Including Reduction Of Pressure Patents (Class 95/95)
  • Patent number: 7850762
    Abstract: The invention relates to a method for reducing emissions due to gaseous decomposition products of an electrolyte of electrochemical storage devices in a motor vehicle, preferably double-layer capacitors with organic solvents as the electrolyte. According to this invention, the gaseous decomposition products are sent to an activated carbon filter and/or a molecular sieve for deposition of at least a portion of the decomposition products and/or a chemically reactive material and/or a catalytically active material for conversion of at least a portion of the decomposition products. In addition, devices for implementing the inventive method are described.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: December 14, 2010
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Steffen Lutz, Sebastian Scharner
  • Publication number: 20100307335
    Abstract: Gas fired internal combustion engines which are run on contaminated fuel suffer from the buildup of internal deposits and corrosion. This is a particular problem with engines fuelled by biogas, e.g. from waste decomposition. By filtering the fuel via a filter containing an ion-exchange resin substantial improvements can be obtained.
    Type: Application
    Filed: January 21, 2008
    Publication date: December 9, 2010
    Inventor: John Hayward
  • Publication number: 20100269693
    Abstract: A pressurized gaseous mixture acidic gas and a useful gas is directly in a first absorption column with a physically acting absorption agent. Then the absorption agent loaded with the acid gas and useful gas is subdivided into first and second streams. The first stream is fed directly to a recycle flash container and there decompressed to reclaim the useful gas, extract the acidic gas from the absorption agent, and form a recycled gas containing the useful gas and acidic gas. The second stream is through a second absorption column to the recycle flash container. Some of the recycled gas from the recycle flash container is compressed and fed through the second absorption column so as to therein directly contact the second stream, and then the recycle gas that has passed through the second absorption column and contacted the second stream is returned to the gaseous mixture.
    Type: Application
    Filed: April 21, 2010
    Publication date: October 28, 2010
    Inventor: JOHANNES MENZEL
  • Publication number: 20100242728
    Abstract: A low-pressure multifunctional filter separates CO2 and other air pollutants from flue, coal, natural and other gas mixtures. The separation agent is a solid carbon-rich sorbent, such as coke, charcoal, coal or activated carbon, that captures CO2 and other air pollutants at lower temperatures and liberates them at higher temperatures. The sorbent is regenerated by heating with direct steam, hot CO2 or other source of thermal energy. The recovered CO2-rich product can be used for enhanced oil recovery, enhanced methane recovery, and subsequent storage in depleted oil and gas reservoirs.
    Type: Application
    Filed: May 12, 2008
    Publication date: September 30, 2010
    Applicant: UNIVERSITY OF WYOMING
    Inventors: Maciej Radosz, Youqing Shen
  • Publication number: 20100192771
    Abstract: A method of separation of hydrogen from gas mixtures consisting in that a gas mixture (3) with any hydrogen content is introduced into a closed space (4), in which a polymer foam (1) containing non-communicating pores (2) is placed. Due to the fact that the hydrogen partial pressure in pores (2) of the polymer foam (1) is lower, hydrogen penetrates into the pores. Hence, the gas mixture (3) leaving the closed space (4) is deficient in the hydrogen. The inlet of the gas mixture (3) into the closed space (4) can be interrupted at the time when the leaving mixture has the same composition as the introduced gas mixture (3) or earlier. Then the pressure in the closed space (4) is decreased and, due to the leveling of its partial pressure, hydrogen is released from the polymer foam (1) and can be received for further use. Its concentration is higher than in the starting gas mixture (3).
    Type: Application
    Filed: August 20, 2008
    Publication date: August 5, 2010
    Inventor: Zbynek Pientka
  • Publication number: 20100126344
    Abstract: The present invention relates to mixtures comprising, in each case based on the total weight of the mixture, a) from 2 to 60% by weight of a latent heat storage component A and b) from 40 to 98% by weight of a framework component B, wherein the component A comprises at least one microencapsulated latent heat storage material and the component B comprises at least one porous metal organic framework comprising at least one at least bidentate organic compound coordinated to at least one metal ion. The present invention further relates to the use of such mixtures, in particular in processes for separating substances from a mixture of substances.
    Type: Application
    Filed: April 1, 2008
    Publication date: May 27, 2010
    Applicant: BASF SE
    Inventors: Hildegard Stein, Joerg Pastre, Markus Schubert, Christoph Kiener
  • Publication number: 20100107873
    Abstract: The invention discloses a method for removing styrene from waste airstreams and for purifying styrene, in which a waste airstream including styrene is passed through synthetic hydrophobic sorbent particles so that styrene from the waste airstream is adsorbed by the synthetic hydrophobic sorbent particles resulting in an airstream substantially free from styrene or substantially purified styrene.
    Type: Application
    Filed: February 14, 2008
    Publication date: May 6, 2010
    Inventors: Geert Frederik Versteeg, Glenn Rexwinkel, Sjaak Van Loo
  • Patent number: 7708815
    Abstract: Embodiments of the invention relate to a composite hydrogen storage material comprising active material particles and a binder, wherein the binder immobilizes the active material particles sufficient to maintain relative spatial relationships between the active material particles.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: May 4, 2010
    Assignee: Angstrom Power Incorporated
    Inventor: Joerg Zimmermann
  • Patent number: 7666252
    Abstract: A method of purifying an exhaust gas by way of an adsorption unit (adsorption columns 7a, 7b) including an adsorbent layer paced with precoated mesoporous active carbon capable of alternately switched operations of adsorption and desorption, wherein prior to the treatment by way of the adsorption unit, a concentration increase is effected by way of a pre-treatment unit (honeycomb rotor (11) or stationary honeycomb) including an adsorbent layer packed with precoated mesoporous active carbon for concentrating of any dilute volatile hydrocarbon contained in the exhaust gas. Consequently, there can be provided a method of purifying large amounts of exhaust gas with dilute volatile hydrocarbon concentration, in which without emission of carbon dioxide, any volatile hydrocarbon contained can be recovered with extreme easiness as a liquid. Further, there can be provided a purification method in which zero emission is attained with respect to volatile hydrocarbons.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: February 23, 2010
    Assignees: System Eng Service Co., Ltd, Yoshiko Tsuru
    Inventors: Hiroshi Tahara, Hiroshi Nochi
  • Publication number: 20100005961
    Abstract: The present invention provides a method and an apparatus for condensing ozone arranged so as to efficiently take out the ozone gas of a predetermined concentration, although its construction is simple. The method for condensing the ozone gas comprises acting ozone-oxygen mixture gas on an adsorbing cylinder which is filled in its interior area with an adsorbent so as to selectively adsorb the ozone gas to an adsorbent and desorbing the selectively adsorbed ozone gas so as to condense and purify the ozone gas. The method further includes acting the ozone-oxygen mixture gas on the adsorbent in non-cooled state to selectively adsorb the ozone gas to the adsorbent and vacuuming the adsorbing cylinder on performing desorption-operation of the ozone gas to desorb the ozone gas from the adsorbent.
    Type: Application
    Filed: November 24, 2006
    Publication date: January 14, 2010
    Applicant: IWATANI CORPORATION
    Inventors: Kunihiko Koike, Sadaki Nakamura, Koichi Izumi, Goichi Inoue
  • Publication number: 20090293717
    Abstract: The present invention provides a low-cost ozone production method and apparatus for carrying out ozone/oxygen separation using an ozone adsorbent, that re-uses the recovered oxygen as a feed for ozone production, and that desorbs and recovers the adsorbed ozone using dry air. In the method and apparatus, a gas containing an ozone and oxygen two-component gas supplied from an ozone generator is pressurized, introduced into an ozone adsorbent-packed adsorption column, and brought into contact with the adsorbent to adsorb the ozone to the adsorbent. Using dry air as a counterflow purge gas for the adsorbed ozone, the ozone is desorbed from the ozone adsorbent-packed adsorption column loaded with adsorbed ozone by depressurizing the adsorption column or air is introduced as a purge gas from the rear of the column into the adsorbent bed, whereby an ozone and air two-component gas is recovered.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 3, 2009
    Inventors: Jun IZUMI, Hong X. WANG
  • Publication number: 20090274600
    Abstract: The present invention provides for a process for purifying carbon monoxide-containing gas streams that contain impurities such as hydrocarbons by using a cryogenic adsorption process. Preferably this process is a temperature swing adsorption process at cryogenic temperatures below ?75° C. Alternatively, the carbon monoxide-containing gas streams may be purified using the cryogenic adsorption process with membrane separation units or vacuum swing adsorption units or cryogenic distillation.
    Type: Application
    Filed: July 15, 2009
    Publication date: November 5, 2009
    Inventors: Ravi JAIN, Bruce Walter Uhlman
  • Patent number: 7608133
    Abstract: A process for removal of carbon dioxide from air using lithium-exchanged X-zeolites at low carbon dioxide partial pressures is provided. The process is particularly useful in applications where fresh air is not available and exhaled air needs to be recycled. An apparatus for carrying out the process is also provided.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: October 27, 2009
    Assignee: Honeywell International Inc.
    Inventors: Stephen F. Yates, Allen A. MacKnight
  • Patent number: 7594955
    Abstract: A process for recovering rare gases using a gas-recovering container and, more particularly, a process of recovering a rare gas in a rare gas-containing exhaust gas discharged from an equipment using said rare gas, and introducing the recovered rare gas-containing exhaust gas into rare gas separation and purifying equipment and therein separating and purifying the rare gas.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: September 29, 2009
    Assignee: Taiyo Nippon Sanso Corporation
    Inventor: Yoshio Ishihara
  • Publication number: 20090214902
    Abstract: Disclosed embodiments concern adsorptive gas bulk separation systems and methods that may be advantageously less expensive to utilize than some in the prior art. Embodiments of the present invention concern processing a feed gas source, typically comprising at least one fuel gas component and at least one diluent, using a displacement purge adsorptive separator apparatus comprising at least one adsorbent bed, at least one purge gas source for purge regeneration of the at least one adsorbent bed, and a product conduit for supplying upgraded gas product. The feed gas typically is supplied to the displacement purge adsorptive separator apparatus at substantially the ambient pressure of the feed gas source. The displacement purge adsorptive separator apparatus is operable to adsorb at least a portion of the at least one diluent component from the feed gas stream to produce an upgraded gas.
    Type: Application
    Filed: June 15, 2006
    Publication date: August 27, 2009
    Inventors: Aaron M. Pelman, Surajit Roy, Sean Patrick Mezei
  • Publication number: 20090071333
    Abstract: PSA process for oxygen production comprising (a) providing an adsorber having a first layer of adsorbent selective for water and a second layer of adsorbent selective for nitrogen, wherein the heat of adsorption of water on the adsorbent in the first layer is equal to or less than about 14 kcal/mole at water loadings less than about 0.05 mmol per gram; (b) passing a feed gas comprising at least oxygen, nitrogen, and water successively through the first and second layers, adsorbing water in the first layer of adsorbent, and adsorbing nitrogen in the second layer of adsorbent, wherein the mass transfer coefficient of water in the first layer is in the range of about 125 to about 400 sec?1 and the superficial contact time of the feed gas in the first layer is between about 0.08 and about 0.50 sec; and (c) withdrawing a product enriched in oxygen from the adsorber.
    Type: Application
    Filed: November 21, 2008
    Publication date: March 19, 2009
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Matthew James LaBuda, Timothy Christopher Golden, Roger Dean Whitley
  • Publication number: 20090020010
    Abstract: This invention relates to methods of removing impurities from compounds having similar volatilities to form ultra high purity compounds.
    Type: Application
    Filed: June 30, 2008
    Publication date: January 22, 2009
    Inventors: Francis Joseph Lipiecki, Stephen G. Maroldo, Deodatta Vinayak Shenai-Khatkhate, Robert A. Ware
  • Patent number: 7468096
    Abstract: The present invention concerns the apparatus for producing oxygen, comprising: a first zeolite bed connected to an external air pressurizing device and a depressurizing device for increasing or decreasing an internal pressure thereof; a second zeolite bed connected to the first zeolite bed in parallel and connected to the external air pressurizing device and the depressurizing device for decreasing or increasing an internal pressure thereof, the first and second zeolite beds being arranged such that the internal pressure of the second zeolite bed is decreased when the internal pressure of the first zeolite bed is increased, and the internal pressure of the second zeolite bed is increased when the internal pressure of the first zeolite bed is decreased; and a carbon molecular sieve bed communicated in fluid with the first and second zeolite beds for receiving and adsorbing oxygen produced in the first and second zeolite beds and discharging the produced oxygen to the outside and discharging selectively some of
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: December 23, 2008
    Assignees: Yonsei University, Daesung Industrial Gases Co., Ltd.
    Inventor: Chang-Ha Lee
  • Publication number: 20080295689
    Abstract: A sorbent composition comprising a vanadium compound and a ZrO2 support material is disclosed. Methods of making and using the composition to remove heavy metals or heavy metal containing compounds from a fluid stream are also provided. Such methods are particularly useful in the removal of mercury and mercury compounds from flue gas streams produced from the combustion of hydrocarbon-containing materials such as coal and petroleum fuels.
    Type: Application
    Filed: August 12, 2008
    Publication date: December 4, 2008
    Inventors: Joseph B. Cross, Marvin M. Johnson, Edward L. Sughrue, II, Glenn W. Dodwell, Jianhua Yao
  • Publication number: 20080293976
    Abstract: The invention relates to regenerative, supported amine sorbents that includes an amine or an amine/polyol composition deposited on a nano-structured support such as nanosilica. The sorbent provides structural integrity, as well as high selectivity and increased capacity for efficiently capturing carbon dioxide from gas mixtures, including the air. The sorbent is regenerative, and can be used through multiple operations of absorption-desorption cycles.
    Type: Application
    Filed: July 19, 2007
    Publication date: November 27, 2008
    Inventors: George A. Olah, Alain Goepert, Sergio Meth, G.K. Surya Prakash
  • Publication number: 20080279739
    Abstract: A composition comprising a vanadium oxide compound and an alkali metal promoter loaded onto a porous support material is disclosed. Methods of making and using the composition to remove heavy metals or heavy metal containing compounds from a fluid stream are also provided. Such methods are particularly useful in the removal of mercury and mercury compounds from flue gas streams produced from the combustion of hydrocarbon-containing materials such as coal and petroleum fuels.
    Type: Application
    Filed: July 17, 2008
    Publication date: November 13, 2008
    Inventors: Joseph B. Cross, Glenn W. Dodwell, Marvin M. Johnson, Edward L. Sughrue, II, Jianhua Yao
  • Publication number: 20080236389
    Abstract: The present invention relates to adsorbent honeycomb monoliths and other porous monoliths impregnated with alkaline and/or caustic salts of alkaline metal or alkaline earth metal. The impregnated monoliths have high adsorption capacity and low flow resistance, yet with minimized flammability, suitable for use in removal of acidic, malodorous and/or harmful gases.
    Type: Application
    Filed: April 18, 2007
    Publication date: October 2, 2008
    Applicant: Mead Westvaco Corporation
    Inventors: William B. Leedy, Jack F. Eichelsbacher, Thomas H. Shelton
  • Patent number: 7416569
    Abstract: A PSA mechanism has adsorption towers. Cleaning valves and off gas valves are connected to the adsorption towers. Valve positions of at least either the cleaning valves or the off gas valves are determined based on an operation suspension period of the PSA mechanism or internal conditions which vary depending on the operation suspension period.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: August 26, 2008
    Assignee: Honda Motor Co., Ltd.
    Inventors: Hideaki Sumi, Hikaru Okada, Satoshi Hanai, Hiroshi Machida
  • Publication number: 20080148936
    Abstract: The present invention relates to composite structured adsorbents and methods of use therefor. The invention more particularly relates to composite structured adsorbents that can include a multi-channel framework (e.g., monoliths), the channels of the multi-channel framework containing adsorbent beads particles therein, with a channel-to-particle diameter ratio in the range of 1 to 10, more preferably 1 to 7 and even more preferably 1 to 5. In the case of non-spherical particles, the hydraulic diameter is used in the calculation of the channel-to-particle diameter. The composite structured adsorbents of the present invention can be used in various industrial applications, for example in pressure swing adsorption (PSA) or vacuum pressure swing adsorption (VPSA) processes to produce O2 from air.
    Type: Application
    Filed: December 22, 2006
    Publication date: June 26, 2008
    Inventor: Mohamed Safdar Allie Baksh
  • Patent number: 7381242
    Abstract: A method of PSA gas separation for a gas mixture containing hydrogen and hydrocarbon impurities. The gas mixture is put in contact with silica gel and activated carbon so as to adsorb the impurities in the gas mixture. Hydrogen rich and waste gas flows are produced. The waste gas flow may be sent to the combustible network of a petrochemical site, without having to make a pressure adjustment to the waste gas.
    Type: Grant
    Filed: February 5, 2003
    Date of Patent: June 3, 2008
    Assignee: L'Air Liquide Société Anonyme á Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procédés Georges Claude
    Inventors: Guillaume De Souza, Pascal Tromeur
  • Publication number: 20080000351
    Abstract: The present invention relates to a method of reducing or elimination pressure pulsations and noise created by blowers in a gas separation plant. The method employs two identical and 180° out of phase blowers synchronized together to provide both a large flow of air and active noise cancellation to eliminate pressure pulsations. The two blowers are synchronized in such a way that pressure pulses created by one blower will actively be cancelled by the pulses generated by the other blower. At the same time, both blowers will work together to force a large quantity of gas flow in or out of the plant. The twin set of blowers can be used for feed or vacuum applications in the plant. This way large tonnage plant capital costs can be reduced by eliminating the need for an expensive silencer and a single large custom-made blower.
    Type: Application
    Filed: June 30, 2006
    Publication date: January 3, 2008
    Inventors: Cem E. Celik, James Smolarek
  • Patent number: 7052525
    Abstract: A protective system having an upstream detection subsystem to detect a contaminant in an airflow and to provide a contaminant signal, an upstream detection subsystem, a filtration subsystem to filter the contaminant from the airflow, a valve adapted to allow selective routing of the airflow, and a control system adapted to control the valve to route the airflow through the protective system upon receiving the contaminant signal from the upstream detection subsystem. In one embodiment, the upstream detection subsystem includes at least two different types of detectors for detecting same type of contaminants. In another embodiment, the upstream detection subsystem is adapted to detect a contaminant, and a daughter compound. In another embodiment, the protective system includes a downstream detection subsystem. In yet another embodiment, the protective system includes a vehicle data link subsystem.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: May 30, 2006
    Assignee: Ensco, Inc.
    Inventors: Ki Ho Kang, Boyd Lease
  • Patent number: 7008464
    Abstract: A system for removing moisture from a wet gas stream including a vessel having a contact area containing deliquescing salts that produces brine as water is absorbed, the brine flowing to a collection area in the bottom of the vessel. A venturi positioned in a wet gas inlet stream produces an area of reduced pressure that is applied to a brine flow path connected to the brine collection area. In this way, the brine is recirculated into intimate contact with the wet gas inlet stream causing the brine to be diluted with water extracted from the wet gas stream.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: March 7, 2006
    Assignee: National Tank Company
    Inventor: Jack A. Deetz
  • Patent number: 6991671
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: January 31, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers
  • Patent number: 6989044
    Abstract: A process and composition for selectively adsorbing oxygen from a gaseous mixture. The chemisorption is carried out by a porous three-dimensional transition element complex comprised of intermolecularly bound TEC units, said units further comprised of at least one multidentate ligand forming at least one five- or six-membered chelate ring on each unit.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: January 24, 2006
    Assignee: Praxair Technology, Inc.
    Inventors: Delong Zhang, Neil Andrew Stephenson
  • Patent number: 6892473
    Abstract: This invention relates to an improvement in a process for removing water from a hydride gas, and particularly ammonia, by contacting the hydride gas with a drying agent under conditions for effecting removal of the water. The improvement for significantly reducing the water content to trace levels in said hydride gas resides in the use of at least Group 1 metal oxide and at least one Group 2 metal oxide as a drying agent.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: May 17, 2005
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Robert Ling Chiang, Roger Dean Whitley, Dingiun Wu, Chun Christine Dong, Madhukar Bhaskara Rao
  • Patent number: 6806219
    Abstract: The present invention relates to zeolites X, most of the exchangeable sites of which are occupied by lithium and di- and/or trivalent cations, having an improved thermal stability and an improved crystallinity with respect to zeolites of the prior art with the same degree of exchange of lithium and of di- and/or trivalent cations. The zeolites of the present invention are particularly effective as adsorbents of the nitrogen present in various gas mixtures and are well suited to the noncryogenic separation of the gases of the air.
    Type: Grant
    Filed: January 3, 2001
    Date of Patent: October 19, 2004
    Assignee: Ceca, S.A.
    Inventors: Jean-Jacques Masini, Dominique Plee
  • Patent number: 6797038
    Abstract: An adsorbent for selective adsorption of unsaturated hydrocarbons from its mixture with saturated hydrocarbons, carbon dioxide, carbon monoxide, permanent gases or mixture thereof. The adsorbent includes a silver or copper compound in an amount of 1 to 70 wt % and a substrate in 30 to 99% wt %. Also a method for the manufacture of an adsorbent, which includes impregnating or dispersing a silver (I) or copper (I) compound on a mesoporous substrate or support to form a composite material and subjecting the composite material to heat treatment. Also, a process for separating ethylene and/or propylene from gas mixtures containing them by passing a stream of the gas mixture through a mass of the adsorbent at a temperature from 0° C. to 170° C. and a pressure from 0.1 to 100 atmospheres and releasing the adsorbed ethylene and/or propylene by lowering pressure and/or increasing temperature.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: September 28, 2004
    Assignee: Indian Petrochemicals Corporation Limited
    Inventors: Nettem Venkateswarlu Choudary, Prakash Kumar, Vijayalakshmi Ravi Puranik, Sodankur Garadi Thirumaleshwara Bhat
  • Patent number: 6764601
    Abstract: The invention relates to a process of coating inorganic particles with organic compositions, and agglomerating, compacting and heating of the coated particles into granules. Coating and compacting the agglomeration may be conducted continuously, and may be used to form granules having sizes ranging from about 1 to about 200 mesh. In one embodiment, these particles can be used to purify drinking water by removing heavy metals such as arsenic, lead and mercury and to remove or kill microorganisms in the drinking water, air and gas.
    Type: Grant
    Filed: April 16, 2001
    Date of Patent: July 20, 2004
    Assignee: Selecto Scientific, Inc.
    Inventors: Ehud Levy, Matthew D. Barranco, Mohammed Tazi
  • Patent number: 6764755
    Abstract: A channelized sorbent material comprises porous sorbent particles characterized by an average pore diameter. Each sorbent particle has at least one interior channel of an average transverse dimension (i.e. transverse diameter) that is at least ten times larger than the average pore diameter of the porous sorbent particle. The interior channel may constitute a single cylindrical through-bore in the sorbent particle, or alternatively, an array of intersecting or non-intersecting channels. The porous sorbent particles preferably comprise bead activated carbon particles. Such channelized sorbent material is particular useful as sorbent media in an adsorption-desorption apparatus for storage and dispensing of a sorbable fluid.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: July 20, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, Steven J. Hultquist
  • Publication number: 20040118286
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 24, 2004
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers
  • Patent number: 6660063
    Abstract: A capacity increase and/or pressure decrease of gas in a gas storage and dispensing vessel is achieved by use of a physical adsorbent having sorptive affinity for the gas. Such approach enables conventional high pressure gas cylinders to be redeployed with contained sorbent, to achieve substantial enhancement of safety and capacity.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: December 9, 2003
    Assignee: Advanced Technology Materials, Inc
    Inventors: Glenn M. Tom, James V. McManus, Luping Wang, W. Karl Olander
  • Patent number: 6613126
    Abstract: A method for storing natural gas by adsorption which comprises separating an available natural gas in an infrastructure side (10) into a low carbon number component mainly containing methane and ethane and a high carbon number component mainly containing propane, butane and the like, and storing the low carbon number component by adsorption in a first adsorption tank (16) and storing the high carbon number component by adsorption in a second adsorption tank (18). The method can solve the problem that the high carbon number component condenses within a pore of an adsorbing agent and hence the adsorption of the carbon number component, the main component of natural gas, is inhibited, and thus improves the storage density. Accordingly, the method can be used for ensuring a high storage density also for an available natural gas. An adsorbing agent for use in the method is also disclosed.
    Type: Grant
    Filed: September 5, 2001
    Date of Patent: September 2, 2003
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kyoichi Tange, Tamio Shinozawa, Hiroshi Hasegawa, Kouetsu Hibino
  • Patent number: 6561213
    Abstract: A fluid distribution system for supplying a gas to a process facility such as a semiconductor manufacturing plant. The system includes a main fluid supply vessel coupled by flow circuitry to a local sorbent-containing supply vessel from which fluid, e.g., low pressure compressed gas, is dispensed to a fluid-consuming unit, e.g., a semiconductor manufacturing tool. A fluid pressure regulator is disposed in the flow circuitry or the main liquid supply vessel and ensures that the gas flowed to the fluid-consuming unit is at desired pressure. The system and associated method are particularly suited to the supply and utilization of liquefied compressed gases such as trimethylsilane, arsine, phosphine, and dichlorosilane.
    Type: Grant
    Filed: June 5, 2001
    Date of Patent: May 13, 2003
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Luping Wang, Terry A. Tabler, James A. Dietz
  • Patent number: 6530973
    Abstract: A method and system for climate control uses a desiccant in an automobile. The desiccant removes humidity or moisture from air passing through the ventilation system. The desiccant is recharged or dried by application of a vacuum. The lower pressure generated by the vacuum reduces the temperature at which water evaporates or boils off of the desiccant material.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: March 11, 2003
    Assignee: Visteion Global Technologies, Inc.
    Inventor: Thomas P. Gielda
  • Patent number: 6511525
    Abstract: The present invention provides a method and apparatus for extracting liquid water from moist air using minimal energy input. The method can be considered as four phases: (1) adsorbing water from air into a desiccant, (2) isolating the water-laden desiccant from the air source, (3) desorbing water as vapor from the desiccant into a chamber, and (4) isolating the desiccant from the chamber, and compressing the vapor in the chamber to form liquid condensate. The liquid condensate can be removed for use. Careful design of the dead volumes and pressure balances can minimize the energy required. The dried air can be exchanged for fresh moist air and the process repeated. An apparatus comprises a first chamber in fluid communication with a desiccant, and having ports to intake moist air and exhaust dried air. The apparatus also comprises a second chamber in fluid communication with the desiccant. The second chamber allows variable internal pressure, and has a port for removal of liquid condensate.
    Type: Grant
    Filed: June 14, 2001
    Date of Patent: January 28, 2003
    Assignee: Sandia Corporation
    Inventors: Barry L. Spletzer, Diane Schafer Callow
  • Patent number: 6453924
    Abstract: A fluid distribution system for supplying a gas to a process facility such as a semiconductor manufacturing plant. The system includes a main fluid supply vessel coupled by flow circuitry to a local sorbent-containing supply vessel from which fluid, e.g., low pressure compressed gas, is dispensed to a fluid-consuming unit, e.g., a semiconductor manufacturing tool. A fluid pressure regulator is disposed in the flow circuitry or the main liquid supply vessel and ensures that the gas flowed to the fluid-consuming unit is at desired pressure. The system and associated method are particularly suited to the supply and utilization of liquefied compressed gases such as trimethylsilane, arsine, phosphine, and dichlorosilane.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: September 24, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Luping Wang, Terry A. Tabler, James A. Dietz
  • Patent number: 6425937
    Abstract: A process for purifying a gas stream containing at least one impurity chosen from the group formed by propane, nitrogen protoxide and ethylene, in which process: (a) the gas stream to be purified is brought into contact with at least one adsorbent including at least one X zeolite containing barium cations; (b) at least one impurity is adsorbed on the adsorbent. Preferably, the adsorbent includes particles of X zeolite exchanged to at least 70%, preferably at least 89%, with barium cations, it being possible for the adsorbent to furthermore include a bed of activated alumina particles which is located upstream of the bed of barium-exchanged X zeolite.
    Type: Grant
    Filed: July 3, 2000
    Date of Patent: July 30, 2002
    Assignee: L'Air Liquide, Societe Anonyme a Directoire et Conseil de Surveillance pour l'Etude et l'Exploitation des Procedes Georges Claude
    Inventors: Georges Kraus, Cyrille Millet, Serge Moreau, Jean-Pierre Gabillard
  • Publication number: 20020092419
    Abstract: A method and system for climate control uses a desiccant in an automobile. The desiccant removes humidity or moisture from air passing through the ventilation system. The desiccant is recharged or dried by application of a vacuum. The lower pressure generated by the vacuum reduces the temperature at which water evaporates or boils off of the desiccant material.
    Type: Application
    Filed: January 16, 2001
    Publication date: July 18, 2002
    Applicant: VISTEON GLOBAL TECHNOLOGIES, INC.
    Inventor: Thomas P. Gielda
  • Patent number: 6406519
    Abstract: A gas supply system including a gas cabinet defining an enclosure including therein a gas dispensing manifold and one or more adsorbent-based gas storage and dispensing vessels mounted in the enclosure and joined in gas flow communication with the gas dispensing manifold. The enclosure may be maintained under low or negative pressure conditions for enhanced safety in the event of leakage of gas from the gas storage and dispensing vessel(s) in the enclosure. The gas supply system may be coupled to a gas-consuming unit in a semiconductor manufacturing facility, e.g., an ion implanter, an etch chamber, or a chemical vapor deposition reactor.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: June 18, 2002
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Glenn M. Tom, James V. McManus
  • Patent number: 6402812
    Abstract: An integrated environmental control (IEC) system includes a decontamination Pressure Swing Adsorption (PSA) system in which a contaminated decontamination bed is purged through a purge exhaust duct and subsequently dumped overboard through a purge ejector. The energy from a high pressure drain duct serves as the primary motive force for the purge ejector to create a sub-atmospheric region therein and reduce back pressure upon the PSA filtration system. The reduced back pressure creates additional pressure drop across the PSA filtration system which improves performance. Risk of the purge exhaust duct and the purge ejector freezing in a low temperature environment is further minimized by mixing the purge exhaust with the relatively warmer high pressure drains.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: June 11, 2002
    Assignee: Sikorsky Aircraft Corporation
    Inventors: Thomas Perrotta, Clement I. Anekwe
  • Patent number: 6336957
    Abstract: The present invention relates to method and apparatus for extracting water from atmospheric air. The method according to an embodiment of the invention does not depend on day and night temperature differentials and can operate at lower temperatures than were possible before. The present invention makes it possible to extract water vapors from the atmospheric air in relatively simple, inexpensive industrial plants or in smaller portable devices.
    Type: Grant
    Filed: February 19, 2001
    Date of Patent: January 8, 2002
    Assignee: Watertech M.A.S. Ltd.
    Inventor: Alexander Tsymerman
  • Patent number: 6277173
    Abstract: A system for discharging gas emitted from an apparatus or facility having a vacuum pump which sucks the gas emitted from the apparatus or facility while being supplied with a gas other than the sucked gas, the system comprising a unit for recovering at least part of the gas discharged from the vacuum pump, and recirculating the recovered gas to the vacuum pump as the gas other than the sucked gas. Part of the recovered gas may be recirculated to the apparatus or facility emitting the gas. The system reduces or eliminates emission to the atmosphere of global warming gases such as perfluorocompounds discharged from the vacuum pump, and also reduces the energy required for operating the vacuum pump. A method for discharging gas emitted from an apparatus or facility using a vacuum pump, wherein emission of global warming gases to the atmosphere is reduced or eliminated, is also disclosed.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: August 21, 2001
    Assignee: Fujitsu Limited
    Inventors: Takayuki Sadakata, Hiroshi Yoshinaga, Katsuhiro Ozaki
  • Patent number: 6132492
    Abstract: A sorbent-based gas storage and dispensing system, including a storage and dispensing vessel containing a solid-phase physical sorbent medium having a sorbate gas physically adsorbed thereon. A chemisorbent material is provided in the vessel to chemisorb the impurities for gas phase removal thereof in the storage and dispensing vessel. Desorbed sorbate gas is discharged from the storage and dispensing vessel by a dispensing assembly coupled to the vessel. The chemisorbent may be provided in a capsule including an impurity-permeable, but sorbate gas-impermeable membrane, and installed in the vessel at the time of sorbent material loading. Semiconductor manufacturing processes and products manufactured by such processes are described.
    Type: Grant
    Filed: May 21, 1998
    Date of Patent: October 17, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Steven J. Hultquist, Glenn M. Tom, Peter S. Kirlin, James V. McManus
  • Patent number: 6110257
    Abstract: A low concentration gas delivery system utilizing a sorbent-based gas storage and delivery unit including a gas storage and dispensing vessel joined in flow communication with a permeation structure. The storage and dispensing vessel contains a solid-phase physical sorbent medium holding a fluid, which is selectively dispensed from the vessel by pressure differential, concentration differential and/or thermal desorption techniques. The dispensed gas flows to the permeation structure, wherein the desorbed fluid is diffusionally released either as a neat fluid, or into a carrier gas in which the desorbed fluid has a precisely maintained concentration, for applications such as calibration of instruments monitoring fluid concentrations, delivery of dopants for fabrication of microelectronic device structures, or other end use application requiring a precise low concentration of fluid.
    Type: Grant
    Filed: May 18, 1998
    Date of Patent: August 29, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventor: Glenn M. Tom