Including Injection System Or Inlet Fluid Distributor Patents (Class 96/105)
  • Patent number: 11841349
    Abstract: Certain embodiments described herein are directed to chromatography systems that include a microfluidic device. The microfluidic device can be fluidically coupled to a switching valve to provide for selective control of fluid flow in the chromatography system. In some examples, the microfluidic device may include a charging chamber, a bypass restrictor or other features that can provide for added control of the fluid flow in the system. Methods of using the devices and methods of calculating lengths and diameters to provide a desired flow rate are also described.
    Type: Grant
    Filed: August 2, 2021
    Date of Patent: December 12, 2023
    Assignee: PerkinElmer U.S. LLC
    Inventor: Andrew Tipler
  • Patent number: 11491417
    Abstract: A parallel assembly of chromatography column modules, the assembly having one common assembly inlet and one common assembly outlet, each column module comprising a bed space filled with chromatography medium and each column module comprises integrated fluid conduits which when the column module is connected with other column modules are adapted to connect the bed space of the column module with the assembly inlet and the assembly outlet, wherein the total length and/or volume of the fluid conduit from the assembly inlet to one bed space together with the length and/or volume of the fluid conduit from the same bed space to the assembly outlet is substantially the same for all bed spaces and modules installed in the parallel assembly.
    Type: Grant
    Filed: December 17, 2020
    Date of Patent: November 8, 2022
    Assignee: Cytiva BioProcess R&D AB
    Inventor: Klaus Gebauer
  • Patent number: 11473826
    Abstract: A cryogenic cooling manifold and methods incorporating a cryogenic cooling manifold for managing the gas layer(s) above a liquid cryogen to control cooling temperature-time profiles and ice formation for microliter and smaller samples that are plunged through the gas and into the liquid cryogen.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: October 18, 2022
    Assignee: MiTeGen, LLC
    Inventors: David Closs, Stephen Hollabaugh, Robert E. Thorne, Robert Newman, Benjamin A. Apker
  • Patent number: 11327055
    Abstract: A seal pack of a sample manager of a liquid chromatography system having a plurality of wash flow pathways fluidically connected to a central pathway that accommodates a sample needle, wherein a first wash flow pathway is vertically offset from a second wash flow pathway, such that a wash solution flows axially along an exterior surface of the sample needle in a vertical direction to wash the sample needle when flowing from the first wash flow pathway to the vertically offset second wash flow pathway, is provided. Furthermore, an autosampler and associated methods are also provided.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: May 10, 2022
    Assignee: WATERS TECHNOLOGIES CORPORATION
    Inventors: Joshua A. Burnett, Marc E. Lemelin, Sylvain Gilles Cormier
  • Patent number: 8999044
    Abstract: A liner for mixing the sample gas and a carrier gas and delivering the gas mixture to the inlet end of a capillary tube of a gas chromatograph for analysis, comprises (a) a transparent tube having an inlet and an outlet and a bore with an inside surface, and (b) at least one glass subcomponent permanently affixed to the liner tube wherein the subcomponent is at least one color.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: April 7, 2015
    Inventors: Edmund C. Rohland, Glen R. Campbell
  • Publication number: 20150059439
    Abstract: Certain embodiments described herein are directed to chromatography systems that include a microfluidic device configured to provide three-way switching or switching between three or more inputs or outputs. The microfluidic device can be fluidically coupled to one or more switching valves to provide for selective control of fluid flow in the chromatography system.
    Type: Application
    Filed: August 4, 2014
    Publication date: March 5, 2015
    Inventor: Andrew Tipler
  • Patent number: 8915120
    Abstract: A vial feed device is equipped with a feed arm, which is positioned between a vial tray and an oven and below either of them and having a feeding housing unit and a cooling housing unit, and a vial up-and-down moving mechanism for placing and removing vials in and from vial tray and oven. Feed arm is rotationally driven by a drive motor to move a feeding housing unit, a cooling housing unit and up-and-down moving mechanism toward vial tray or oven. High-temperature vials in oven are housed in cooling housing unit until cooling time T elapses. After cooling time T elapses, cooling housing unit is moved to a lower part of vial tray by feed arm, to be returned to vial tray by up-and-down moving mechanism.
    Type: Grant
    Filed: July 26, 2012
    Date of Patent: December 23, 2014
    Assignee: Shimadzu Corporation
    Inventors: Takashi Inoue, Takeshi Maji, Hirotaka Naganuma, Shinichi Mitsuhashi, Yoshitaka Noda
  • Patent number: 8882894
    Abstract: The invention relates to a vaporization injector for a gas chromatograph, said injector comprising a structure (11) mounted in a detachable manner on the gas chromatograph body and including the sample introduction means, the vaporization chamber and pneumatic connections for feeding the carrier gas to the vaporization chamber and to the septum purge means, as well as pneumatic connections for evacuating the splitted sample and carrier gases.
    Type: Grant
    Filed: February 1, 2010
    Date of Patent: November 11, 2014
    Assignee: Thermo Fisher Scientific S.p.A.
    Inventors: Stefano Pelagatti, Eric Phillips, Paolo Magni
  • Publication number: 20140290491
    Abstract: A housing of a column unit is tubular-shaped, and includes a first opening and a second opening, and an inner space separated from outside air by an insulating material. An air cooling section including a cooling device is arranged on a side of the first opening of the housing. At the time of cooling the inside of the inner space of the housing, air is caused, by a fan, to flow through the air cooling section and from the side of the first opening to a side of the second opening. A column section including a separation column and a heater is arranged inside the housing. A gap through which air flows from the first opening to the second opening is formed between the column section and an inner wall of the inner space of the housing.
    Type: Application
    Filed: March 26, 2014
    Publication date: October 2, 2014
    Applicant: SHIMADZU CORPORATION
    Inventors: Masaki Kanai, Takahiro Nishimoto, Masanori Nishino, Satoshi Matsuoka
  • Patent number: 8845794
    Abstract: A non-seizing taper used for purged capillary tubing connections in gas chromatography that stops capillary tubing at a predictable position within the taper during installation and maintains space for gas to flow past the capillary tubing. The disclosed taper is an improved component of commonly used purged devices such as inlet liners and purged unions. The arresting aspect of the taper simplifies the process of capillary tubing installation while ensuring that the tubing will reproducibly be positioned in the taper. One or more features of the taper prevent tubing from seizing within the taper so that the devices can be reused and ensure that there is open space for a portion of gas to flow around and past the tubing. The angle of the taper, the dimensions of the taper, and the nature of the features within the taper can be adjusted to meet specific performance, usability and/or manufacturability requirements.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: September 30, 2014
    Inventor: Matthew Spangler Klee
  • Patent number: 8841611
    Abstract: A gas chromatograph-mass spectrometer (GC-MS) system includes a multi-capillary GC column coupled to a mass analyzer through an ionization interface. The ionization interface includes an ionization device and an ion guide configured for receiving a high-capacity gas-sample flow from the GC column and transmitting a compressed ion beam to the mass analyzer. The ion beam may be converging.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: September 23, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Gangqiang Li, Maozi Liu
  • Patent number: 8808629
    Abstract: The invention relates to a transfer unit for analysis devices, containing a tube-shaped assembly which can be heated by an electric heater in a programmed manner, a tube (6) which is arranged in the sample chamber (18) and into which the end of a gas chromatographic separating column can be inserted at the end of said tube, and means for introducing carrier gas into the tube (6), said transfer unit being characterized in that a temperature sensor (8) is arranged in the ring chamber (5) between the inner wall of the assembly and the evaporator tube (6). The transfer unit can be a sample introduction device for a gas chromatograph having a sample introduction head (18), and the assembly can be a sample introduction chamber in which an evaporator tube is provided, wherein the end of a gas chromatographic separating column can be inserted into the end facing away from the sample introduction head (18).
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: August 19, 2014
    Assignee: Joint Analytical Systems GmbH
    Inventor: Joachim Gerstel
  • Patent number: 8784543
    Abstract: A non-seizing taper used for purged capillary tubing connections in gas chromatography that stops capillary tubing at a predictable position within the taper during installation and maintains space for gas to flow past the capillary tubing. The disclosed taper is an improved component of commonly used purged devices such as inlet liners and purged unions. The arresting aspect of the taper simplifies the process of capillary tubing installation while ensuring that the tubing will reproducibly be positioned in the taper. One or more features of the taper prevent tubing from seizing within the taper so that the devices can be reused and ensure that there is open space for a portion of gas to flow around and past the tubing. The angle of the taper, the dimensions of the taper, and the nature of the features within the taper can be adjusted to meet specific performance, usability and/or manufacturability requirements.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 22, 2014
    Inventor: Matthew Spangler Klee
  • Patent number: 8713989
    Abstract: An inlet liner is provided for use in an inlet assembly of a chromatograph system. The inlet liner has an elongate tube that extends along a longitudinal axis and defines a bore that extends along the longitudinal axis and has an inner bore surface. At least one projection extends from the inner bore surface into the bore. Chromatograph systems are provided including the exemplary inlet liner(s). Methods are also provided for analyzing a sample containing a matrix in a chromatograph system having an inlet assembly connected to a chromatograph column. The method includes positioning an exemplary inlet liner in the inlet assembly, flowing the sample through the inlet liner, and adhering a portion of the matrix to a projection surface of at least one projection of the inlet liner.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: May 6, 2014
    Assignee: Agilent Technologies, Inc.
    Inventors: Ponna Peter Pa, William H Wilson
  • Patent number: 8591630
    Abstract: In a fast gas chromatograph (GC) method and device for obtaining fast gas chromatography analysis, a capillary gas chromatography column is inserted into a resistively heated metal tube located mostly outside a standard gas chromatograph oven, which may serve as a heated transfer line to a flexible column that enters the resistively heated metal tube from its injector and exits into its detector. The fast GC device enables less than one minute full range temperature programming and cooling back analysis cycle time. The fast GC according to one embodiment is combined with mass spectrometry with supersonic molecular beams for the provision of fast analysis cycle time together with highly informative mass spectral information for improved sample analysis and identification.
    Type: Grant
    Filed: October 6, 2010
    Date of Patent: November 26, 2013
    Inventors: Aviv Amirav, Alexander B. Fialkov
  • Patent number: 8506688
    Abstract: A gas chromatographic device comprises an inlet system and a chromatography column. The inlet system includes a liner having pressure reducing means contained therein for reducing pressure between an inlet of the pressure reducing means and an outlet of the pressure reducing means. When the devise is in use, the chromatography column is positioned in the liner of the inlet system downstream from the pressure reducing means, and the chromatography column is under vacuum at its outlet.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: August 13, 2013
    Assignee: Restek Corporation
    Inventors: Jaap De Zeeuw, Jack Cochran, Scott L. Grossman
  • Publication number: 20130174642
    Abstract: A micro-fabricated chromatography column (70) which is particularly well-suited to the surface well-site and/or the downhole analysis of subterranean reservoir fluids in oilfield or gasfield applications (but which may also be used in non-oilfield or non-gasfield situations) is described. This micro-fabricated column integrates a micro-structured substrate (50), such as a silicon substrate, with a stationary phase material (66) deposited by sputtering as a coating in a microchannel (56) in the substrate (50). Benefits of the presently claimed and disclosed inventive concept(s) include enhanced separation of alkanes and isomers, particularly below hexane (i.e., below C6 as well as the separation of carbon dioxide, hydrogen sulfide, and water and other substances present in reservoir fluids, such as natural gas.
    Type: Application
    Filed: March 9, 2011
    Publication date: July 11, 2013
    Inventor: Pierre Guibal
  • Patent number: 8470072
    Abstract: The pressure of a carrier gas entering a gas chromatography (GC) column is controlled by increasing or decreasing the gas pressure over a pressure change cycle by which a desired gas pressure is obtained while avoiding pressure pulses in the column. The pressure change cycle may follow a function that dictates the rate of pressure change. A gas flow controller that controls the gas pressure at the inlet or head of the column may be operated to implement the pressure change cycle. The gas flow controller may be controlled by an electronic controller.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: June 25, 2013
    Assignee: Bruker Daltonik, GmbH
    Inventor: Norbert Alfred Reuter
  • Patent number: 8398851
    Abstract: The invention relates to a device and to a method for determining the proportion of fuel in a combustion engine lubricating oil. The device according to the invention comprises a column (12) with at least 22000 theoretical plates and a steady state phase capable of separating the fuel, the oil, the internal standard contained in the oil and the solvent, in which the oil and the internal standard are diluted, and a heating module (120) capable of causing an increase in the temperature of the column (12) at a rate of at least 350° C./min. In the method according to the invention, the column (12) is subjected to determined cycles during which the pressure of the carrier gas and the temperature are varied.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: March 19, 2013
    Assignee: Renault S.A.S.
    Inventors: Laurent Tiquet, Pierrick Rouille
  • Patent number: 8366814
    Abstract: A gas chromatography inlet liner comprises a glass tube formed by a glass wall, the glass wall having pore channels formed therein, and an indicator present in the pore channels in at least part of the inlet liner. The indicator may be any element, compound, dopant, or mixture additive that modifies color or transparency of the inlet liner.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: February 5, 2013
    Assignee: Restek Corporation
    Inventors: Brian A. Jones, Thomas E. Kane
  • Publication number: 20130001145
    Abstract: A micro-machined frit is provided for use in a chromatography column, having a substrate with a thickness, and holes extending through the thickness and providing fluid communication through the substrate. A micro-machined flow distributor is provided for use in a chromatography column having a substrate, holes extending through the substrate, and channels in fluid communication with the holes. A micro-machined integrated frit and flow distributor device is also provided having a substrate with a thickness, holes extending through the thickness and providing fluid communication therethrough, and channels in fluid communication with at least one of the holes. A chromatography column is provided having a tube, an extraction medium contained therein, and a micro-machined frit positioned proximate an end of the tube. The column can include a micro-machined flow distributor positioned between the frit and the end of the tube.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: Agilent Technologies, Inc.
    Inventors: Hongfeng Yin, Qing Bai, Reid A. Brennen
  • Patent number: 8343258
    Abstract: A device for providing a constant mass flow rate to a downstream column system of a gas chromatograph includes a small full scale mass flow controller that controls carrier gas to flow at a first mass flow rate and a flow resistance element, including an inlet port connected to a sample inlet, an outlet port connected to the downstream column system, and a pressure sensing port in fluid communication with the outlet port and the mass flow controller. A sample inlet pressure controller controls the sample inlet at a first pressure, and a pressure sensor measures a second pressure of the carrier gas at the pressure sensing port. A set point of the first pressure is determined as a function of the second pressure, flow resistance of the flow resistance element, and a second mass flow rate from the inlet port to the outlet port of the flow resistance element.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: January 1, 2013
    Assignee: Agilent Technologies, Inc.
    Inventor: Xiaosheng Guan
  • Patent number: 8308854
    Abstract: A system for recycling helium carrier gas comprises: a bladder, the bladder interior fluidically configured so as to receive helium-bearing gas output from at least one of a split vent and a septum purge vent of a gas chromatograph; a compartment containing the bladder; a source of pressurized air or gas operable so as to supply pressurized air or gas into the compartment interior so as to compress the bladder containing the helium-bearing gas; a gas reservoir fluidically coupled to the bladder interior so as to receive the helium bearing gas from the compressed bladder interior; and at least one gas purification module configured so as to receive the helium-bearing gas from the gas reservoir and operable to remove contaminants from the helium-bearing gas, an output of the at least one gas purification module being fluidically coupled to a carrier gas inlet of the gas chromatograph.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 13, 2012
    Assignee: Thermo Finnigan LLC
    Inventors: Edward B. McCauley, Matt A. Lasater
  • Publication number: 20120240661
    Abstract: An inlet liner is provided for use in an inlet assembly of a chromatograph system. The inlet liner has an elongate tube that extends along a longitudinal axis and defines a bore that extends along the longitudinal axis and has an inner bore surface. At least one projection extends from the inner bore surface into the bore. Chromatograph systems are provided including the exemplary inlet liner(s). Methods are also provided for analyzing a sample containing a matrix in a chromatograph system having an inlet assembly connected to a chromatograph column. The method includes positioning an exemplary inlet liner in the inlet assembly, flowing the sample through the inlet liner, and adhering a portion of the matrix to a projection surface of at least one projection of the inlet liner.
    Type: Application
    Filed: March 23, 2011
    Publication date: September 27, 2012
    Inventors: Ponna Peter Pa, William H. Wilson
  • Patent number: 8182768
    Abstract: A system for interfacing a sampling device and a chromatograph and for pre-concentrating analytes in a sample prior to introducing the sample into the chromatographic column is generally disclosed comprising an interface housing with a first channel and an adsorbent housing with a second channel, which contains at least one adsorbent. Valveless conduits permit fluid to be communicated between the sampling device and the first channel, between the first channel and the second channel, and the first channel and the column. In some embodiments, fluid flows in one direction when the analytes are adsorbed and in the opposite direction when analytes are desorbed. In certain embodiments, two different adsorbents are disposed in the second channel to adsorb different types of analytes.
    Type: Grant
    Filed: October 14, 2005
    Date of Patent: May 22, 2012
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, John H. Vanderhoef, James E. Botelho
  • Patent number: 8167987
    Abstract: Systems and methods for cooling a chromatographic column is disclosed generally, comprising heating a chromatographic column, supplying fluid into the column via the inlet end of the column at an inlet pressure, decreasing the temperature of the column, thereby causing the fluid in the column to contract, and controlling the fluid in the column such that the rate at which the fluid in the column contracts does not exceed the flow rate of the fluid supplied to the column. In certain embodiments, the rate of change of the volume of the fluid in the column as the column temperature decreases is modeled, and the rate of contraction of the gas in the column is estimated therefrom. In some embodiments, the column temperature and/or inlet pressure are controlled by a programmable chromatographic oven.
    Type: Grant
    Filed: May 19, 2009
    Date of Patent: May 1, 2012
    Assignee: PerkinElmer LAS, Inc.
    Inventor: Andrew Tipler
  • Patent number: 8152909
    Abstract: An apparatus, system, and method are disclosed for a gas chromatography (GC) system with a check valve. The check valve is situated downstream from the electronic flow control module and upstream of the injector. When a sample is volatized in the injector, the check valve closes into a checked position and prevents solvent and sample from backing into the gas delivery line. In certain embodiments, the check valve has a conical plug that fits into a seat that has an aperture. When the conical plug is depressed, the conical plug engages the sides of the aperture and seals the check valve, preventing solvent and sample from backing through the check valve. In certain embodiments, the change in pressure caused by over-pressurization in the injector, combined with the force applied by a spring on the conical plug, depresses the plug such that it seals the aperture.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: April 10, 2012
    Assignee: Bruker Chemical Analysis B.V.
    Inventor: Christopher Cameron Kellogg
  • Patent number: 8084000
    Abstract: A device for introduction of an ammonia dopant into a spectrometry system without the use of a delivery system containing ammonia. The delivery device includes an ammonium solid that will, upon the introduction of heat, yield ammonia gas for delivery into the spectrometer system. Use of such an alternative to traditional ammonia dopant systems will yield little or no change in spectrometer readings. The volumetric flow rate of the ammonium is controlled by the use of capillary tubes as the exiting pathway, where the flowrate is determined by the cross sectional area and length of the capillary tube. Delivery of the ammonia is aided by use of a frit or screen to permit only gas to exit.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: December 27, 2011
    Assignee: VICI Metronics, Inc.
    Inventors: Stanley D. Stearns, Santos Anthony Puente, John Michael Kelly, Brian David Russell
  • Publication number: 20110132196
    Abstract: There is provided a gas chromatograph column. The gas chromatograph column includes: a flow passage through which gas subjected to gas chromatography is absorbed, wherein an inner wall surface of the flow passage is at least partially provided with a plurality of pores whose sizes are substantially uniform. The gas chromatograph column further includes: a first substrate made of silicon and provided with a groove therein; a second substrate disposed on the first substrate to cover the groove; and a porous layer having the pores therein and formed on an inner wall surface of the groove.
    Type: Application
    Filed: December 7, 2010
    Publication date: June 9, 2011
    Applicant: YOKOGAWA ELECTRIC CORPORATION
    Inventors: Kentaro SUZUKI, Naoki KISHI, Hitoshi HARA, Tetsuya WATANABE
  • Publication number: 20110048230
    Abstract: A process for reducing ammonia from digested wastes (9), in which the stripping of ammonia by counter-current air/liquid extraction inside a stripping column (1) and the subsequent recover of ammonia by counter-current contact of the gas phase (11) exiting said stripping column (1) with a first sulphuric acid solution (10) inside a first absorption column (2) are provided.
    Type: Application
    Filed: August 28, 2009
    Publication date: March 3, 2011
    Inventors: Marco BALDI, Diego Binaghi
  • Patent number: 7897917
    Abstract: Embodiments of the present invention are directed to devices and methods for receiving NSC Fluids having at least one analyte from a chromatograph and directing analyte ions into the vacuum regions of a mass spectrometer. The device has a housing having at least one wall defining a chamber, sample inlet, an ionization media inlet and an outlet. The sample inlet has a position in communication with a chromatograph receiving a NSC Fluid. The sample inlet receives the NSC Fluid and directs the NSC Fluid into the chamber to form a sample jet of NSC Fluid. The ionization media inlet is placed in fluid communication with a source of ionization media and directs the ionization media into the chamber and the sample jet to create analyte ions. The analyte ions are received in the mass spectrometer vacuum region orifice.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 1, 2011
    Assignee: Waters Technologies Corporation
    Inventor: Joseph A. Jarrell
  • Patent number: 7867325
    Abstract: A gas chromatographic device comprises an inlet system and a chromatography column. The inlet system includes a liner having pressure reducing means contained therein for reducing pressure between an inlet of the pressure reducing means and an outlet of the pressure reducing means. When the devise is in use, the chromatography column is positioned in the liner of the inlet system downstream from the pressure reducing means, and the chromatography column is under vacuum at its outlet.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: January 11, 2011
    Assignee: Restek Corporation
    Inventors: Brian A. Jones, Jaap De Zeeuw, Jack Cochran, Scott L. Grossman
  • Patent number: 7791042
    Abstract: An ion source includes structure having separate first and second ion volumes therein, and electron source structure having first and second portions that selectively supply electrons to the first and second ion volumes, respectively. The electron source structure has a first operational mode in which the second portion substantially prevents a supply of electrons to the second ion volume and in which electrons are supplied to the first ion volume under control of the first portion, and has a second operational mode in which the first portion substantially prevents a supply of electrons to the first ion volume and in which electrons are supplied to the second ion volume under control of the second portion.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: September 7, 2010
    Assignee: Thermo Finnigan LLC
    Inventors: Edward B. McCauley, Scott T. Quarmby
  • Patent number: 7779670
    Abstract: The present invention is an improvement to two-dimensional comprehensive gas chromatography. The improvement is a two-valve switching modulator connecting two gas chromatography separation columns. The modulator is located between the first and second columns and includes two valves with transfer lines between the valves for switching a carrier gas between the transfer lines.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: August 24, 2010
    Assignee: ExxonMobil Reseach and Engineering Company
    Inventor: Frank C Wang
  • Publication number: 20100154511
    Abstract: A method and apparatus for two-dimensional gas chromatography (GC), including a valve having first and second positions (P1, and P2), and first through fourth sample flow paths (FP1-FP4). In P1, a first gas sample is collected from a first dimension GC column via FP1, a first pressure source and a first, second dimension GC column are connected via FP2, a second pressure source and a second, second dimension GC column are connected via FP3, and FP4 is disconnected. In P2, the first sample in FP1 is introduced to the second, second dimension GC column via FP1, with aid of the second pressure source, a second gas sample is collected from the first dimension GC column via FP2, the first pressure source and the first, second dimension GC column via FP4 are connected, and FP3 is disconnected.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 24, 2010
    Inventors: Gordon Lambertus, William Steinecker
  • Patent number: 7735352
    Abstract: A portable multi-dimensional gas chromatograph, the gas chromatograph including a carrier gas container, a regulator fluidly connected to the carrier gas container, a dopant chamber containing a reference chemical, at least one pre-concentrator which is fluidly connected to the regulator and the dopant chamber, a first separation column fluidly connected to the at least one pre-concentrator, a second separation column fluidly connected to the at least one pre-concentrator, a first detector fluidly connected to the first separation column, and a second detector fluidly connected to the second separation column.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: June 15, 2010
    Assignee: Alliant Techsystems Inc.
    Inventors: Sheena Alm, James Bentley, John Blankevoort, Mark Kaspersen, Collin Lewis, Derek Maxwell, Ken Wunner
  • Patent number: 7695617
    Abstract: The invention relates to an interface injector device for the direct coupling of liquid chromatography and gas chromatography, comprising an outer body (1) with an inner cavity with two inner chambers (2a, 2b) separated by a dividing element (9, 11a); a first passage (3) of the first chamber (2a) to a waste duct (8); an inner tube (5) arranged in the inner cavity and traversing the dividing element (9, 11a), and having a first section (5a) in the first inner chamber (2a), a second section (5b) in the second inner chamber (2b), and an inner channel (5f) which can house an adsorbent material (6), and at least one inorganic wool material (7) retained in the first section (5a) of the inner tube by retaining means (7), a first opening (10) communicated with the waste duct (8) exclusively through the first inner chamber (2a).
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: April 13, 2010
    Assignee: Universidad de Gastill-la Mancha
    Inventors: Jesus Villen Altamirano, Ana Maria Vazquez Molini, Raquel Sanchez Santiago, Rouger Gilbert Fortuny
  • Patent number: 7691181
    Abstract: A system for controlling the flow rate into a chromatographic column is disclosed generally comprising communicating a fluid to the column through a transfer line, measuring the inlet pressure, determining the outlet pressure, and adjusting the applied pressure until the inlet and outlet pressures produce a desired flow rate for the transfer line outlet. In certain embodiments, the applied pressure is adjusted by controlling a proportional valve. In some embodiments, the outlet pressure is determined by measuring the pressure drop across the transfer line and calculating the outlet pressure from the measured inlet pressure and the pressure drop.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: April 6, 2010
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Richard G Edwards
  • Patent number: 7585357
    Abstract: A new septum for multiple use injection ports enabling the introduction of fluid materials by needle injection into a gas chromatograph or other system under positive pressure. The injection port utilizes a special septum to seal the port while accommodating passage of an injection needle. The septum is provided with an axial through passage, preferably of greater diameter than the injection needle. The septum, which is formed of elastomeric material, is placed under axial compression sufficient to inwardly displace the material surrounding the preformed opening, to tightly close and seal the opening against the pressure of the system. The septum may be penetrated multiple times by injection needles without coring or otherwise damaging the septum. Greater operating life is achieved and contamination of the system is minimized.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: September 8, 2009
    Assignee: Pawling Corporation
    Inventors: Douglas E. Tanner, Craig Busby, Albert J. Corey
  • Patent number: 7572319
    Abstract: An analyte pre-concentrator for gas chromatography is disclosed generally comprising a tube packed with an adsorbent, wherein the tube may serve as the liner of a chromatographic injector, as an adsorbent trap coupled to a chromatographic column, and/or as an adsorbent trap coupled to a headspace sampler. Preferably, a heating device allows the tube to be heated. In a preferred embodiment, the analyte pre-concentrator further comprises a column isolating accessory so that a chromatographic column can be temporarily isolated from substances flowing through the tube.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: August 11, 2009
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Gary Campbell, Mark Collins
  • Patent number: 7552618
    Abstract: Disclosed are systems and methods that include a thermal desorption unit, a chromatographic column, and an interface device between the unit and the column. The interface device controls the fluid flowing into the column, such as by providing additional carrier gas to maintain a substantially constant gas flow or velocity, by proving a controlled temperature increase, or by venting a portion of the gas received from the thermal desorption unit, thereby removing the dependence on the thermal desorption unit for such control. In some embodiments, the interface is a chromatographic injector. In certain embodiments, a transfer line from the desorption unit is coupled to the same port of the interface device as the chromatographic column. In some of these embodiments, this is accomplished by employing a special adaptor.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: June 30, 2009
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Heidi Grecsek, Frank DeLorenzo, Giuseppe Coppola
  • Patent number: 7524363
    Abstract: A separation column assembly for a gas chromatograph and the like is provided. The assembly is a self contained unit which allows very rapid heating and cooling of the column.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: April 28, 2009
    Assignee: Alliant Techsystems Inc.
    Inventors: James Bentley, John Blankevoort, Collin Lewis, Ken Wunner
  • Publication number: 20090101017
    Abstract: Disclosed is a gas flow path switching unit including a gas passage section with a target gas passage for allowing said target gas to pass therethrough. The target gas passage includes a main passage having a proximal end serving as said gas inlet and a number n of branch passages each provided with a respective gas outlet at a terminal end thereof. The branch passages are formed by repeating two or more times a branching process of branching said main passage into two sub passages at a branch point at a distal end of said main passage and further branching at least one of said sub passages into two sub-sub passages at a branch point defined by a distal end of said sub passage. The target gas passage also includes at least a number n of switching-gas supply passages connected to respective intermediate positions of said n branch passages.
    Type: Application
    Filed: May 8, 2008
    Publication date: April 23, 2009
    Applicant: SHIMADZU CORPORATION
    Inventor: Masanao FURUKAWA
  • Patent number: 7520920
    Abstract: The present invention discloses a gas chromatograph assembly. In one implementation, the assembly includes a sample injector and a guard column assembly. The guard column assembly includes a guard column connected to and downstream of the sample injector; a jacket with low thermal mass surrounding the guard column; a temperature controlled heater connected to the jacket to control the temperature of the jacket and thereby the temperature of the guard column; and an insulating housing surrounding the jacket. An analytical column is connected to and downstream of the guard column.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: April 21, 2009
    Assignee: Griffin Analytical Technologies
    Inventors: Mark A. Gregory, Garth E. Patterson, Anthony J. Cochran, Jason L. Springston
  • Patent number: 7517395
    Abstract: An inlet assembly for introducing a sample into a carrier gas stream for gas chromatography is disclosed including a housing having a bore that receives a liner. A sealing member having a core with a surface layer is positioned within the bore in sealing engagement with the bore and the liner. The surface layer of the sealing member has a lower adhesion to the housing than the core. The surface layer facilitates removal of the sealing member and the liner from the bore. A method of replacing an existing liner in an inlet assembly for chromatography is also disclosed. The method includes providing a liner with a sealing member having a core with a surface layer having a lower adhesion to the housing than the core, removing the existing liner from the bore and inserting a new liner with a new sealing member into the bore.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: April 14, 2009
    Assignee: Agilent Technologies, Inc.
    Inventor: Thomas M. Logan
  • Patent number: 7485176
    Abstract: A thermal conductivity detector comprises a housing having an internal cavity, a fluid inlet, a fluid outlet, a first bore and a second bore. The thermal conductivity detector further comprises a thermistor having a first electrical lead and a second electrical lead, a first contact pin in electrical communication with said first electrical lead and a second contact pin in electrical communication with said second electrical lead. The first contact pin is oriented within the first bore, the second contact pin is oriented within the second bore and the thermistor is suspended within the gas analysis chamber.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: February 3, 2009
    Assignee: Alliant Techsystems Inc.
    Inventors: James Bentley, John Blankevoort
  • Patent number: 7468095
    Abstract: A system for controlling the flow rate into a chromatographic column is disclosed generally comprising communicating a fluid to the column through a transfer line, measuring the transfer line inlet pressure, determining the transfer line outlet pressure, and adjusting the applied pressure until the inlet and outlet pressures produce a desired flow rate for the transfer line outlet. In certain embodiments, the applied pressure is adjusted by controlling a proportional valve. In some embodiments, the outlet pressure is determined by measuring the pressure difference across the transfer line and calculating the transfer line outlet pressure from the measured inlet pressure and the pressure difference.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: December 23, 2008
    Assignee: PerkinElmer LAS, Inc.
    Inventors: Andrew Tipler, Richard G Edwards
  • Patent number: 7454959
    Abstract: The invention relates to a method for providing a defined fluid flow, especially for use in liquid chromatography. According to the method, a constant total flow (f0) is subdivided into an internal excess flow (fie) in an excess branch and into an internal working flow (fiw) in a working branch. The ratio of subdivision of the internal working flow (fiw) and the internal excess flow (fie) depends on the reverse ratio of a fluidic resistance provided in the working branch and a fluidic resistance in the excess branch. The excess branch and the working branch are interlinked at the respective outputs of the two fluidic outputs of the fluidic resistances by a cross-branch. The equalizing flow occurring between the outputs of the fluidic resistances is measured by means of a flow sensor. A desired, external working flow in the further course of the working branch can be fed to a working device, for example a chromatography column mounted downstream of the device.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: November 25, 2008
    Assignee: Dionex Softron GmbH
    Inventors: Gervin Ruegenberg, Hermann Hochgraeber
  • Publication number: 20080236395
    Abstract: A new septum for multiple use injection ports enabling the introduction of fluid materials by needle injection into a gas chromatograph or other system under positive pressure. The injection port utilizes a special septum to seal the port while accommodating passage of an injection needle. The septum is provided with an axial through passage, preferably of greater diameter than the injection needle. The septum, which is formed of elastomeric material, is placed under axial compression sufficient to inwardly displace the material surrounding the preformed opening, to tightly close and seal the opening against the pressure of the system. The septum may be penetrated multiple times by injection needles without coring or otherwise damaging the septum. Greater operating life is achieved and contamination of the system is minimized.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Douglas E. Tanner, Craig Bussy, Albert J. Corey
  • Patent number: 7384457
    Abstract: A seal forming a fluid tight connection between a gas chromatography column and a sample inlet assembly is disclosed. The seal is formed by a metal injection molding process. The seal has a first surface adapted for sealing with the sample inlet assembly and a second surface adapted for sealing with the column. The seal has an aperture extending between the first and second surfaces. A method of sealing a connection between a gas chromatography sample inlet assembly and a gas chromatography column is also disclosed. The method includes providing a seal as described above, compressing the first surface of the seal against an end of the inlet assembly, positioning the column in fluid communication with the aperture, and engaging the column with the second surface.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: June 10, 2008
    Assignee: Agilent Technologies, Inc.
    Inventors: William James Emmons, Wesley Miles Norman, Matthew S. Klee