Plural Layers (e.g., Laminated Barrier, Etc.) Patents (Class 96/11)
  • Patent number: 9795931
    Abstract: Methods for forming an ultrathin GO membrane are provided. The method can include: dispersing a single-layered graphene oxide powder in deionized water to form a single-layered graphene oxide dispersion; centrifuging the graphene oxide dispersion to remove aggregated graphene oxide material from the single-layered graphene oxide dispersion; thereafter, diluting the single-layered graphene oxide dispersion by about ten times or more through addition of deionized water to the graphene oxide dispersion; and thereafter, passing the single-layered graphene oxide dispersion through a substrate such that a graphene oxide membrane is formed on the substrate. Filtration membranes are also provided and can include: a graphene oxide membrane having a thickness of about 1.8 nm to about 180 nm, with the graphene oxide membrane comprises about 3 to about 30 layers of graphene oxide flakes.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: October 24, 2017
    Assignee: University of South Carolina
    Inventors: Miao Yu, Hang Li
  • Patent number: 9789445
    Abstract: A composite oxygen ion transport membrane having a dense layer, a porous support layer, an optional intermediate porous layer located between the porous support layer and the dense layer and an optional surface exchange layer, overlying the dense layer. The dense layer has electronic and ionic phases. The ionic phase is composed of scandia doped, yttrium or cerium stabilized zirconia. The electronic phase is composed of a metallic oxide containing lanthanum, strontium, chromium, iron and cobalt. The porous support layer is composed of zirconia partially stabilized with yttrium, scandium, aluminum or cerium or mixtures thereof. The intermediate porous layer, if used, contains the same ionic and electronic phases as the dense layer. The surface exchange layer is formed of an electronic phase of a metallic oxide of lanthanum and strontium that also contains chromium, iron and cobalt and an ionic phase of scandia doped zirconia stabilized with yttrium or cerium.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: October 17, 2017
    Assignee: PRAXAIR TECHNOLOGY, INC.
    Inventors: Jonathan A. Lane, Zigui Lu, Pawel J. Plonczak
  • Patent number: 9616379
    Abstract: The present invention relates to a method for preparing a hydrogen separation membrane capable of preventing the plating of Pd inside a porous support and a porous shielding layer when a separation membrane is prepared; a hydrogen separation membrane prepared therefrom; and a use thereof. In addition, the present invention relates to a device for preparing a hydrogen separation membrane; and a method for preparing a hydrogen separation membrane using the device, and in particular, relates to a device for preparing a hydrogen separation membrane capable of stably growing a Pd-containing separation membrane for hydrogen gas separation as a plating solution grows from the upper surface of a porous support to a uniform thickness by simply shielding the lower surface of the porous support when a hydrogen separation membrane is prepared using an electroless plating method.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: April 11, 2017
    Assignee: Korea Institute of Energy Research
    Inventors: Shin Kun Ryi, Beom Seok Seo, Jong Soo Park, Dong Wook Lee, Sung Wook Lee
  • Patent number: 9486742
    Abstract: The present disclosure is directed to biomimetic membranes and methods of manufacturing such membranes that include structural features that mimic the structures of cellular membrane channels and produce membrane designs capable of high selectivity and high permeability or adsorptivity. The membrane structure, material and chemistry can be selected to perform liquid separations, gas separation and capture, ion transport and adsorption for a variety of applications.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: November 8, 2016
    Assignee: Sandia Corporation
    Inventors: Susan Rempe, C. Jeffrey Brinker, David Michael Rogers, Ying-Bing Jiang, Shaorong Yang
  • Patent number: 9415343
    Abstract: The present invention relates to a hydrogen separation membrane which coats granular ceramic onto the surface of a porous metal support and which coats a hydrogen permeation metal thereon so as to inhibit diffusion between the support and a hydrogen separation layer, and to a method for manufacturing same. As a result, the metal support can be modularized with ease, the hydrogen permeation layer can be made thinner to increase the amount of hydrogen permeation, the use of a separation material can be minimized, and the hydrogen separation membrane can have higher competitiveness.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: August 16, 2016
    Assignee: Korea Institute of Energy Research
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Shin-Kun Ryi, Tae-Hwan Kim, Chun-Boo Lee, Sung-Wook Lee
  • Patent number: 9358506
    Abstract: A hydrogen separation system and membrane is described for extracting hydrogen from gasifier streams at near atmospheric pressure and ambient temperature conditions. The system can be inserted between a small gasifier and an internal combustion engine which runs a genset to optionally co-produce hydrogen and electricity.
    Type: Grant
    Filed: August 19, 2014
    Date of Patent: June 7, 2016
    Assignee: V-GRID ENERGY SYSTEMS
    Inventor: Michael Cheiky
  • Patent number: 9266067
    Abstract: Disclosed are a composite separation membrane structure for a gas sensor for real-time monitoring of degradation of insulating oil of a power transformer, a gas sensor apparatus including the same, and a method and an apparatus for measuring gas concentration using the same. It is possible to locally diagnose whether there is a fault in the power transformer and what kind of fault occurs where in the power transformer by quantitatively measuring the concentration of several gases dissolved in the insulating oil in real time. As a result, breakdown of the power transformer may be prevented and remaining service life of the insulating oil in the power transformer may be predicted.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 23, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Hosung Kong, Hung Gu Han, Jung Wook Lee
  • Patent number: 9149762
    Abstract: A defect-free hydrogen separation membrane includes a metal thin membrane. The metal thin membrane includes a first metal layer composed of palladium on a porous support without substantial penetration into surface pores of the porous support and a second metal layer on the first metal layer. The second metal layer is a product of palladium deposition and closes defects being open on the surface of the first metal layer.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: October 6, 2015
    Assignees: National Institute of Advanced Industrial Science and Technology, JX Nippon Oil & Energy Corporation
    Inventors: Yasuyuki Matsumura, Takashi Maeda, Minoru Ogawa, Eiji Negishi
  • Publication number: 20150143995
    Abstract: A composite membrane comprising: a) a porous support; b) a gutter layer; and c) a discriminating layer; wherein at least 10% of the discriminating layer is intermixed with the gutter layer.
    Type: Application
    Filed: June 26, 2013
    Publication date: May 28, 2015
    Inventors: Takeshi Umehara, Masatoshi Nakanishi, Yujiro Itami, Hiroyuki Noda, Akihiro Kurima, Kimiko Iwahashi
  • Publication number: 20150135957
    Abstract: A semipermeable gas separation membrane is plasma deposited from liquid organosiloxane monomer having at least three silicon atoms and an alpha hydrogen atom. The semipermeable membrane may be employed as a gas-selective membrane in combination with a porous substrate.
    Type: Application
    Filed: November 19, 2013
    Publication date: May 21, 2015
    Applicant: Applied Membrane Technology, inc.
    Inventor: Ashok K. Sharma
  • Patent number: 9011581
    Abstract: The invention relates to a vent array comprising a plurality of venting regions comprising a porous PTFE matrix material and a nonporous material comprising a substrate material having a plurality of perforations, wherein the substrate material fills the pores of a porous PTFE matrix material to form nonporous regions, the nonporous regions interconnecting the plurality of venting regions.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 21, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Andrew J. Holliday
  • Patent number: 9011580
    Abstract: Techniques are generally described herein for the design and manufacture of hydrogen generation apparatuses and systems. Other embodiments may also be disclosed and claimed. Some methods described herein pressing together a first end plate, one or more intermediate plates, and a second end plate using a press to form a hydrogen purifier module, and placing a plurality of clips around the hydrogen purifier module to hold the first end plate, the one or more intermediate plates, and the second end plate together.
    Type: Grant
    Filed: November 17, 2010
    Date of Patent: April 21, 2015
    Assignee: Azur Energy LLC
    Inventor: David Edlund
  • Publication number: 20150104357
    Abstract: The present invention provides a porous silica aerogel composite membrane and method for making the same and a carbon dioxide sorption device. The porous silicon oxide aerogel composite membrane includes a porous aluminum oxide membrane having a plurality of macro pores with an average diameter larger than 50 nm and a porous silica aerogel membrane formed on at least one side of the porous aluminum oxide membrane and the macro pores of surface layers of the porous aluminum oxide membrane where the porous silica aerogel membrane has a plurality of meso pores with an average diameter of 2˜50 nm and is derived from methyltrimethoxysilane precursor by a sol-gel synthetic method.
    Type: Application
    Filed: April 9, 2014
    Publication date: April 16, 2015
    Applicant: CHUNG YUAN CHRISTIAN UNIVERSITY
    Inventors: Yi-Feng Lin, Chia-Chieh Ko, Kuo-Lun Tung, Chien-Hua Chen, Kai-Shiun Chang
  • Patent number: 9005344
    Abstract: The present application is directed to a hydrophobic membrane assembly (28) used within a gas-generating apparatus. Hydrogen is separated from the reaction solution by passing through a hydrophobic membrane assembly (28) having a hydrophobic lattice like member (36) disposed within a hydrogen output composite (32) further enhancing the ability of the hydrogen output composite's ability to separate out hydrogen gas and prolonging its useful life.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: April 14, 2015
    Assignees: Societe Bic, The Commissariat a L'energie Atomique et Aux Energies Alternatives (CEA)
    Inventors: Andrew J. Curello, Michael Curello, Constance R. Stepan
  • Patent number: 9005345
    Abstract: An apparatus for gas separation a composite gas separation membrane having a gas separation layer disposed on a surface of a porous support. The gas separation layer has a plurality of gas permeable inorganic nano-particles embedded in a dense polymer forming substantially only discrete gas transport channels through the dense polymer layer, wherein direct fluid communication is provided from a feed side of the composite gas separator membrane to the porous support. Preferably, the inorganic nano-particles are porous molecular sieve particles, such as SAPO-34, ALPO-18, and Zeolite Y nano-particles.
    Type: Grant
    Filed: September 19, 2012
    Date of Patent: April 14, 2015
    Assignee: Gas Technology Limited
    Inventors: Shiguang Li, Shaojun Zhou, Miao Yu, Moises A Carreon
  • Publication number: 20150096445
    Abstract: A self-closing filter includes a housing to be attached to a sidewall of a self-inflating pneumatic tire. The housing includes a cavity to be in fluid communication with an atmospheric air inlet of a pneumatic control valve for the self-inflating tire. The self-closing filter further includes a filtration media to block contaminants from entering the cavity while allowing atmospheric air to be drawn through the filtration media into the cavity by a pump of the self-inflating tire. The self-closing filter still further includes a valve attached to the housing. The valve is selectively actuatable to an open state and to a closed state. The filtration media is exposed to an atmosphere impinging upon the tire when the valve is in the open state. The closed state is to prevent exposure of the filtration media to the contaminants when the valve is in the closed state.
    Type: Application
    Filed: December 15, 2014
    Publication date: April 9, 2015
    Inventors: Larry P. Bennett, Lalit M. Patil
  • Publication number: 20150096443
    Abstract: An air filter assembly includes a felt of hollow commodity polymer fibers having nonporous walls.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: BHA Altair, LLC
    Inventors: Todd Joseph Scheerer, Vishal Bansal
  • Publication number: 20150096444
    Abstract: An air filter assembly includes a felt of hollow specialty polymer fibers having nonporous walls.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 9, 2015
    Applicant: BHA Altair, LLC
    Inventors: Todd Joseph Scheerer, Vishal Bansal
  • Patent number: 8999039
    Abstract: The invention relates to membranes, in particular oxygen separation membranes, which enable improved gas separation conditions with respect to cost, price, size, weight, and noise. The membrane, in particular oxygen separation membrane, according to the invention comprises a support layer (28) and a separation layer (30), wherein the separation layer (30) is permeable for oxygen and has a sorptive affinity for at least one other gas, in particular for nitrogen, wherein the membrane (20) is designed such that substantially only the separation layer (30) is heatable by a heating device.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: April 7, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Rainer Hilbig, Joachim Opitz
  • Publication number: 20150090125
    Abstract: Embodiments for a tubular ceramic-carbonate dual-phase membrane and methods for manufacturing the tubular ceramic-carbonate dual-phase membrane are disclosed.
    Type: Application
    Filed: September 5, 2014
    Publication date: April 2, 2015
    Inventors: Jerry Y.S. Lin, Jose Ortiz-Landeros, Xue-Liang Dong
  • Patent number: 8992669
    Abstract: The hydrogen separation membrane module according to the present invention is used for separating hydrogen from a gas to be treated containing hydrogen, and is provided with a tubular hydrogen separation membrane being selectively permeable to hydrogen, a casing for the hydrogen separation membrane, an insertion member being arranged on the inside of the hydrogen separation membrane and having an outer surface that defines a flow path of the gas to be treated together with an inner surface of the hydrogen separation membrane, a gas supply port for supplying the gas to be treated to the inside of the hydrogen separation membrane, a gas discharge port for discharging a non-permeating gas that does not permeate the hydrogen separation membrane, from a downstream side of the flow path, and a hydrogen discharge port provided in the casing, for discharging hydrogen having permeated the hydrogen separation membrane.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: March 31, 2015
    Assignees: JX Nippon Oil & Energy Corporation, Japan Petroleum Energy Center
    Inventors: Masakazu Ikeda, Shunsuke Maekawa, Kaori Takano
  • Patent number: 8991027
    Abstract: The present invention is directed toward spiral wound modules along with methods for making and using the same. Several embodiments are described including methods for making spiral wound filtration modules using membrane sheet provided from a roll, wherein the membrane sheet is unrolled and assembled in a direction parallel to the permeate collection tube of the module.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: March 31, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Steven D. Jons, Allyn R. Marsh, III
  • Patent number: 8986432
    Abstract: Filter media, as well as related assemblies, systems and methods. Filter media may contain one or more layers formed of a meltblown material.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: March 24, 2015
    Assignee: Hollingsworth & Vose Company
    Inventors: John A. Wertz, David T. Healey, William S. Freeman, John L. Manns, Mark Rowlands
  • Publication number: 20150059578
    Abstract: A water vapour transport membrane comprises a nanofibrous layer disposed on a macroporous support layer, the nanofibrous layer coated with a water permeable polymer. A method for making a water vapour transport membrane comprises forming a nanofibrous layer on a macroporous support layer and applying a water permeable polymer to the nanofibrous layer. The water permeable polymer can be applied for so that the nanofibrous layer is substantially or partially filled with the water permeable polymer, or so that the coating forms a substantially continuous layer on one surface of the nanofibrous layer. In some embodiments of the method, the nanofibrous layer is formed by electro-spinning at least one polymer on at least one side of the porous support layer. In some embodiments, the support layer is formable and the method further comprises forming a three-dimensional structure from the water vapour transport membrane, for example, by compression molding, pleating or corrugating.
    Type: Application
    Filed: November 6, 2014
    Publication date: March 5, 2015
    Inventors: Ryan Nicholas HUIZING, Frank K. KO
  • Patent number: 8968566
    Abstract: A novel separator assembly for a spiral flow reverse osmosis apparatus is provided. In one embodiment, the separator assembly comprises a central core element comprising at least two permeate exhaust conduits and not comprising a concentrate exhaust conduit. Each permeate exhaust conduit defines an exhaust channel and one or more openings allowing fluid communication between an exterior surface of the permeate exhaust conduit and the exhaust channel, said permeate exhaust conduits independently defining a cavity between said conduits. The cavity is configured to accommodate a first portion of a membrane stack assembly comprising at least one feed carrier layer, at least two permeate carrier layers, and at least two membrane layers. A first portion of the membrane stack assembly is disposed within the cavity, and a second portion of the membrane stack assembly is wound around the central core element and forms a multilayer membrane assembly disposed around the central core element.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: March 3, 2015
    Assignee: General Electric Company
    Inventors: Philip Paul Beauchamp, Michael Kent Cueman, Daniel Jason Erno, Todd Alan Anderson, Dean David Marschke
  • Patent number: 8968447
    Abstract: A separation membrane including an alloy including a Group 5 element and Ir, wherein the alloy includes a body centered cubic crystal structure.
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeon Cheol Park, Kwang Hee Kim, Byung Ki Ryu, Jae Ho Lee
  • Publication number: 20150053086
    Abstract: The present invention concerns a breathable product for protective mass transportation and cold chain applications, in particular a reflective sheet for covering temperature sensitive products the reflective sheet having at least a first layer made of a highly reflective moisture vapor permeable substrate having an outer side and an inner side, wherein said inner side comprises in addition at least a metal layer deposited by a PVD process to provide a thermal insulation through high reflection low convection while providing controlled moisture vapor permeability.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 26, 2015
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Serge Rebouillat, Malik Zeniti, Guy Hopp, Sylvain Wallerich, Noel Stephen Brabbs, Sabine Gabriel, Ioannis V. Bletsos
  • Patent number: 8956444
    Abstract: The invention relates to a vent array comprising a plurality of venting regions comprising a porous PTFE matrix material and a nonporous material comprising a substrate material having a plurality of perforations, wherein the substrate material fills the pores of a porous PTFE matrix material to form nonporous regions, the nonporous regions interconnecting the plurality of venting regions.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 17, 2015
    Assignee: W. L. Gore & Associates, Inc.
    Inventor: Andrew J. Holliday
  • Patent number: 8956443
    Abstract: A device for trapping flammable gases such as hydrogen comprises active means (3) inside a casing (1) which is closed except for openings which are plugged by filters (2) that normally allow only the gases that are to be trapped to pass through them. The trapping maintains a reduced pressure inside the casing, which continually draws in the gases produced outside. The trap can operate without any maintenance and for long periods of time, even in a completely enclosed environment.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: February 17, 2015
    Assignee: TN Intellectual
    Inventors: Valentin Rohr, Elisa Leoni, Jocelyn Prigent, Michel LaTroche
  • Publication number: 20150044267
    Abstract: A filter material for entrapping particles and actively affecting the trapped particles within the filter. The fabric has a blend of hydrophilic superabsorbent fibers and non-superabsorbent hydrophilic fibers that is sufficiently porous as to allow gaseous flow through the fabric. The fabric having a thickness and the fabric has as a coating of a mixture of a chemically or physically active compound and a liquid carrier forming an active composition on both the outer surface of the hydrophilic superabsorbent fibers, and the hydrophilic superabsorbent fibers have a central volume also retaining the active composition. The central volume of the hydrophilic superabsorbent fibers acting as a reservoir for replacement of the active compound into the coating when concentration of active compounds in the coating are reduced to a concentration less than concentrations of the active compound within the central volume; and the liquid carrier is an aqueous liquid.
    Type: Application
    Filed: October 28, 2014
    Publication date: February 12, 2015
    Applicant: LIBERMAN DISTRIBUTING AND MANUFACTURING CO., D/B/A LIDCO PRODUCTS ("LIDCO")
    Inventors: David A. Gray, Robert M. Hume, Mark A. Litman
  • Publication number: 20150027307
    Abstract: The present invention relates to a method for preparing a hydrogen separation membrane capable of preventing the plating of Pd inside a porous support and a porous shielding layer when a separation membrane is prepared; a hydrogen separation membrane prepared therefrom; and a use thereof. In addition, the present invention relates to a device for preparing a hydrogen separation membrane; and a method for preparing a hydrogen separation membrane using the device, and in particular, relates to a device for preparing a hydrogen separation membrane capable of stably growing a Pd-containing separation membrane for hydrogen gas separation as a plating solution grows from the upper surface of a porous support to a uniform thickness by simply shielding the lower surface of the porous support when a hydrogen separation membrane is prepared using an electroless plating method.
    Type: Application
    Filed: July 25, 2014
    Publication date: January 29, 2015
    Inventors: Shin Kun Ryi, Beom Seok Seo, Jong Soo Park, Dong Wook Lee, Sung Wook Lee
  • Publication number: 20150028259
    Abstract: In one embodiment, a membrane of proton-electron conducting ceramics that is useful for the conversion of a hydrocarbon and steam to hydrogen has a porous support coated with a film of a Perovskite-type oxide. By including the Zr and M in the oxide in place of Ce, the stability can be improved while maintaining sufficient hydrogen flux for efficient generation of hydrogen. In this manner, the conversion can be carried out by performing steam methane reforming (SMR) and/or water-gas shift reactions (WGS) at high temperature, where the conversion of CO to CO2 and H2 is driven by the removal of H2 to give high conversions.
    Type: Application
    Filed: September 30, 2014
    Publication date: January 29, 2015
    Inventors: ERIC D. WACHSMAN, HEE SUNG YOON, TAKKEUN OH, JIANLIN LI
  • Publication number: 20150020686
    Abstract: The present invention relates to a hydrogen separation membrane which coats granular ceramic onto the surface of a porous metal support and which coats a hydrogen permeation metal thereon so as to inhibit diffusion between the support and a hydrogen separation layer, and to a method for manufacturing same. As a result, the metal support can be modularized with ease, the hydrogen permeation layer can be made thinner to increase the amount of hydrogen permeation, the use of a separation material can be minimized, and the hydrogen separation membrane can have higher competitiveness.
    Type: Application
    Filed: January 2, 2013
    Publication date: January 22, 2015
    Applicant: Korea Institute of Energy Research
    Inventors: Jong-Soo Park, Kyung-Ran Hwang, Shin-Kun Ryi, Tae-Hwan Kim, Chun-Boo Lee, Sung-Wook Lee
  • Patent number: 8936668
    Abstract: A water vapor transport membrane comprises a nanofibrous layer disposed on a macroporous support layer, the nanofibrous layer coated with a water permeable polymer. A method for making a water vapor transport membrane comprises forming a nanofibrous layer on a macroporous support layer and applying a water permeable polymer to the nanofibrous layer. The water permeable polymer can be applied for so that the nanofibrous layer is substantially or partially filled with the water permeable polymer, or so that the coating forms a substantially continuous layer on one surface of the nanofibrous layer. In some embodiments of the method, the nanofibrous layer is formed by electro-spinning at least one polymer on at least one side of the porous support layer. In some embodiments, the support layer is formable and the method further comprises forming a three-dimensional structure from the water vapor transport membrane, for example, by compression molding, pleating or corrugating.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: January 20, 2015
    Assignee: Dpoint Technologies Inc.
    Inventors: Ryan Nicholas Huizing, Frank K. Ko
  • Publication number: 20150008180
    Abstract: An object of the present invention is to provide a honeycomb shaped porous ceramic body in which a strength deteriorates less than before after a separation layer is formed, a manufacturing method for the porous ceramic body, and a honeycomb shaped ceramic separation membrane structure. A honeycomb shaped porous ceramic body 9 includes a honeycomb shaped substrate 30 and an intermediate layer. At least a part of the intermediate layer of the honeycomb shaped porous ceramic body 9 has a structure in which aggregate particles are bonded to one another by a component of an inorganic bonding material. The inorganic bonding material is titania.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Tetsuya UCHIKAWA, Makoto MIYAHARA, Makiko ICHIKAWA, Kenji YAJIMA, Makoto TERANISHI, Hideyuki SUZUKI
  • Patent number: 8926733
    Abstract: A method for preparing a polymeric material includes: providing a polymeric matrix having at least one polymer and at least one porogen; and degrading the at least one porogen at a temperature T?1.1 Tg, where Tg is a glass transition temperature of the polymeric matrix. The degrading step includes exposing the polymeric matrix to thermal degradation, chemical degradation, electrical degradation and/or radiation degradation, wherein the polymeric material has a permeability at least 1.2 times a permeability of the polymeric matrix for a gas, and a selectivity of the polymeric material is at least 0.35 times a selectivity of the polymeric matrix for a gas pair. The method preferably provides gas separation membranes that exceed Robeson's upper bound relationship for at least one gas separation pair. Novel polymeric materials, gas separation membranes and fluid component separation methods are also described.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: January 6, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Shiying Zheng, Lloyd M. Robeson, M. Keith Murphy, Jeffrey R. Quay
  • Patent number: 8926732
    Abstract: The present invention provides gels, solutions, films, membranes, compositions, and other materials containing polymerized and/or non-polymerized room-temperature ionic liquids (RTILs). These materials are useful in catalysis, gas separation and as antistatic agents. The RTILs are preferably imidazolium-based RTILs which are optionally substituted, such as with one or more hydroxyl groups. Optionally, the materials of the present invention are composite materials comprising both polymerized and non-polymerized RTILs. The RTIL polymer is formed from polymerized RTIL cations typically synthesized as monomers and polymerized in the presence of the non-polymerized RTIL cations to provide a solid composite material. The non-polymerized RTIL cations are not covalently bound to the cationic polymer but remain as free cations within the composite material able to associate with charged subunits of the polymer. These composite materials are useful in catalysis, gas separation, and antistatic applications.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of Colorado, a Body Corporate
    Inventors: Jason E. Bara, Trevor K. Carlisle, Evan S. Hatakeyama, Douglas L. Gin, Richard D. Noble, Robert L. Kerr, Andrew L. LaFrate
  • Patent number: 8911540
    Abstract: A method of fabricating a gas separation membrane includes providing a coextruded multilayer film that includes a first polymer layer formed of a first polymer material and a second polymer layer formed of a second polymer material, the first polymer material having a first gas permeability. The coextruded multilayer film is axially oriented such that the second polymer layer has a second gas permeability that is greater than the first gas permeability.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: December 16, 2014
    Assignee: Case Western Reserve University
    Inventors: Eric Baer, Shannon Armstrong, Benny D. Freeman, Donald R. Paul, Grant Offord
  • Publication number: 20140360367
    Abstract: This invention relates to organopolysiloxane compounds. In some embodiments, the organopolysiloxane compound includes a siloxane unit having at least one trialkylsilyl pendant group attached thereto through an organic group spacer. The present invention also relates to methods of making the organopolysiloxane, a hydrosilylation-curable silicone composition including the organopolysiloxane, a cured product of the silicone composition, a membrane including the cured product, a method of making the membrane, and a method of separating components in a feed mixture using the membrane.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 11, 2014
    Inventors: Dongchan Ahn, James S. Hrabal, Alexandra N. Lichtor
  • Publication number: 20140360939
    Abstract: A porous support-zeolite membrane composite comprising an inorganic porous support and a zeolite membrane provided on, wherein the zeolite membrane contains a zeolite having a microporous structure of 8-membered oxygen ring or less, and a molar ratio of SiO2/Al2O3 in the zeolite membrane surface is larger by at least 20 than a molar ratio of SiO2/Al2O3 in the zeolite membrane itself, or a water adsorption of the porous support-zeolite membrane composite at a relative pressure of 0.8, as determined from a water vapor adsorption isotherm of the porous support-zeolite membrane composite, is at least 82% of a water adsorption of the porous support-zeolite membrane composite under the same condition as above after one-week immersion of the porous support-zeolite membrane composite in an aqueous 90 mass % acetic acid solution at room temperature.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: MIKI YAMADA, Takahiko Takewaki, Mikio Hayashi, Naoko Fujita, Hidekazu Miyagi
  • Publication number: 20140360938
    Abstract: A zeolite membrane composite for use in separation of a highly-permeative component through permeation from a vapor mixture or a liquid mixture comprising multiple components, the zeolite membrane composite comprising an inorganic porous support and a zeolite membrane provided thereon, wherein the zeolite membrane contains zeolite of a CHA-type aluminosilicate, and in a X-ray diffraction pattern obtained through irradiation to the zeolite membrane surface with X-ray, a peak intensity at around 2?=17.9° has a value of less than 0.5 times a peak intensity at around 2?=20.8° and a peak intensity at around 2?=9.6° has a value of 2.0 times or more and less than 4.0 times a peak intensity at around 2?=20.8°.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Mikio Hayashi, Miki Yamada, Takahiko Takewaki
  • Patent number: 8906136
    Abstract: A water vapor transport membrane comprises a nanofibrous layer disposed on a macroporous support layer, the nanofibrous layer coated with a water permeable polymer. A method for making a water vapor transport membrane comprises forming a nanofibrous layer on a macroporous support layer and applying a water permeable polymer to the nanofibrous layer. The water permeable polymer can be applied for so that the nanofibrous layer is substantially or partially filled with the water permeable polymer, or so that the coating forms a substantially continuous layer on one surface of the nanofibrous layer. In some embodiments of the method, the nanofibrous layer is formed by electro-spinning at least one polymer on at least one side of the porous support layer. In some embodiments, the support layer is formable and the method further comprises forming a three-dimensional structure from the water vapor transport membrane, for example, by compression molding, pleating or corrugating.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: December 9, 2014
    Assignee: Dpoint Technologies Inc.
    Inventors: Ryan Nicholas Huizing, Frank K. Ko
  • Publication number: 20140352533
    Abstract: The invention provides methods for making silicoaluminophosphate-34 (SAPO-34) membranes comprising interlocking SAPO-34 crystals. In the methods of the invention, the SAPO-34 membranes are formed through in situ crystallization on a porous support using a synthesis mixture initially including a SAPO-34 forming gel and a plurality of SAPO-34 crystals dispersed in the gel. The invention also provides supported SAPO-34 membranes made by the methods of the invention. The invention also provides methods for separating a first gas component from a gas mixture, the methods comprising the step of providing a membrane of the invention.
    Type: Application
    Filed: January 10, 2013
    Publication date: December 4, 2014
    Inventors: John L. Falconer, Eric W. Ping, Rongfei Zhou, Richard D. Noble, Hans Funke
  • Patent number: 8900351
    Abstract: Provided is a filter medium including a porous polytetrafluoroethylene (PTFE) membrane and a gas-permeable supporting member that are integrated to ensure sufficient stiffness, having excellent gas permeability, and providing excellent bonding between respective layers included in the filter medium. The gas-permeable supporting member includes: a substrate having gas-permeability; and a fiber layer that is placed on the substrate so as to be in contact with the porous PTFE membrane. The gas-permeable supporting member has a structure in which fibers of the fiber layer enter into the substrate and are entangled with the substrate so that the fiber layer is bonded to the substrate. The fiber layer contains polyolefin-containing fibers that are bonded to the porous membrane.
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: December 2, 2014
    Assignee: Nitto Denko Corporation
    Inventors: Masaaki Mori, Masatoshi Suzuki
  • Patent number: 8900344
    Abstract: Hydrogen selective coatings, coated articles and methods for their formation and for hydrogen separation or purification. The coatings are formed by atomic layer deposition of suitable metal oxides with desirable hydrogen activation energy or hydrogen flux, e.g., silicon dioxide, and can be borne on a nonporous, thin-film metal or cermet substrate, e.g., a palladium sheet or layer. The coated substrate may include a porous support for the sheet or layer. The coated article may be used as a purification membrane and the coating can protect the metal layer from contaminants in the gas or process stream from which hydrogen is being purified. In some embodiments, the coated article can provide such protection at elevated temperatures in excess of 300° C.; and in other embodiments, can provide protection at temperatures in excess of 600° C. and even in excess of 800° C.
    Type: Grant
    Filed: March 21, 2011
    Date of Patent: December 2, 2014
    Assignee: T3 Scientific LLC
    Inventors: Chung Yi A. Tsai, Siu-Yue Tam
  • Publication number: 20140331860
    Abstract: There is disclosed a ceramic separation membrane. This ceramic separation membrane includes a porous substrate, and a separation layer formed on the substrate. The separation layer is a laminate having an outermost layer positioned on the most surface side, and a base layer positioned in a lower layer than the outermost layer and made of zeolite. The outermost layer is a layer made of a siliceous material containing 90 mol % or more of silica, an organic material-containing amorphous silica material having a Si-Cn-Si (wherein n is 1 or 2) bond and a Si/C ratio of 0.5 to 2, or a carbonaceous material containing 90 mass % or more of carbon. The outermost layer is different from the base layer.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventors: Manabu ISOMURA, Naoto KINOSHITA, Naoko INUKAI
  • Patent number: 8882875
    Abstract: Various high performance, high efficiency filter media are provided that are cost effective and easy to manufacture. In particular, various filter media are provided having at least one layer with a waved configuration that results in an increased surface area, thereby enhancing various properties of the filter media. The filter media can be used to form a variety of filter elements for use in various applications.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: November 11, 2014
    Assignee: Hollingsworth & Vose Company
    Inventor: David T. Healey
  • Patent number: 8876949
    Abstract: A method of preparing a palladium-silver alloy gas separation membrane system, wherein the surface of the palladium layer or a silver layer is activated by a non-chemical activation method involving abrasion to a controlled surface roughness and abrasion pattern, thereby permitting the plating or deposition of an overlayer of silver on the palladium layer, silver on a silver layer, or palladium on a silver layer. The palladium and silver layers are preferably supported on a porous metal support to which an intermetallic diffusion barrier has been applied.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 4, 2014
    Assignee: Shell Oil Company
    Inventor: John Charles Saukaitis
  • Patent number: 8876948
    Abstract: A method of making a composite gas separation module by providing a porous support material having deposited thereon a metal membrane layer, by imposing upon the surface of the metal membrane layer certain surface characteristics including an abrasion pattern and a relatively high surface roughness that provides for surface activation that enhances the placement thereon of a subsequent metal membrane layer without the use of a chemical activating solution. The composite gas separation module is useful in the separation of hydrogen from hydrogen-containing gas streams.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 4, 2014
    Assignee: Shell Oil Company
    Inventor: John Charles Saukaitis
  • Publication number: 20140318373
    Abstract: Apparatuses and systems for removing water vapor from a gas stream and for providing water purification, recovery and/or concentration. The apparatuses and systems employ a graphene oxide or a perforated graphene monolayer membrane to separate liquid water molecules and/or water vapor molecules from gasses, liquids, and other substances such as a wet muck or an aqueous sample. In one embodiment, an apparatus for removing water from a gas or liquid stream includes a first lumen, a second lumen, and a graphene oxide membrane separating the first lumen from the second lumen. Water molecules within a humid gas or liquid stream introduced into the first lumen pass through the graphene oxide membrane into a dry gas stream introduced into the second lumen.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: LOCKHEED MARTIN CORPORATION
    Inventors: John A. Wood, Rebecca Schwartz, Paul J. Lilly