Heat Exchanger To Regenerate Patents (Class 96/146)
  • Patent number: 8163066
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: April 24, 2012
    Inventor: Peter Eisenberger
  • Patent number: 8142555
    Abstract: The invention aims at making a volatile organic compound harmless, and in addition comprehensively improving the energy efficiency within a facility where treatment of the volatile organic compound is necessary. In the invention, in order to achieve this aim, a solution means is adopted where, a discharge gas containing a volatile organic compound is supplied to an adsorption apparatus to adsorb the volatile organic compound in an adsorbent. The volatile organic compound is desorbed from the adsorbent with pressurized steam and mixed with the steam. The steam containing the volatile organic compound is supplied, in the pressurized state, to the combustion chamber of a gas turbine, and burned together with a fuel gas.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: March 27, 2012
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventor: Shigekazu Uji
  • Publication number: 20120048111
    Abstract: In a method of capturing carbon dioxide in a gas, carbon dioxide in a gas is adsorbed to the hybrid adsorbent prepared by mixing an adsorbent with iron oxide nanoparticles, microwaves are irradiated to the hybrid adsorbent and the carbon dioxide adsorbed to the hybrid adsorbent is desorbed from the hybrid adsorbent, and the carbon dioxide desorbed from the hybrid adsorbent is captured.
    Type: Application
    Filed: May 10, 2010
    Publication date: March 1, 2012
    Inventors: Kenji Nakao, Kimihito Suzuki, Kenichiro Fujimoto, Hatsuo Taira
  • Publication number: 20110315017
    Abstract: A regeneration tower including a regeneration tower main body having a long trunk, and desorbed gas discharge passages through which a desorbed gas is discharged. The regeneration tower main body is configured so that a heating unit that heats an adsorbent, a separation part that separates desorbable substances as a desorbed gas from the heated adsorbent, and a cooling unit that cools the adsorbent from which the desorbable substances have been desorbed by heating are communicatively disposed in one direction and the heating unit and the cooling unit have approximately the same sectional outer diameter.
    Type: Application
    Filed: March 16, 2009
    Publication date: December 29, 2011
    Inventors: Kuninori Furuyama, Masahiro Miya, Ryo Suzuki
  • Publication number: 20110308394
    Abstract: The present invention provides a canister mounted in a vehicle to reduce the discharge of fuel gas and, more particularly, a canister with a heater configured such that fuel gas adsorbed onto active carbon filled in the canister is more easily desorbed from the active carbon and introduced into an engine. The canister with the heater according to the present invention includes a canister housing including a tank port and a purge port, which are provided at the top thereof, and a plurality of inlet holes provided on one side thereof to introduce air; and a heater connected to the top of the plurality of inlet holes of the canister housing and including an air port provided at the top thereof, an open bottom, and a heater module provided therein.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 22, 2011
    Applicant: KOREA FUEL-TECH CORPORATION
    Inventors: Hyun KI Kim, Tae Kyu Hwang, Joon Young Choi
  • Publication number: 20110296872
    Abstract: A method and a system capable of removing carbon dioxide directly from ambient air, and obtaining relatively pure CO2. The method comprises the steps of generating usable and process heat from a primary production process; applying the process heat from said primary process to water to co-generate substantially saturated steam, alternately repeatedly exposing a sorbent to removal and to capture and regeneration system phases, wherein said sorbent is alternately exposed to a flow of ambient air during said removal phase, thereby enabling said sorbent to sorb, and therefore remove, carbon dioxide from said ambient air, and to a flow of the co-generated steam during the regeneration and capture phase, after the sorbent has adsorbed the carbon dioxide, thereby enabling regeneration of such sorbent, and the resultant capture in relatively pure form of the adsorbed carbon dioxide.
    Type: Application
    Filed: April 29, 2011
    Publication date: December 8, 2011
    Inventor: Peter Eisenberger
  • Patent number: 8052784
    Abstract: Systems and methods are provided for storing and releasing hydrogen using packed-bed hydrogen storage elements in conjunction with elements such as optical or thermal energy for stimulating the release of stored hydrogen. The hydrogen storage system may include valves, piping, and other fixtures for ease of filling and emptying the unit. The system may also serve as a portable self-contained means of safe hydrogen storage that may be transported between the filling or generation site and the site of hydrogen release or use.
    Type: Grant
    Filed: May 1, 2009
    Date of Patent: November 8, 2011
    Assignee: Empire Technology Development LLC
    Inventor: Leslie A. Field
  • Patent number: 8052783
    Abstract: A rotary adsorber for continuous bulk separations is disclosed. The rotary adsorber includes an adsorption zone in fluid communication with an influent adsorption fluid stream, and a desorption zone in fluid communication with a desorption fluid stream. The fluid streams may be gas streams or liquid streams. The rotary adsorber includes one or more adsorption blocks including adsorbent structure(s). The adsorbent structure adsorbs the target species that is to be separated from the influent fluid stream. The apparatus includes a rotary wheel for moving each adsorption block through the adsorption zone and the desorption zone. A desorption circuit passes an electrical current through the adsorbent structure in the desorption zone to desorb the species from the adsorbent structure. The adsorbent structure may include porous activated carbon fibers aligned with their longitudinal axis essentially parallel to the flow direction of the desorption fluid stream.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: November 8, 2011
    Assignee: UT-Battelle LLC
    Inventor: Frederick S. Baker
  • Publication number: 20110232493
    Abstract: The present application provides a protected solid adsorbent that includes a solid adsorbent substrate and a surface layer at least partially coating the solid adsorbent substrate, the surface layer being generally permeable to an active agent. Additionally, a process for protecting a solid adsorbent and an adsorption system that includes a vessel containing the protected solid adsorbent is provided.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 29, 2011
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Mohsen S. YEGANEH, Bhupender S. MINHAS, Sufang ZHAO, Tahmid I. MIZAN, Richard W. FLYNN
  • Publication number: 20110230331
    Abstract: An adsorbing molded body is configured to be subjected to ohmic heating or electromagnetic wave heating. The adsorbing molded body includes an electrically conductive powder adsorbent, an insulating powder adsorbent, and an inorganic binder that binds the powder adsorbents together. An adsorption recovery treatment apparatus includes the adsorbing molded body and a heating unit to heat the adsorbing molded body, preferably ohmically or using electromagnetic waves. An adsorbate desorbing method includes desorbing an adsorbate, which the adsorbing molded body has adsorbed, from the adsorbing molded body by heating the adsorbing molded body, preferably ohmically or using electromagnetic waves.
    Type: Application
    Filed: October 19, 2009
    Publication date: September 22, 2011
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Kiminari Yamashita, Yukihiro Utaka, Aiko Saitou, Yoshinobu Nagano, Keiichirou Kametani
  • Publication number: 20110209613
    Abstract: A method and apparatus for regenerating the media of a rotary sorption concentrator system includes passing a 600° F. to 1000° F. regeneration fluid stream through a rotating media in a first isolated zone to regenerate the media and remove contaminants from the media that are not removed during a typical desorption cycle of a rotary sorption concentrator system.
    Type: Application
    Filed: September 12, 2008
    Publication date: September 1, 2011
    Inventors: Christopher P. Jensen, Kevin Orff, Frank Giles
  • Patent number: 7976620
    Abstract: A hydrogen storage system for storing hydrogen gas at elevated pressures and cryogenic temperatures is disclosed. The hydrogen gas is fed to a storage container which contains a physisorption type material and a volatile liquid container for liquid nitrogen. Cryogenic conditions are maintained within the storage container during the periods of storage and the periods where the hydrogen gas is removed from the storage system.
    Type: Grant
    Filed: May 2, 2007
    Date of Patent: July 12, 2011
    Assignee: Linde North America, Inc.
    Inventors: Ron Lee, Frank R. Fitch, Satish S. Tamhankar
  • Publication number: 20110162443
    Abstract: The invention relates to equipment for concentrating and analyzing components contained in a flowing medium, and an analyzing method applying said equipment. The analyzing equipment comprises a concentrator, including a porous sorbent bed, in which components can be absorbed or adsorbed from the medium flow, said bed being electroconductive, so that components can be desorbed to a washing flow by heating the bed with electric current; and to an analyzer defining the desorbed components, said analyzer being for instance a gas detector. According to the invention, the sorbent bed is in the flowing direction widened towards its outlet end, having for example the shape of a truncated cone. By means of the invention, the temperature in the sorbent bed is equalized by transferring heat in the washing flow towards the bed outlet end, which end receives a weaker heating effect per unit of volume, owing to the widening shape of the bed.
    Type: Application
    Filed: June 1, 2009
    Publication date: July 7, 2011
    Inventors: Janne Petteri Pitkanen, Tero Tapio Hannola, Terhi Marjukka Mattila
  • Publication number: 20110158872
    Abstract: The present invention relates to a method and a multi-component system for adsorbing contaminants and/or pollutants from a contaminated hot fluid by using a turbulent air stream, to adiabatically cool the temperature of the fluid, in association with one or more adsorbents. The system of the present invention can also be coupled to a recovery and recycling unit to recover and recycle the contaminant and/or pollutant and the adsorbent material.
    Type: Application
    Filed: November 3, 2010
    Publication date: June 30, 2011
    Inventor: Parisa A. Ariya
  • Publication number: 20110126706
    Abstract: A hydrocarbon adsorbent that includes a zeolite with either a H-FER structure or a MOR structure in which the pore diameter has been adjusted by ion exchange. A propane adsorbent that includes a zeolite with a MFI structure. A hydrocarbon removal unit that includes a TSA pre-purification unit having a column packed with sequential layers of activated alumina, a NaX zeolite, and the hydrocarbon adsorbent. A method of reducing the hydrocarbon content within liquid oxygen inside a cryogenic air separation unit that includes purifying feed air with the above pre-purification unit.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 2, 2011
    Applicant: TAIYO NIPPON SANSO CORPORATION
    Inventors: Tatsuya Hidano, Morimitsu Nakamura, Masato Kawai
  • Patent number: 7947119
    Abstract: In a hydrogen reservoir having a housing with a hydrogen storage material arranged in the housing for absorbing and releasing hydrogen as needed, the hydrogen reservoir includes at least one unit having a porous body surrounding a container in which the hydrogen storage material is contained and a method is provided for charging the hydrogen reservoir with hydrogen from a hydrogen filling stations.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: May 24, 2011
    Assignee: Daimler, AG
    Inventors: Daniel Gölz, Claude Keller, Wolfgang Polifke, Eberhard Schmidt-Ihn, David Wenger
  • Publication number: 20110107914
    Abstract: The present invention relates to articles for extracting a component from a fluid stream, the article including a body portion having a plurality of bores extending therethrough, the bores facilitating the flow of the fluid stream through the body portion in use, wherein the body portion is formed from a mixture of a binder and at least one component selected from the group consisting of carbon fibres, carbon nanotubes and mixtures thereof. The present invention also relates to a method of forming such articles and methods and systems including same.
    Type: Application
    Filed: August 28, 2008
    Publication date: May 12, 2011
    Applicant: Commonwealth Scientific and Industrial Research
    Inventors: Shi Su, Ramesh Thiruvenkatachari
  • Publication number: 20110079738
    Abstract: The invention relates to an activated charcoal filter for storing and releasing gaseous hydrocarbons which originate from a fuel supply means of a motor vehicle. The activated charcoal can be supplied with gaseous hydrocarbons via an inlet. A heating means for heating of the activated charcoal is made available by a tank shutoff valve by means of which the inlet can be shut off. Since the tank shutoff valve is being operated as a heating means, an additional heating means for regenerating the activated charcoal can be omitted. Furthermore, the invention relates to a motor vehicle with such an activated charcoal filter and a method for operating an activated charcoal filter.
    Type: Application
    Filed: September 30, 2010
    Publication date: April 7, 2011
    Applicant: Audi AG
    Inventor: Harald Hagen
  • Publication number: 20110061539
    Abstract: An aircraft fuel tank ventilation system, comprising a desiccative dehumidifying device including a desiccant medium disposed in flow communication between a vent open to the atmosphere and a fuel tank, and a microwave energy transmitter for energizing liquid water in the desiccant medium to facilitate regeneration of the medium. Also, a method of regenerating a desiccant medium of a dehumidifying device of an aircraft fuel tank ventilation system, the method comprising directing air through the desiccant medium, and transmitting microwave energy into the desiccant medium for energizing liquid water in the desiccant medium to facilitate regeneration of the medium.
    Type: Application
    Filed: August 30, 2010
    Publication date: March 17, 2011
    Applicant: AIRBUS OPERATIONS LIMITED
    Inventors: Joseph K-W LAM, Franklin TICHBORNE, Simon MASTERS, David PARMENTER
  • Publication number: 20110056377
    Abstract: A carbon dioxide recovery system according to the present embodiments includes: an absorber bringing exhaust gas containing carbon dioxide into contact with absorbent reversibly absorbing or releasing carbon dioxide at above or below a predetermined temperature, and making the absorbent absorb carbon dioxide in the exhaust gas; a regenerator releasing carbon dioxide in the absorbent by heating the absorbent absorbing carbon dioxide at the absorber; a reflux pipeline flowing back the absorbent regenerated at the regenerator to the absorber; and a filter introducing at least a part of the absorbent, removing solids accumulated in the introduced absorbent, and returning the absorbent after the solids are removed to a vicinity of a portion where the absorbent is introduced.
    Type: Application
    Filed: September 9, 2010
    Publication date: March 10, 2011
    Inventors: Shinobu MONIWA, Nobuyuki Ashikawa, Yasuhiko Nagamori, Hiroyuki Tokimoto, Satomi Ebihara, Masato Oda
  • Publication number: 20110041688
    Abstract: New and useful system and method concepts are provided, for removing carbon dioxide from a flow of carbon dioxide laden air. More specifically, a sorbent structure is used in new and useful structures and techniques to bind carbon dioxide in a carbon dioxide laden air stream, and process heat is used to separate carbon dioxide from the sorbent structure and regenerate the sorbent structure.
    Type: Application
    Filed: March 16, 2010
    Publication date: February 24, 2011
    Inventor: Peter Eisenberger
  • Publication number: 20110031103
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Application
    Filed: March 18, 2009
    Publication date: February 10, 2011
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, Paul Scott Northrop, Peter C. Rasmussen, Paul Lawrence Tanaka, Martin N. Webster, Wieslaw Jerzy Roth, Edward W. Corcoran
  • Publication number: 20110005395
    Abstract: Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO2, which is then released as a nearly pure CO2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25° F., but also increases the CO2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO2 in the absorber section minimizes the heat energy needed for sorbent regeneration.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: Southern Company
    Inventors: Pannalal Vimalchand, Guohai Liu, Wan Wang Peng
  • Publication number: 20100319537
    Abstract: A system for removing carbon dioxide from an atmosphere to reduce global warming including an air extraction system that collects carbon dioxide from the atmosphere through a medium and removes carbon dioxide from the medium; a sequestration system that isolates the removed carbon dioxide to a location for at least one of storage and which can increase availability of renewable energy or non-fuel products such as fertilizers and construction materials; and one or more energy sources that supply process heat to the air extraction system to remove the carbon dioxide from the medium and which can regenerate it for continued use.
    Type: Application
    Filed: August 26, 2010
    Publication date: December 23, 2010
    Inventors: Peter Eisenberger, Graciela Chichilnisky
  • Patent number: 7854790
    Abstract: A method of processing a volatile organic compound is provided, wherein a volatile organic compound contained in gas to be treated is adsorbed in an adsorbent; the thus-adsorbed volatile organic compound is desorbed with the aid of steam and mixed in the steam; and the steam containing the volatile organic compound is combusted. This method further includes: separating a vessel for the adsorption and desorption into an inner side room and an outer side room by means of a separation member part of which is formed of the adsorbent; thermally retaining the vessel for the adsorption and desorption; at the time of adsorption, supplying the gas to be treated to the inner side room and therefrom to the outer side room; and at the time of desorption, supplying the steam to the outer side room and therefrom to the inner side room.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: December 21, 2010
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventors: Shigekazu Uji, Masahito Yamaguchi
  • Publication number: 20100313763
    Abstract: An active carbon filter intended for the fuel supply system of the internal combustion engine of a vehicle consists of a housing (1), inside of which flow paths for the different operating states of the filter are established between the ports (10, 11, 12) for connection with the top space of a tank, the ambient atmosphere and the intake manifold of the internal combustion engine. Proceeding from the port (11), these flow paths are characterized by chambers situated one in back of the other for pre-warming the air, an adjacent chamber (22) equipped with a first heating unit, an adjacent chamber (23) that accommodates active carbon particles, and another, adjacent chamber (28) that accommodates active carbon particles, is equipped with a second heating unit (34), and is provided with the ports (10, 12). This yields the establishment of optimal, in particular thermal conditions for the regeneration of the active carbon particles.
    Type: Application
    Filed: May 11, 2010
    Publication date: December 16, 2010
    Applicant: A. KAYSER AUTOMOTIVE SYSTEMS GMBH
    Inventors: Tobias Lang, Heiko Freter, Detlef Wolf
  • Publication number: 20100258007
    Abstract: A gas treatment unit includes an absorber, a liquid-jet ejector, a gas-liquid separator, a regenerator and a pump. A liquid outlet of the regenerator is connected to an inlet of the pump. An outlet of the pump is connected to a liquid inlet of the absorber. A liquid outlet of the absorber is connected to a liquid inlet of the jet-ejector. A regenerator gas outlet is connected to a gas inlet of the liquid-jet ejector. A liquid-gas outlet of the liquid-jet ejector is connected to an inlet of the separator. A liquid outlet of the separator is connected to a liquid inlet of the regenerator.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 14, 2010
    Inventors: Serguei A. Popov, Michael S. Green
  • Patent number: 7806964
    Abstract: The system and method for recycling the compress heat generated at a bio-gas treatment plant that includes the assembly of a heat exchanger at each stage of compression designed to utilizing all of the gas flow and to harvest the heat in gas delivered to the air exchangers. After the heat is harvested, it is then conveyed either as hot air, or as a hot liquid, to a jacketed vessel containing media that requires regeneration or stripping of harmful VOCs picked up during the purification of contaminated landfill or municipal digester gas. The harvesting and conveyance of the heat of compression of the gases to a jacket around the vessel interior (indirect contact) and simultaneously heating the vessel interior containing the spent media through hot gas from another source (direct contact), reduces the heat-up time. This also reduces the overall the cycle time between the contaminant pick-up step and contaminant stripping step in regenerable treatment systems.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: October 5, 2010
    Inventors: Lowell E. Howard, Jeffrey V. Wetzel
  • Patent number: 7799117
    Abstract: A thermal sink is used to recover heat from a product gas leaving an adsorption vessel in a thermal swing adsorption process. Heat that is recovered from the product gas is used to heat a regeneration gas during the subsequent regeneration of the adsorbent material within the adsorption vessel. The step in which the regenerated bed of adsorbent material is cooled prior to returning to adsorption mode is eliminated.
    Type: Grant
    Filed: September 27, 2006
    Date of Patent: September 21, 2010
    Assignee: UOP LLC
    Inventors: Lin Li, Mark E. Schott, Andrew S. Zarchy, Bradley P. Russell
  • Patent number: 7785398
    Abstract: A dryer and a drying apparatus attachable to a dryer are disclosed. A wheel having desiccant material is located in line and in close proximity with a heating element. The wheel includes a first portion positioned in an inlet air path and a second portion positioned in an outlet air path. The desiccant material removes water molecules from air within the inlet air path, and lowers the vapor pressure of the incoming air. In the outlet air path, heated air flows through the second portion to transfer energy to the desiccant material. The wheel rotates to change the desiccant material within the portions.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: August 31, 2010
    Assignee: Protégé Enterprises
    Inventors: Charles Robert Dewald, III, Thomas L. Cristello
  • Patent number: 7785548
    Abstract: Disclosed is a fuel filter for removing sulfur containing compounds from an internal combustion fuel stream. In one embodiment, the fuel filter comprises at least one column comprising an adsorbent. In one exemplary embodiment the adsorbent is capable of removing sulfur containing compounds, especially sulfur containing aromatic compounds, from fuels used in internal combustion engines, especially diesel fuels. Also disclosed is an apparatus for extending the life cycle of a post combustion emission control device. In one exemplary embodiment, the apparatus comprises a fuel filter for removing sulfur containing compounds from an internal combustion fuel stream and an emission control device. Finally, a method for removing sulfur containing compounds from an internal combustion fuel stream is disclosed.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: August 31, 2010
    Assignee: Honeywell International Inc.
    Inventors: Ronald P. Rohrbach, Peter D. Unger, Gary B. Zulauf, Daniel E. Bause, Russ Johnson, David R. Rockwell
  • Patent number: 7785406
    Abstract: It is intended to provide a volatile organic compound treatment apparatus having: an absorption treatment chamber in which absorption frames having absorbents for absorbing volatile organic compounds are aligned in a direction of a gas flow; an absorbent recovery treatment chamber that is provided with a discharge unit having a high voltage electrode, a ground electrode, and a dielectric; and a transfer mechanism for transferring the absorption frames present in an upstream of the gas flow to the absorbent recovery treatment chamber and transferring the absorption frames in the absorbent recovery treatment chamber to a downstream of the gas flow. The volatile organic compound treatment apparatus is capable of decomposing VOC without generating a large amount of harmful NOx and reduced in apparatus cost.
    Type: Grant
    Filed: June 21, 2006
    Date of Patent: August 31, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kouji Ota, Yasutaka Inanaga, Yasuhiro Tanimura, Masaki Kuzumoto, Hajime Nakatani, Hideo Ichimura, Akio Masuda, Shigeki Maekawa, Masaharu Moriyasu
  • Publication number: 20100212493
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, nitrogen process streams, and other types of streams. The methods and systems may include at least one swing adsorption process including pressure swing adsorption, temperature swing adsorption, and rapid-cycle adsorption processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and for other utilities. The systems and processes of the present disclosure are further applicable to high pressure gaseous streams, for example, up to about 600 bar.
    Type: Application
    Filed: October 14, 2008
    Publication date: August 26, 2010
    Inventors: Peter C. Rasmussen, Paul L. Tanaka, Bruce T. Kelley, Stanley O. Uptigrove, Harry W. Deckman
  • Patent number: 7776140
    Abstract: An apparatus for separating exhaust particulates from an exhaust gas stream, includes a ceramic honeycomb body with ducts through which exhaust gas can flow and which extend in the longitudinal direction of the honeycomb body, with the honeycomb body being provided with electrodes for generating an electric field which are each oriented transversally to the axis of the ducts. The electrodes are each formed by a group of ducts in which an electric conductor is introduced at least partly along their axial extension. It preferably includes a metallic coating.
    Type: Grant
    Filed: March 21, 2006
    Date of Patent: August 17, 2010
    Inventor: Carl M. Fleck
  • Patent number: 7771512
    Abstract: Method and apparatus for storing hydrogen. One embodiment of such a method comprises providing a storage apparatus having a substrate and a nanostructure mat on at least a portion of a side of the substrate. The nanostructure mat comprises a plurality of nanostructures having a surface ionization state which causes more than one layer of hydrogen to adsorb onto the nanostructures. The method can also include exposing the nanostructure mat to hydrogen such that more than one layer of hydrogen adsorbs onto the nanostructures.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: August 10, 2010
    Assignees: Washington State University Research Foundation, Idaho Research Foundation, Inc.
    Inventors: Grant Norton, David McIIRoy
  • Patent number: 7766998
    Abstract: In one aspect of the present invention, an apparatus for the extraction of water from air incorporated into a wall of a building has a cavity formed in the wall. The cavity has an air inlet and an air outlet. A condensing surface is disposed within the cavity and is adapted to direct condensed water to a water storage unit. In another aspect of the present invention, the cavity is formed between two different building walls.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: August 3, 2010
    Inventors: David R. Hall, Tyson J. Wilde, Andrew Gerla, Joshua Larsen
  • Publication number: 20100175557
    Abstract: The present invention provides a low power consumption desorption apparatus, which utilizes a pair of electrodes coupled to an absorbing material to provide an electric current flowing through the absorbing material so as to desorb the substances absorbed within the absorbing material. By means of the desorption apparatus of the present invention, the absorbing material is able to enhance the desorbing efficiency and reducing power consumption during desorption. The present invention further provides a dehumidifier using the low power consumption desorption apparatus for providing a continuous dry air flow to desorb and regenerate the moisture from the absorbing material so that the dehumidifier is capable of removing moisture in the air repeatedly to reduce the humidity.
    Type: Application
    Filed: August 28, 2009
    Publication date: July 15, 2010
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: MING-SHIANN SHIH, YU-LI LIN, JAU-CHYN HUANG, TING-WEI HUANG, YEN-HSUN CHI, YO-MING CHANG, MING-SHAN JENG, YA-WEN CHOU
  • Publication number: 20100170499
    Abstract: A new and unique apparatus for extracting water out of humid air is disclosed. There is also disclosed utilization of the apparatus and method in a specific and unique design so as to establish building blocks in building construction in order to cool indoor air in spaces in which the designated building blocks are combined.
    Type: Application
    Filed: August 8, 2007
    Publication date: July 8, 2010
    Applicant: EWA Tech Ltd.
    Inventor: Eitan Bar
  • Patent number: 7740690
    Abstract: The present invention relates to methods and systems for purifying gases, such as for example semiconductor process gases. The invention more particularly relates to fluid purification methods and systems having improved heat transfer capabilities and controls such that the purified fluid produced from the process contains reduced impurity levels and/or exhibits more uniform concentrations within the final product. In another aspect of the invention, the activation time for adsorbent beds used in such processes and systems can be reduced.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: June 22, 2010
    Assignee: Praxair Technology, Inc.
    Inventors: Lloyd Anthony Brown, Thomas Justin Thompson
  • Publication number: 20100147152
    Abstract: One aspect according to the present invention includes a fuel vapor processing apparatus having a case containing a mixture of an adsorption material and a heat storage material therein. A mixing ratio of the heat storage material to the adsorption material is set to be higher for a central area away from a circumferential wall of the case or a flow passage defined in the case than for an outer peripheral area close to the circumferential wall.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 17, 2010
    Applicant: Aisan Kogyo Kabushiki Kaisha
    Inventor: Ryuji KOSUGI
  • Patent number: 7731785
    Abstract: A heat exchanger unit of the air conditioning apparatus includes a first heat exchanger including a first body, a first introduction opening provided at an upper end portion of the first body, and a first discharge opening formed at a corner portion on one side of a lower end portion of the first body and having an elliptic shape; and a second heat exchanger including a second body, a second introduction opening connected to the first discharge opening, provided at a corner portion on one side of a lower portion of the second body, and having an elliptic shape corresponding to that of the first discharge opening, and a second discharge opening provided at a corner portion on the other side of an upper end portion of the second body.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: June 8, 2010
    Assignee: LG Electronics Inc.
    Inventors: Seok-Ho Choi, Dong Soo Moon
  • Patent number: 7727314
    Abstract: The present invention relates generally to chemical analysis (e.g. by gas chromatography), and in particular to a compact chemical preconcentrator formed on a substrate with a heatable sorptive membrane that can be used to accumulate and concentrate one or more chemical species of interest over time and then rapidly release the concentrated chemical species upon demand for chemical analysis.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: June 1, 2010
    Assignee: Sandia Corporation
    Inventors: Ronald P. Manginell, Patrick R. Lewis, Murat Okandan
  • Publication number: 20100115994
    Abstract: The adsorbent for carbon monoxide of the present invention is obtained by activating a Cu-ZSM5 type zeolite prepared as a catalyst for removal of NOX through heating at 450 to 600° C. in an inert gas atmosphere containing no moisture. The gas purification method of the present invention includes removing carbon monoxide as a trace amount of impurities contained in a gas by a temperature swing adsorption method, wherein the adsorbent for carbon monoxide according to claim 1 is used, and a regeneration operation of the adsorbent for carbon monoxide is carried out at 200 to 350° C.
    Type: Application
    Filed: March 4, 2008
    Publication date: May 13, 2010
    Inventors: Masayoshi Hayashida, Akihiro Nakamura, Tatsuya Hidano, Kazuhiko Fujie, Masato Kawai
  • Patent number: 7678179
    Abstract: A processing system according to the present invention is provided including: an adsorption apparatus in which a volatile organic compound contained in gas to be treated is adsorbed in a predetermined absorption agent, and said volatile organic compound thus adsorbed is desorbed using steam under a pressurized environment and mixed with the steam; a gas turbine having a combustor in which the steam mixed with the volatile organic compound is burnt; and a steam generating apparatus which generates steam through the use of the heat of the combustion gas discharged from the gas turbine; and wherein, by supplying compressed air discharged from the gas turbine to the adsorption apparatus, condensation of the steam in the adsorption apparatus at the time of the desorption of the volatile organic compound is suppressed.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: March 16, 2010
    Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.
    Inventor: Shigekazu Uji
  • Publication number: 20090293722
    Abstract: The invention relates to a new method for removing and recovering of acid gases from a gaseous mixture in an absorption plant by adding an organic acid to a stream of the rich absorbent in the desorber in order to release acid gas by shifting the acid gas equilibrium towards the gas side, and the organic acid is subsequently separated from the absorbent. With this method, the energy consumption of the process is substantially reduced. The invention also relates to an apparatus for performing this method.
    Type: Application
    Filed: June 28, 2006
    Publication date: December 3, 2009
    Inventors: Hallvard F. Svendsen, Finn Andrew Tobiesen, Thor Mejdell, Karl Anders Hoff, Olav Juliussen
  • Publication number: 20090282984
    Abstract: Disclosed is a harmful material treatment system for recovering the energy and removing the harmful material in the process of treating the gas containing the harmful material generated in the multiplex utilization facility, in the display mall, in diverse manufacturing processes and in the vehicle painting process, more particularly, to a harmful material treatment system which can recover the energy contained in the air conditioning facility or in the exhaust gas of the process with an efficiency of more than 90%, for exhausting the inside air to the outside so as to treat the contaminating material such as odor and volatile organic chemicals, and to remove the harmful material with a removal efficiency of more than 90% by adsorbing and concentrating the harmful material with a rotary-type adsorbent.
    Type: Application
    Filed: March 24, 2006
    Publication date: November 19, 2009
    Applicant: ENBION INC.
    Inventors: Hyun Jae Lee, Myeong Soo Yoon, Min Su Shin, Won Moon Jeong, Jeong Ki Min
  • Patent number: 7611566
    Abstract: A cryogenic gas storage system for optimal desorption of adsorbed gases, wherein a gas storage material is subjected to enhanced, ample selected recirculation of gas of the same type as the adsorbed gas, at suitable temperature and pressure, so as to supply of heat energy to the material and thereby provide optimal desorption of the gas. Output gas is heated by ambient heat or dissipation heat utilizing at least one heat exchanger. A portion of the output gas goes to a gas consumer, the remainder is fed back to the container.
    Type: Grant
    Filed: May 15, 2006
    Date of Patent: November 3, 2009
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Gerd Arnold, Ulrich Eberle, Dieter Hasenauer
  • Patent number: 7594956
    Abstract: A method for removing one or more strongly adsorbed components (SAC) from a process gas stream having SAC and other gaseous components adjusts the temperature of the SAC-laden process gas stream to be between about 80° and about 500° C. The temperature-adjusted process gas stream is contacted with a heat-exchange surface to transfer heat to an adsorbent, thus causing adsorbed SAC to be desorbed for collection, and to cool the process gas stream and remove any condensate from the cooled process gas stream. The cooled process gas stream is contacted with a cooled section of the adsorbent to adsorb SAC therefrom, producing a SAC-depleted process gas stream and a SAC-laden adsorbent. Desorbed SAC is withdrawn for collection and any adsorbent fines are withdrawing for collection.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: September 29, 2009
    Assignee: Adsorption Research, Inc.
    Inventor: Kent S. Knaebel
  • Patent number: 7588630
    Abstract: A carbon dioxide absorbent includes lithium silicate containing lithium orthosilicate and lithium metasilicate, the lithium metasilicate being contained in an amount of 5% by weight or more to 40% by weight or less with respect to the total amount of lithium orthosilicate and lithium metasilicate, where the lithium metasilicate produced by reaction of the lithium orthosilicate and carbon dioxide is excluded.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: September 15, 2009
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Toshihiro Imada, Yasuhiro Kato, Masahiro Kato
  • Patent number: RE42058
    Abstract: A dehydrator breather is provided that includes automatic purging of accumulated moisture by detecting absorbed moisture in the breather, and closing an intake air channel, while opening an exit moisture channel. Adjustment of a default time-based purging cycle is adjusted to account for fluctuations in the detected moisture. An external communication capability is provided to enable off-site monitoring of the breather or the tank the breather is attached to.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: January 25, 2011
    Assignee: Waukesha Electric Systems, Inc.
    Inventors: Thomas M. Golner, Shirish P. Mehta