And Means Regenerating Solid Sorbent Patents (Class 96/141)
-
Patent number: 11738298Abstract: The present disclosure relates to a purge system for a vapor compression system, where the purge system includes an emission canister configured to receive a gas flow. The gas flow includes a mixture of non-condensable gases and refrigerant of the vapor compression system. An adsorbent material is disposed within the emission canister and configured to adsorb the refrigerant and enable the non-condensable gases to flow toward an exhaust of the emission canister, where the adsorbent material is a silica gel.Type: GrantFiled: September 26, 2018Date of Patent: August 29, 2023Assignee: Johnson Controls Tyco IP Holdings LLPInventor: Maccrae William Monteith
-
Patent number: 11078679Abstract: A mechanized lifter system for retrofitting a manually operated lifer system includes a support located relative to the spa tub, a first mount rotatable on the support and defining a first pivot axis, at least one support element rotatable about the first pivot axis and attached to the first spa cover portion, a second mount on the support and defining a second pivot axis, an angle arm having a first portion and a second portion connected at a vertex, the first portion attached to the first mount and the second portion attached to the second mount, a support element bracket fixedly attached to the support element, a linear actuator configured to extend and retract and pivotally attached to the vertex of the angle arm and the support element bracket, and an actuator controller coupled to and configured to control extension and retraction of the linear actuator.Type: GrantFiled: August 2, 2019Date of Patent: August 3, 2021Assignee: HOT TUB PRODUCTS, LLCInventors: Andrew Tournas, Kyle Tournas, Jason M. DiMartino
-
Patent number: 9039816Abstract: A system and method to recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray, the concentration of the liquid desiccant may be dynamically changed based on changes within the system. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: December 4, 2012Date of Patent: May 26, 2015Assignee: Z124Inventors: Charles Becze, James Ball, David Blatt, Michael J. Flynn, Gary Fong, Kean Wing Kin Lam, Richard Teltz
-
Patent number: 9017456Abstract: A device recovers water from an ambient airstream. The device includes a chamber having a group of trays that hold respective amounts of liquid desiccant. A foam media element in each tray absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and control device operation. The desiccant trays may be selectively configurable in an array to best suit the intended installation. The trays may be arranged in column and row configurations, along with adjustable airflow patterns between each of the trays.Type: GrantFiled: December 13, 2012Date of Patent: April 28, 2015Assignee: Z124Inventors: Charles Becze, James Ball, David Blatt, Michael J. Flynn, Richard Teltz
-
Patent number: 9005349Abstract: A system and method to recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. Fans, valves, and manifolds are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. The airflow within the chamber and/or each tray is altered depending upon the settings of configurable airflow manifolds. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: October 25, 2012Date of Patent: April 14, 2015Assignee: Z124Inventors: James Ball, Charles Becze, Michael J. Flynn, Richard Teltz, Gary Fong, Kean Wing Kin Lam
-
Patent number: 8920546Abstract: A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: October 25, 2012Date of Patent: December 30, 2014Assignee: Z124Inventors: James Ball, Charles Becze, Michael J. Flynn, Kean Wing Kin Lam, Richard Teltz
-
Patent number: 8920547Abstract: An adsorbent canister includes a casing defining a first adsorption chamber, a second adsorption chamber and a diffusion chamber therein, and an adsorbent capable of adsorbing the fuel vapor and filled in the first adsorption chamber and the second adsorption chamber. The first adsorption chamber and the second adsorption chamber communicate with each other via the diffusion chamber. The casing has on a side wall thereof a fuel introducing port configured to introduce fuel vapor into the first adsorption chamber and an air communicating port configured to introduce air into the second adsorption chamber. The diffusion chamber has at least one of a first diffusion chamber and a second diffusion chamber. The first adsorption chamber is positioned above the first adsorption chamber and extends over the entire length of the first adsorption chamber. The second diffusion chamber is positioned below the second adsorption chamber and extends over the entire length of the second adsorption chamber.Type: GrantFiled: May 18, 2011Date of Patent: December 30, 2014Assignee: Aisan Kogyo Kabushiki KaishaInventor: Hiroshi Takamatsu
-
Patent number: 8888894Abstract: A method includes using an element which includes a monoblock concrete body with a volume greater than 1 L and a surface porosity greater than 8%, which body includes in the body and/or on a surface thereof a compound having a BET specific surface greater than 100 m2/g, and which element does not include a photocatalytic agent, to absorb from the atmosphere a gas selected from the group consisting of nitrogen oxides, carbon oxides, sulphur oxides, and ozone, or a volatile organic compound.Type: GrantFiled: October 11, 2010Date of Patent: November 18, 2014Assignee: LafargeInventors: Isabelle Dubois-Brugger, Mélanie Dykman, Matthieu Horgnies
-
Patent number: 8882888Abstract: A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: June 3, 2013Date of Patent: November 11, 2014Assignee: Z124Inventors: James Ball, Charles Becze, David Blatt, Michael J. Flynn, Richard Teltz
-
Patent number: 8882895Abstract: A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to dynamically control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: October 25, 2012Date of Patent: November 11, 2014Assignee: Z124Inventors: James Ball, Charles Becze, Michael J. Flynn, Kean Wing Kin Lam, Richard Teltz
-
Patent number: 8876956Abstract: A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger, powered by a variety of power sources, adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: October 25, 2012Date of Patent: November 4, 2014Assignee: Z124Inventors: James Ball, Charles Becze, Michael J. Flynn, Kean Wing Kin Lam, Richard Teltz
-
Patent number: 8864883Abstract: A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: December 4, 2012Date of Patent: October 21, 2014Assignee: Z124Inventors: Charles Becze, James Ball, David Blatt, Michael J. Flynn, Gary Fong, Kean Wing Kin Lam, Richard Teltz
-
Patent number: 8858684Abstract: A method to recover water from the atmosphere is provided. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: December 13, 2012Date of Patent: October 14, 2014Assignee: Z124Inventors: Charles Becze, James Ball, David Blatt, Michael J. Flynn, Richard Teltz
-
Patent number: 8845795Abstract: A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A media material absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. The configuration of the media material enables maximal water extraction and is dynamically configurable. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: December 4, 2012Date of Patent: September 30, 2014Assignee: Z124Inventors: Charles Becze, James Ball, David Blatt, Michael J. Flynn, Kean Wing Kin Lam, Richard Teltz
-
Patent number: 8834614Abstract: A system and method recover water from an ambient airstream. Dehumidification of the airstream is also achieved by removal of the water. A device of the system includes a chamber having a group of trays that hold respective amounts of liquid desiccant in each tray. A foam media absorbs the desiccant to increase an exposed surface of the desiccant to the airstream. Fans and valves are used to control airflow through the device. A charge cycle circulates air through the device to remove water vapor from the airstream. A subsequent extraction cycle removes water collected in the liquid desiccant by a condenser communicating with the chamber. An integral heat exchanger adds heat to the chamber during the extraction cycle. A controller is used to integrate and manage all system functions and input variables to achieve a high efficiency of operational energy use for water collection.Type: GrantFiled: October 25, 2012Date of Patent: September 16, 2014Assignee: Z124Inventors: James Ball, Charles Becze, Michael J. Flynn, Kean Wing Kin Lam, Richard Teltz
-
Patent number: 8529676Abstract: A canister for trapping a fuel vapor vaporized in a fuel tank has a casing defining an adsorption chamber therein, an adsorbent capable of adsorbing the fuel vapor and filled in the adsorption chamber and a flow regulation plate disposed in the casing. The casing has a fuel introducing port configured to introduce the fuel vapor from the fuel tank into the adsorption chamber, and an air communicating port communicating the adsorption chamber with the atmosphere. The air communicating port is formed on a side surface of the casing extending in a direction of gravitational force. The flow regulation plate disposed at an end of the adsorption chamber near the air communicating port and has an opening configured to communicate the adsorption chamber with the air communicating port. The opening is positioned above the air communicating port in the direction of gravitational force.Type: GrantFiled: April 1, 2011Date of Patent: September 10, 2013Assignee: Aisan Kogyo Kabushiki KaishaInventor: Masahiro Sugiura
-
Patent number: 8529677Abstract: A carbon canister as utilized relative to underground fuel storage tank vapor recovery, including for the capture and purging of hydrocarbon vapors as air is introduced into and released from an underground storage tank, and wherein, in one form intended primarily for use in Stage II Vapor Recovery systems, the carbon canister includes a valve activated by weight of saturated carbon and wherein, in another form intended primarily for use in Stage I Vapor Recovery systems, the carbon canister is a free breathing carbon canister with a surge protection device.Type: GrantFiled: December 5, 2011Date of Patent: September 10, 2013Assignee: Husky CorporationInventors: Timothy Schroeder, Darrell Vilmer, Arthur C. Fink, Jr.
-
Patent number: 8057577Abstract: A desulfurizer for fuel gas for a fuel cell includes: a first adsorption tank including an adsorber having selective adsorption capacity for a thiophene-based compound and a second adsorption tank including an adsorber having selective adsorption capacity for a mercaptan-based compound. The desulfurizer uses separate adsorbers having selective adsorption capacity for a thiophene-based compound and a mercaptan-based compound, in multiple stages to perform a more efficient and economical desulfurizing of a fuel gas to remove various sulfur compounds, especially thiophene-based compounds and mercaptan-based compounds compared to a desulfurizer using a single adsorber.Type: GrantFiled: January 23, 2007Date of Patent: November 15, 2011Assignee: Samsung SDI Co., Ltd.Inventors: Doo-hwan Lee, Soon-ho Kim, Hyun-chul Lee, Eun-duck Park, Eun-yong Ko, Chan-ho Pak, Woo-sung Jeon
-
Patent number: 7959720Abstract: The present invention relates to engineered structured adsorbent contactors for use in pressure swing adsorption and thermal swing adsorption processes. Preferably, the contactors contain engineered and substantially parallel flow channels wherein 20 volume percent or less of the open pore volume of the contactor, excluding the flow channels, is in the mesopore and macropore range.Type: GrantFiled: April 4, 2008Date of Patent: June 14, 2011Assignee: ExxonMobil Research and Engineering CompanyInventors: Harry W. Deckman, Ronald R. Chance, Edward W. Corcoran, Jr., David L. Stern
-
Patent number: 7947120Abstract: The adsorption of CO2 from flue gas streams using temperature swing adsorption. Adsorbent contactors are used in the temperature swing adsorption unit that contain a plurality of substantially parallel channels comprised of or coated with an adsorbent material that is selective for adsorbing CO2 from flue gas.Type: GrantFiled: May 16, 2008Date of Patent: May 24, 2011Assignee: ExxonMobil Research and Engineering CompanyInventors: Harry W. Deckman, Bruce T. Kelley, Frank Hershkowitz, Ronald R. Chance, Paul S. Northrop, Edward W. Corcoran, Jr.
-
Patent number: 7922789Abstract: A portable gas fractionalization apparatus that provides oxygen rich air to patients is provided. The apparatus is compact, lightweight, and low-noise. The components are assembled in a housing that is divided into two compartments. One compartment is maintained at a lower temperature than the other compartment. The lower temperature compartment is configured for mounting components that can be damaged by heat. The higher temperature compartment is configured for mounting heat generating components. An air stream is directed to flow from an ambient air inlet to an air outlet constantly so that there is always a fresh source of cooling air. The apparatus utilizes a PSA unit to produce an oxygen enriched product. The PSA unit incorporates a novel compressor system which includes the use of free piston linear compressors so as to reduce power consumption, noise and vibration reduction.Type: GrantFiled: February 21, 2007Date of Patent: April 12, 2011Assignee: Inogen, Inc.Inventors: Geoffrey Frank Deane, Brenton Alan Taylor
-
Publication number: 20100224069Abstract: A hydrocarbon adsorption filter device comprising: a filter housing; at least one filter element with activated carbon arranged in the filter housing; an intake canal, connecting the filter housing with an environment, wherein fresh air is taken in during a flushing operation; and an intake canal housing cover, wherein the intake canal housing cover includes a labyrinthine canal structure having a first end and an opposing second end, wherein the first end is in communication with the intake canal while the second end is in communication with a floor-side opening of the housing.Type: ApplicationFiled: February 19, 2010Publication date: September 9, 2010Inventors: Olivier Donadei, Matthias Flach, Philippe Lalardie, Johann Lamotte, Valentin Ruffet
-
Publication number: 20100180771Abstract: A system includes an adsorber having a fluidized bed of a plurality of adsorption materials. The adsorber is configured to receive the gaseous fuel stream including the plurality of pollutants and adsorb the said plurality of pollutants in a single unit from the gaseous fuel stream to generate a clean gas stream substantially free of the pollutants. Different adsorption materials are designed to remove different pollutants over a similar temperature range. The pollutants include at least one of sulfur compounds, chlorine, ammonia, mercury, arsenic, selenium, cadmium, or combinations thereof.Type: ApplicationFiled: January 22, 2009Publication date: July 22, 2010Applicant: GENERAL ELECTRIC COMPANYInventors: Ke Liu, Vladimir Zamansky
-
Patent number: 7691163Abstract: A vehicle air dryer comprising: a dryer cylinder for drying compressed air passing therethrough, an exhaust assembly for providing an additional air outlet, a backflow assembly for providing a backflow air passage, an air pressure governor assembly for maintaining air pressure inside the vehicle air dryer, an one way check valve for providing one way air passage for dried compressed air and preventing air leakage, and a dryer valve body having an air inlet, an air inlet chamber, an air outlet, a slanting air passage leading to the air outlet, a first opening for installing the exhaust assembly, an opposite, second opening for threadingly attaching the dryer cylinder, a third opening, substantially perpendicular to the second opening, for mounting the backflow assembly, and a fourth opening, substantially parallel to the third opening, for receiving the air pressure governor assembly.Type: GrantFiled: December 12, 2006Date of Patent: April 6, 2010Assignee: SORL Auto Parts, Inc.Inventors: Baojian Tao, Laicheng Liu
-
Publication number: 20100078027Abstract: The apparatus is equipped with cover unit (1) fixed to a head portion of worker so as to cover at least the regions of nose and mouth of the worker, the cover unit capable of trapping the worker's breath. The cover unit has an exhaust opening and an air supply opening. Further, the apparatus is equipped with moisture recycle unit (2) fitted to the worker so as to simultaneously carry out the two processes consisting of the adsorption process of introducing moist air, effecting adsorption of the water contained in the air on an adsorbent and emitting dry air and the regeneration process of introducing dry air, effecting evaporation of the water adsorbed on the adsorbent into the dry air and emitting moist air. Still further, the apparatus is equipped with exhaust hose (3) connecting the exhaust opening of the cover unit to the moisture recycle unit and with air supply hose (4) connecting the moisture recycle unit to the air supply opening of the cover unit.Type: ApplicationFiled: February 21, 2007Publication date: April 1, 2010Applicant: Itswa Co., Ltd.Inventor: Minoru Ogasahara
-
Patent number: 7601189Abstract: A filtering method and a filter device (10) for removing impurities from the breathing air (24) in a room, an air raid shelter or a vehicle. According to the filtering method, the air to be filtered is driven through a carbon dioxide filter (13) by a fan (15), with the result that at least a portion of the carbon dioxide and/or mold spores and other impurities in the air are trapped in the carbon dioxide filter. After the filtering, the filter is regenerated and the carbon dioxide and/or mold spores trapped in it are removed by a technique whereby air heated by a thermal resistor (20) is passed through the filter, this air preferably consisting of the same air to be filtered.Type: GrantFiled: May 13, 2004Date of Patent: October 13, 2009Assignee: Oy Hydrocell Ltd.Inventors: Markku Lampinen, Tomi Anttila, Keijo Rauhala
-
Patent number: 7537642Abstract: A method and a device for discharging air current from a cooking area. The method and the device guide the air current through a sorption agent for absorbing water or water vapor contained in the air current. The sorption agent is regenerated preferably when the air current is not being discharged from the cooking area.Type: GrantFiled: December 4, 2003Date of Patent: May 26, 2009Assignee: BSH Bosch und Siemens Hausgeraete GmbHInventors: Joachim Damrath, Andreas Hauer, Martin Kornberger, Eberhard Laevemann
-
Patent number: 6951581Abstract: An air dryer assembly for removing moisture and oil from a compressed air system includes a desiccant material received in a shell for adsorbing moisture as compressed air passes therethrough. A coalescing element is disposed between an inlet and outlet for removing oil aerosols from the compressed air. A check valve is disposed in parallel with the coalescing element and forces the compressed air to pass through the coalescing element as air flows from the inlet to the outlet. During a purge or reverse flow, compressed air bypasses the coalescing element and removes oil collected in the cartridge through the inlet.Type: GrantFiled: March 8, 2004Date of Patent: October 4, 2005Assignee: Bendix Commercial Vehicle Systems LLCInventors: William P. Fornof, James P. Koenig, Leonard Quinn
-
Patent number: 6786953Abstract: An air dryer assembly for removing moisture and oil from a compressed air system includes a desiccant material received in a shell for adsorbing moisture as compressed air passes therethrough. A coalescing element is disposed between an inlet and outlet for removing oil aerosols from the compressed air. A check valve is disposed in parallel with the coalescing element and forces the compressed air to pass through the coalescing element as air flows from the inlet to the outlet. During a purge or reverse flow, compressed air bypasses the coalescing element and removes oil collected in the cartridge through the inlet.Type: GrantFiled: July 26, 2002Date of Patent: September 7, 2004Assignee: Bendix Commercial Vehicle Systems LLCInventors: William P. Fornof, James P. Koenig, Leonard Quinn
-
Publication number: 20040163535Abstract: An air dryer assembly for removing moisture and oil from a compressed air system includes a desiccant material received in a shell for adsorbing moisture as compressed air passes therethrough. A coalescing element is disposed between an inlet and outlet for removing oil aerosols from the compressed air. A check valve is disposed in parallel with the coalescing element and forces the compressed air to pass through the coalescing element as air flows from the inlet to the outlet. During a purge or reverse flow, compressed air bypasses the coalescing element and removes oil collected in the cartridge through the inlet.Type: ApplicationFiled: March 8, 2004Publication date: August 26, 2004Applicant: BENDIX COMMERCIAL VEHICLE SYSTEMS LLCInventors: William P. Fornof, James P. Koenig, Leonard Quinn
-
Patent number: 6702876Abstract: An ion exchange scrubber has a housing, and a partition plate installed within the housing. The partition plate partitions an inner space of the housing in longitudinal direction into two chambers that are filled with a predetermined amount of aqueous solution. The upper end portions of the two partitioned chambers communicate with each other. At least one cartridge is installed at the upper portion and has an ion exchange resin. The ion exchange resin removes a harmful substance contained in the gas. By repeatedly pumping the aqueous solution from one side chamber to the other side chamber, and immersing and cleaning the contaminated ion exchange resin in the aqueous solution, the contaminated gas can be effectively processed even with a small amount of water.Type: GrantFiled: August 20, 2002Date of Patent: March 9, 2004Assignees: M.A.T. Co., Ltd., Encoco Co., Ltd.Inventors: Dong Soo Kim, Dong Won Kim
-
Patent number: 6692554Abstract: The present invention is generally directed towards an air induction system in a motor vehicle and more specifically to a methane storage device connectable to the air induction system. The methane storage device comprises a housing having an inner chamber. A reticulated material is located within the housing. The reticulated material is capable of trapping any hydrocarbon especially methane.Type: GrantFiled: December 10, 2002Date of Patent: February 17, 2004Assignee: Visteon Global Technologies, Inc.Inventors: Jeffry Marvin Leffel, Gregory Scott Green, Neville Jimmy Bugli
-
Publication number: 20040016342Abstract: An air dryer assembly for removing moisture and oil from a compressed air system includes a desiccant material received in a shell for adsorbing moisture as compressed air passes therethrough. A coalescing element is disposed between an inlet and outlet for removing oil aerosols from the compressed air. A check valve is disposed in parallel with the coalescing element and forces the compressed air to pass through the coalescing element as air flows from the inlet to the outlet. During a purge or reverse flow, compressed air bypasses the coalescing element and removes oil collected in the cartridge through the inlet.Type: ApplicationFiled: July 26, 2002Publication date: January 29, 2004Inventors: William P. Fornof, James P. Koenig, Leonard Quinn
-
Publication number: 20040007135Abstract: A canister for treating evaporated fuel comprises a casing which is provided with a fuel vapor inlet, a purge port and a port communicating with atmosphere and in which an adsorbent is accommodated, an air passage disposed inside the casing so as to communicate with the atmosphere communication port, the air passage having a shape for flowing the sucked air in a zigzag manner in the casing, and a filter element arranged between the air passage and the adsorbent disposed inside the casing.Type: ApplicationFiled: December 24, 2002Publication date: January 15, 2004Inventors: Kouichi Ikuma, Kazuhiro Yamaguchi, Noritomo Endo, Kazuya Matsuura
-
Publication number: 20040003724Abstract: A device is presented which automatically controls the interaction of a medium with an external environment, the temperature of which varies or remains constant. In addition to the medium, the device includes a mechanism for providing constant effectiveness of the medium in the external environment, and an automatic drive mechanism which drives the mechanism for providing constant effectiveness of the medium in the external environment. Advantageously, the device includes a receptacle for the medium, and the receptacle includes a housing incorporating the mechanism for providing constant effectiveness of the medium in the external environment, which is beneficially a movable vent or an expandable vent. The automatic drive mechanism is advantageously a temperature-responsive member or a temperature-responsive fluid movement device.Type: ApplicationFiled: April 7, 2003Publication date: January 8, 2004Inventor: Earle R. Ellis
-
Publication number: 20030213367Abstract: An ion exchange scrubber has a housing, and a partition plate installed within the housing. The partition plate partitions an inner space of the housing in longitudinal direction into two chambers that are filled with a predetermined amount of aqueous solution. The upper end portions of the two partitioned chambers communicate with each other. At least one cartridge is installed at the upper portion and has an ion exchange resin. At least one gas inlet hole is formed in an external plate of the chamber at position below the position where the cartridge is installed. At least one gas inlet tube is connected with the gas inlet hole. A gas exhaust hole is formed in an upper plate of the housing. At least one introduction/exhaustion hole is formed at a lower portion of the chamber, for supplying or exhausting the aqueous solution. At least one connection tube connects the introduction/exhaustion holes with each other. At least one level control valve is installed in the at least one connection tube.Type: ApplicationFiled: August 20, 2002Publication date: November 20, 2003Applicants: M.A.T. Co., Ltd, ENCOCO Co., Ltd.Inventors: Dong Soo Kim, Dong Won Kim
-
Patent number: 6599350Abstract: A filtration device for use in filtering air used to purge a vapor storage canister used in connection with a fuel vapor recovery system of an automobile. The device includes a housing. In some instances, the housing may be integral to another component. The housing has a chamber having an arcuate inner surface. Air flowing into the chamber through an inlet port strikes the arcuate interior surface and is redirected such that the air rotates in said chamber. The centrifugal force of the rotating air filters out any contaminants of sufficient mass contained therein. The filtered air is removed via an outlet port positioned near the longitudinal-axis of the chamber. Contaminants removed from the air fall due to gravity or a secondary air flow pattern into a collection portion of the housing.Type: GrantFiled: December 20, 1999Date of Patent: July 29, 2003Assignee: Hi-Stat Manufacturing Company, Inc.Inventors: James Rockwell, Mason B. Mount
-
Publication number: 20030136266Abstract: An adsorber for cleaning raw gas has at least one filter element wherein the at least one filter element is made of electrically conducting adsorber material. A filter module has a module housing in which such an adsorber is arranged. The housing has at least one inlet opening for the raw gas entering the filter module and at least one outlet opening for the clean gas exiting the filter module. A first ventilation damper unit closes the inlet opening as needed and a second ventilation damper unit closes the outlet opening as needed for performing regeneration and adsorption phases.Type: ApplicationFiled: December 20, 2002Publication date: July 24, 2003Applicant: MW Zander Facility Engineering GmbHInventor: Manfred Renz
-
Publication number: 20030116021Abstract: An HC adsorbing sheet inside an air cleaner is disposed such that a large amount of activated carbon is contained on the side of an engine and that a small amount of activated carbon is contained on the other side of the engine. Thus, the HC adsorbing sheet can efficiently adsorb evaporative fuel. That is, by changing the amount of activated carbon contained in accordance with differences in concentration of evaporative fuel, it becomes possible to prevent the pressure loss in an intake system from increasing. On the other hand, one end of a second intake pipe extends to a region where the amount of activated carbon contained in the HC adsorbing sheet is large, whereby it becomes possible to concentratively supply activated carbon with intake air in the region where the large amount of activated carbon is contained. Therefore, the efficiency in purging evaporative fuel can be prevented from declining.Type: ApplicationFiled: December 16, 2002Publication date: June 26, 2003Applicant: TOYODA BOSHOKU CORPORATIONInventors: Kouichi Oda, Takanobu Kawano, Masaki Takeyama, Naoya Kato
-
Patent number: 6581297Abstract: A twin tower gas drying system is disclosed for cleaning compressed air lines in locomotives, buses, transit vehicles and the like by removing undesirable contaminants from an air or gas stream. A multistage filtration process employs a first scrubber that is capable of removing particulate material or soot from a stream of unpurified gas. A pre-filtering means is employed to remove impurities from the stream of unpurified gas. Coalescing filters are us to remove remaining moisture from the gas stream. Two towers of dessicant material dry the gas stream. The drying system is capable of controlling the flow of gas by alternately switching between supplying unpurified gas to a first tower and supplying unpurified gas to a second tower, with a purge cycle in between. Thus, a first dessicant tower is being purged of moisture while the second tower accumulates moisture, and likewise the second tower is purged while the first tower accumulates moisture, in alternating sequence.Type: GrantFiled: November 17, 2000Date of Patent: June 24, 2003Assignee: Graham-White Manufacturing CompanyInventor: William F. Ginder
-
Patent number: 6569228Abstract: A fuel vapor treatment system for an automotive vehicle on which an internal combustion engine is mounted. The fuel vapor treatment system includes a canister connected to a fuel tank and containing a fuel vapor adsorbing material which generates endothermic energy during desorption of fuel vapor. A membrane separation module is provided to be connected to the canister and including a separation membrane for separating a mixture gas purged from the canister into an air-rich component and a fuel vapor-rich component. Additionally, a condenser is provided to be connected to the membrane separation module to be supplied with the fuel vapor-rich component from the membrane separation module. The condenser is housed in the canister and adapted to cool and liquefy fuel vapor in the fuel vapor-rich component to obtain liquefied fuel by the endothermic energy generated in the canister, the liquefied fuel being recovered.Type: GrantFiled: April 20, 2001Date of Patent: May 27, 2003Assignee: Nissan Motor Co., Ltd.Inventor: Masashi Ito
-
Publication number: 20010015131Abstract: A desorbable sorption filter, in particular for a heating or air-conditioning system of a motor vehicle, has a metallic support (12) which can be heated by flow of current and an adsorber (14) mounted at or on the support (12). To provide an improved, directly heatable sorption filter which particularly enables inexpensive production and good electrical and thermal conductive contact without the use of adhesives, it is proposed for the adsorber (14) to be of planar design and to be mechanically connected to the support (12, 112) by means of holding elements (26) formed integrally on the support (12, 112).Type: ApplicationFiled: January 12, 2001Publication date: August 23, 2001Applicant: BEHR GmbH & CO.Inventors: Hans-H. Angermann, Roland Burk, Herbert Damsohn, Klaus Luz, Tilo Rinckleb
-
Patent number: 6132693Abstract: A process for reducing pollutants, particularly nitrogen oxides from combustion gases during a combustion process that takes place while oxygen is supplied, includes providing oxygen needed for the combustion process by separating oxygen from a gas mixture containing oxygen and nitrogen in a two-step process including (a) enriching the gas mixture with oxygen in a first step to provide an enriched gas mixture; and (b) separating oxygen out of the enriched gas mixture in a second step, wherein, during at least one step oxygen depleted gas mixture is removed via an outlet provided with permeability means that cause the outlet to have a higher permeability for nitrogen than oxygen.Type: GrantFiled: October 6, 1997Date of Patent: October 17, 2000Assignee: Robert Bosch GmbHInventors: Werner Gruenwald, Klaus Dieterich, Steffen Franke
-
Patent number: 5910637Abstract: A fuel vapor storage canister including a mass of carbon granules in a carbon bed chamber of the canister, a liquid trap having a polygonal internal chamber between a vapor inlet port and the carbon bed chamber, and a purge duct traversing the polygonal chamber. The polygonal chamber includes a plurality of three sides which define the gravitational bottom of the chamber in respective ones of a plurality of three orientations of the vapor storage canister. A pick-up tube in the polygonal internal chamber has an outboard end at the convergence of the aforesaid plurality of three sides and an inboard end surrounding an orifice in the vapor purge duct. The inboard end of the pick-up tube is vertically above the maximum level of liquid fuel in the polygonal internal chamber in each of the aforesaid plurality of three orientations of the vapor storage canister.Type: GrantFiled: August 25, 1997Date of Patent: June 8, 1999Assignee: General Motors CorporationInventors: Thomas Charles Meiller, Timothy Michael Beadnell, Charles Henry Covert
-
Patent number: 5908652Abstract: A method for modifying an aroma-containing gas comprising volatile components recovered from coffee, characterized by contacting the aroma-containing gas with molecule sieve carbon oxidized with a strong acid is disclosed. This method removes undesirable components from the coffee aroma-containing gas by adsorption.Type: GrantFiled: December 9, 1997Date of Patent: June 1, 1999Assignee: Ajinomoto General Foods Inc.Inventor: Tadaaki Sakano
-
Patent number: 5840104Abstract: A canister structure for absorbing fuel vapor in the fuel tank and supplying the fuel vapor into the engine together with purge air is provided. The canister structure includes a canister body filled up with absorbents for absorbing the fuel vapor, a purge pipe connected to the canister body for introducing the purge air into the canister body and a separator for removing moisture contained in the purge air. To the separator, the purge pipe is connected downwardly. The separator is provided on the bottom side with an air inlet of which diameter is larger than that of the purge pipe. With the above-mentioned arrangement, since the separator is so formed as to have a diameter larger than that of the purge pipe, it is possible to reduce a flowing speed of the purge air by means of the separator, so that moisture contained in the purge air can be trapped and eliminated by the separator certainly.Type: GrantFiled: December 18, 1996Date of Patent: November 24, 1998Assignee: Nissan Motor Co., Ltd.Inventors: Takashi Hashimoto, Tomoyuki Sato, Junichi Hanai, Kei Orita
-
Patent number: 5824139Abstract: An adsorber for purifying flue gases of a furnace includes a housing having a flue gas inlet and a flue gas outlet. The housing has an adsorption medium chamber. A fill socket extends from the top of the housing. A removal device extends from the bottom of the housing. The chamber includes substantially vertical, gas-permeable walls for delimiting the chamber at the inlet side and at the outlet side. The chamber also includes a vertical gas-permeable partition and a slanted non-gas-permeable wall. The wall at the inlet side is a louver wall extending upwardly to the level of the fill socket. The wall at the outlet side is a slotted screen connected with the slanted, non-gas-permeable wall to the fill socket. The flue gas outlet is located opposite the non-gas-permeable wall.Type: GrantFiled: May 14, 1997Date of Patent: October 20, 1998Assignee: STEAG AktiengesellschaftInventor: Hermann Bruggendick
-
Patent number: 5776227Abstract: A fuel vapor storage canister having a screen assembly between a mass of carbon granules in the storage canister and a purge port of the storage canister. The fuel vapor storage canister includes a cup-shaped plastic body defining a carbon bed chamber and a plenum in the canister body covered by the screen assembly. The screen assembly includes a pair of concentric cylindrical bosses around the plenum, a plastic foam screen over the plenum seated on a circular edge of each of the concentric cylindrical bosses, and a retainer having a plurality of flexible barbs and flexible reinforcements resiliently biased against opposite sides of the outermost one of the cylindrical bosses. Concentric circular segments of the plastic foam screen are compressed tightly between an annular planar side of the retainer and each of the circular edges of the concentric cylindrical bosses to positively prevent migration of carbon granules around the foam screen.Type: GrantFiled: March 14, 1997Date of Patent: July 7, 1998Assignee: General Motors CorporationInventors: Thomas Charles Meiller, Timothy Michael Beadnell, Charles Henry Covert, Robert Augustine Zaso, Gordon Richard Paddock
-
Patent number: 5776228Abstract: A fuel vapor storage canister having a screen module between carbon granules in the canister and a purge port of the canister. The screen module includes a module body defining a plenum, a flat plastic foam screen seated on an uninterrupted edge of a raised boss on the module body around the plenum, and a retainer clamped to the module body over the flat foam screen. A tubular stem on the module body plugs into a socket in the storage canister. An interference fit between the tubular stem and the socket prevents migration of carbon granules between the socket and the tubular stem. The foam screen is exposed to the carbon bed chamber through a window in a planar side of the retainer which planar side, in a seated position of the retainer on the module body, cooperates with the uninterrupted edge of the raised boss in compressing a segment of the foam screen to define a seal around the window.Type: GrantFiled: March 14, 1997Date of Patent: July 7, 1998Assignee: General Motors CorporationInventors: Thomas Charles Meiller, Timothy Michael Beadnell, Charles Henry Covert, Robert Augustine Zaso, Gordon Richard Paddock
-
Patent number: 5762692Abstract: An evaporative emission control system for an automotive vehicle includes a generally cylindrical casing having an adsorption zone containing hydrocarbon adsorbing agent, an antechamber extending within the casing to the adsorption zone, and a swirl inducing inlet passage for conduction of hydrocarbon laden air into the antechamber such that a rotational flow pattern will be established in the antechamber, with the rotational flow having an axis coincident with a longitudinal axis of the generally cylindrical casing.Type: GrantFiled: October 4, 1996Date of Patent: June 9, 1998Assignee: Ford Motor CompanyInventors: James T. Dumas, Philip Jeffrey Johnson