l (preferably 1.0-2.0 mol/l) of basic amino acid and 0.5-3.0 mol/l (preferably 1.0-2.0 mol/l) of organic amine compound, or impregnating a porous carrier with a solution containing 0.5-3.0 mol/l (preferably 1.0-2.0 mol/l) of basic amino acid and/or 0.5-3.0 mol/l (preferably 1.0-2.0 mol/l) of organic amine compound.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: January 9, 2001
    Assignee: Hitachi Zosen Corporation
    Inventors: Masayoshi Ichiki, Yuki Sairyo, Atsushi Fukuju
  • Patent number: 6070653
    Abstract: A separation device comprises a vessel (1) having an essentially circular cylindrical shape around a center axis (2), a first passage (4) provided in the cylindrical wall of the vessel and a second passage (5), provided in the cylindrical wall of the vessel on a diametrically opposite part thereof. An enclosure means (6) is provided in the vessel (1) to enclose a bed (7) of particulate material and comprises a first and second enclosure panel (8, 9) provided inside the first and second passages (4, 5), respectively, at a distance therefrom to provide a flow distribution space (11) therebetween and being perforated (15) to permit fluid flow therethrough. Each of said enclosure panels (8, 9) has an outer surface which is essentially parallel with the center axis (2) and convex seen from the respective passage (4,5).
    Type: Grant
    Filed: February 19, 1999
    Date of Patent: June 6, 2000
    Assignee: AGA Aktiebolag
    Inventor: Torgny Wingbro
  • Patent number: 6033460
    Abstract: A process and composition for removing moisture from a NF.sub.3 or F.sub.2 gas wherein the gas is contacted with alumina particles coated with aluminum trifluoride. The aluminum trifluoride is formed by reacting alumina particles with an aqueous solution of hydrogen fluoride.
    Type: Grant
    Filed: April 29, 1998
    Date of Patent: March 7, 2000
    Assignee: Millipore Corporation
    Inventor: James T. Snow
  • Patent number: 6033461
    Abstract: Selective and thermally reversible adsorption of NO.sub.x from a mixture of hot gases is achieved by contact with an adsorbent of active copper in the form of CuO on a support of TiO.sub.2 and SiO.sub.2 and in the form of Cu.sup.+2 on a support of pillared clay.
    Type: Grant
    Filed: January 2, 1998
    Date of Patent: March 7, 2000
    Assignee: Gas Research Institute
    Inventors: Ralph T. Yang, Kevin Krist
  • Patent number: 5917136
    Abstract: A pressure swing adsorption process for absorbing CO.sub.2 from a gaseous mixture containing CO.sub.2 comprising introducing the gaseous mixture at a first pressure into a reactor containing a modified alumina adsorbent maintained at a temperature ranging from 100.degree. C. and 500.degree. C. to adsorb CO.sub.2 to provide a CO.sub.2 laden alumina adsorbent and a CO.sub.2 depleted gaseous mixture and contacting the CO.sub.2 laden adsorbent with a weakly adsorbing purge fluid at a second pressure which is lower than the first pressure to desorb CO.sub.2 from the CO.sub.2 laden alumina adsorbent. The modified alumina adsorbent which is formed by depositing a solution having a pH of 3.0 or more onto alumina and heating the alumina to a temperature ranging from 100.degree. C. and 600.degree. C., is not degraded by high concentrations of water under process operating conditions.
    Type: Grant
    Filed: October 3, 1996
    Date of Patent: June 29, 1999
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Thomas Richard Gaffney, Timothy Christopher Golden, Steven Gerard Mayorga, Jeffrey Richard Brzozowski, Fred William Taylor
  • Patent number: 5895520
    Abstract: The exhaust gas stream is passed through a bed of a granular adsorbent for separating noxious substances. The bed consists of the mixture of a granular high-carbon material and a granular inert material. The bulk density of the inert material is 0.8 to 3 times the bulk density of the carbonaceous material. Preferably, the content of the high-carbon material in the bed is 5 to 80 wt-%. The high-carbon material may for instance be activated carbon, activated coke or lignite coke. As inert material there may for instance be used siliceous rock, pumice, lava, slag, vitrification residues or fine gravel.
    Type: Grant
    Filed: July 22, 1997
    Date of Patent: April 20, 1999
    Assignee: Metallgesellschaft Aktiengesellschaft
    Inventors: Dietrich Rolke, Volker Hohmann, Hans-Jochen Fell
  • Patent number: 5846297
    Abstract: Polyarylene ethers are employed as filter material for removing NO.sub.2 from gases and liquids. In the presence of an oxidizing agent having a redox potential of at least 0.96 V SHE, NO can also be removed. The filter material is used to produce NO.sub.2 -free gases, for example in the medical sector.
    Type: Grant
    Filed: June 30, 1997
    Date of Patent: December 8, 1998
    Assignee: Ticona GmbH
    Inventors: Andreas Schleicher, Georg Frank, Wolfgang Sixl
  • Patent number: RE38844
    Abstract: Disclosed is a method for sharply reducing diurnal breathing loss emissions from automotive evaporative emissions control systems by providing multiple layers, or stages, of adsorbents. On the fuel source-side of an emissions control system canister, high working capacity carbons are preferred in a first canister (adsorb) region. In subsequent canister region(s) on the vent-side, the preferred adsorbent should exhibit a flat or flattened adsorption isotherm on a volumetric basis and relatively lower capacity for high concentration vapors as compared with the fuel source-side adsorbent. Multiple approaches are described for attaining the preferred properties for the vent-side canister region. One approach is to use a filler and/or voidages as a volumetric diluent for flattening an adsorption isotherm. Another approach is to employ an adsorbent with the desired adsorption isotherm properties and to process it into an appropriate shape or form without necessarily requiring any special provision for dilution.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: October 25, 2005
    Assignee: MeadWestvaco Corporation
    Inventors: Laurence H. Hiltzik, Jacek Z. Jaqiello, Edward Don Tolles, Roger S. Williams
  • Patent number: RE35913
    Abstract: An adsorber having an upright longitudinal extent includes two perforated parallel panels extending within the vessel formed therein and spaced apart defining an adsorbent mass chamber. The adsorbent mass is in two longitudinal parts having a first part of fine particles and a second part of larger particles. The gas to be treated is circulated horizontally between the two perforated panels. This device allows the treatment cycle to be less than 60 seconds with the same or better performance. This adsorber and process are preferably used for the separation of oxygen from air.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: October 6, 1998
    Assignee: L'Air Liquide, Societe Anonyme pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Leon Hay, Xavier Vigor