Plural Separate Barriers Patents (Class 96/7)
  • Patent number: 7938893
    Abstract: A system for the selective removal of CO2, H2S, and H2 from a gaseous fluid mixture comprising CO2, H2S, and H2, which system includes a first membrane section having a nonporous metal oxide membrane, a second membrane section having a CO2-selective membrane, and a third membrane section having an H2-selective membrane. Each membrane section has a feed side and a permeate side and the membrane sections are arranged in series whereby the gaseous fluid mixture contacts the feed side, in sequence, of the first membrane section, the second membrane section and the third membrane section, resulting first in the separation or removal of H2S, second in the separation or removal of CO2, and third in the separation or removal of H2. The process can be used to process synthesis gas generated from the gasification or reforming of carbonaceous materials for hydrogen production and carbon dioxide capture.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: May 10, 2011
    Assignee: Gas Technology Institute
    Inventors: Shain-Jer Doong, Raja A. Jadhav, Francis Lau
  • Patent number: 7938894
    Abstract: The invention discloses a composition comprising a hybrid composite organic-inorganic membrane. The hybrid organic-inorganic membrane according to the present invention may comprise an amorphous porous layer incorporating organic functionalities. The amorphous porous layer may be deposited on a porous alumina substrate by chemical vapor deposition (CVD). The amorphous porous layer may comprise a single top-layer (STL), multiple top-layers (MTL) or mixed top-layers (XTL). The substrate may comprise a single layer or multiple graded layers of alumina.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: May 10, 2011
    Assignees: ConocoPhillips Company, Virginia Tech Intellectual Properties, Inc.
    Inventors: Shigeo Ted Oyama, Yunfeng Gu, Joe D. Allison, Garry C. Gunter, Scott A. Scholten
  • Patent number: 7938890
    Abstract: A layered structure can be formed having immobilized or segregated pH buffering groups that can be used to separate carbon dioxide or other gases. The pH buffering groups can be immobilized within a matrix, confined within a gel, or segregated by a semi-permeable membrane. The pH buffering groups can be configured to increase the efficiency of the system by maintaining a desirable pH profile within the cell and to permit the flow of the carbon-containing ions within the system while controlling diffusion of protons and/or hydroxyl ions.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: May 10, 2011
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Karl Anthony Littau, Francisco E. Torres
  • Patent number: 7938868
    Abstract: The inventive stage system for producing hydrogen consists of at least two upstream/downstream stages, respectively, each of which comprises, optionally, a catalytic reactor (C1 to C5) followed by a separator comprising a space (E1 to E4) for circulation of a gaseous mixture contacting at least one oxygen extracting membrane and a hydrogen collecting space, wherein the reactor (C1) of the upstream stage is connected to a reaction gaseous mixture source, the circulation stage (E1) of the upstream stage separator is connected to the reactor (C2) of the downstream stage and the spaces for extracting/collecting oxygen from two separators are connected to a hydrogen collecting circuit (TC, 8) which is common for two stages.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: May 10, 2011
    Assignee: Compagnie Européenne des Technologies de l'Hydrogène (C.E.T.H.)
    Inventors: Eric Gernot, Arnaud Deschamps
  • Publication number: 20110100211
    Abstract: The invention concerns carbon molecular sieve membranes (“CMS membranes”), and more particularly the use of such membranes in gas separation. In particular, the present disclosure concerns an advantageous method for producing CMS membranes with desired selectivity and permeability properties. By controlling and selecting the oxygen concentration in the pyrolysis atmosphere used to produce CMS membranes, membrane selectivity and permeability can be adjusted. Additionally, oxygen concentration can be used in conjunction with pyrolysis temperature to further produce tuned or optimized CMS membranes.
    Type: Application
    Filed: June 17, 2010
    Publication date: May 5, 2011
    Inventors: Mayumi Kiyono, Paul Jason Williams, William John Koros
  • Patent number: 7922795
    Abstract: A nanoscale membrane exposed on opposite sides thereof and having an average thickness of less than about 100 nm, and a lateral length to thickness aspect ratio that is more than 10,000 to 1 is disclosed. Also disclosed are methods of making such membranes, and use thereof in a number of devices including fuel cells, sensor devices, electrospray devices, and supports for examining a sample under electron microscopy.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 12, 2011
    Assignee: University of Rochester
    Inventors: Christopher C. Striemer, Philippe M. Fauchet
  • Patent number: 7918921
    Abstract: A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membrane elements, arranged within a housing. The housing contains tube sheets that divide the space within the housing into three separate, gas-tight spaces, with the tubes mounted in the central space. Feed gas enters the tubes through apertures positioned to feed multiple membrane elements within a tube in parallel, and one or more manifolds are used to collect residue gas from the membrane elements and direct the gas to the residue port or to a second group of membrane elements within the tube. The assembly can be used in various ways to carry out gas separation processes.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: April 5, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventor: Nicholas P Wynn
  • Patent number: 7892321
    Abstract: An integrated heating system for adding heat to a feed fuel within a module by way of an integrated heating element within the body or casing of the module. The heat may be selectively added to maintain a selected temperature.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 22, 2011
    Assignee: Intelligent Energy, Inc.
    Inventors: Diane Lee Aagesen, Kandaswamy Duraiswamy
  • Patent number: 7862648
    Abstract: Thin layers of a mixed composition are deposited on a porous substrate by chemical vapor deposition in an inert atmosphere at high temperature. The resulting membrane has excellent stability to water vapor at high temperatures. An exemplary membrane comprises an amorphous mixed-element surface layer comprising silica and at least one oxide of additional element, an optional porous substrate on which said surface layer is deposited, and a porous support on which said substrate or mixed-element surface layer is deposited, wherein the permeance of the membrane is higher than 1×10?7 mol m?2s?1Pa?1 and the selectivity of H2 over CO, CO2, and CH4 is larger than 100, and wherein the H2 permeance of the membrane after exposure to a stream containing 60 mol % water vapor at 673 K for 120 h is at least 50% of its initial H2 permeance.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: January 4, 2011
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: S. Ted Oyama, Yunfeng Gu
  • Patent number: 7862643
    Abstract: A method of manufacturing a hydrogen separation membrane comprises the steps of forming an intermediate layer suitable for controlling oxidation of a hydrogen permeable metal layer on the surface of the hydrogen permeable metal layer on the surface of the hydrogen permeable metal used as a substrate; and attaching a catalytic metal in a granular form on the surface of the intermediate layer. This method can be used to manufacture a hydrogen separation membrane in which the quantity of catalytic metal used is controlled.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 4, 2011
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Satoshi Aoyama
  • Publication number: 20100307341
    Abstract: A water trap (1) improved with respect to handling and operational safety includes: two semipermeable membranes (2) and at least one tank (7), wherein the membranes have a water penetration pressure greater than 750 hPa and are made of the same or different PTFE laminates. The gas flow is divided in a ratio between 10:90 and 25:75 into the flush-/purge branch and analysis branch to the sensors (12) and a path parallel to the sensors (12), respectively, with the aid of the membranes and downstream filter elements and via the material and configuration.
    Type: Application
    Filed: June 4, 2010
    Publication date: December 9, 2010
    Inventors: Gerd Peter, Thomas Maxeiner, Thomas Wuske
  • Patent number: 7837764
    Abstract: An oxygen exchange manifold converts oxygenate air into an oxygen depleted air stream for use in inerting an otherwise flammable environment. A system including the oxygen exchange manifold may be utilized to inert fuel tanks of an aircraft or another environment. Methods of inerting such environments are also disclosed.
    Type: Grant
    Filed: June 6, 2008
    Date of Patent: November 23, 2010
    Assignee: The Boeing Company
    Inventor: William C. Sanford
  • Publication number: 20100282085
    Abstract: A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.
    Type: Application
    Filed: May 5, 2009
    Publication date: November 11, 2010
    Inventor: Peter David DeVries
  • Patent number: 7824470
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with a multitude of flow impingement elements which are interleaved to provide a fuel channel with intricate two-dimensional flow characteristics. The flow impingement elements break up the boundary layers and enhance the transport of oxygen from the core of the of the fuel flow within the fuel channel to the oxygen permeable membrane surfaces by directing the fuel flow in a direction normal to the oxygen permeable membrane. The rapid mixing of the relatively rich oxygen core of the fuel with the relatively oxygen-poor flow near the oxygen permeable membrane enhances the overall removal rate of oxygen from the fuel. Because this process can be accomplished in fuel channels of relatively larger flow areas while maintaining laminar flow, the pressure drop sustained is relatively low.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: November 2, 2010
    Assignee: United Technologies Corporation
    Inventors: Louis Chiappetta, Louis J. Spadaccini, He Huang, Mallika Gummalla, Dochul Choi
  • Patent number: 7819943
    Abstract: A method of exchanging water-water vapor between a first air stream and a second air stream includes making a third air stream, the flow velocity of which is regulated, flow through first and second intermediate volumes without cooling or heating the third air stream, dehumidifying the first air stream by making the first air stream flow through at least one first cavity which is separated by a first water-vapor-permeable structure from the first intermediate volume, and humidifying the second air stream by making the second air stream flow through at least one second cavity which is separated by a second water-vapor-permeable from the second intermediate volume.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: October 26, 2010
    Assignee: Imes Management AG
    Inventor: Urs A. Weidmann
  • Patent number: 7819955
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, and fuel processing and fuel cell systems that include hydrogen purification devices. In some embodiments, the fuel processing systems and the hydrogen purification membranes include a metal membrane, which is at least substantially comprised of palladium or a palladium alloy. In some embodiments, the membrane contains trace amounts of carbon, silicon, and/or oxygen. In some embodiments, the membranes form part of a hydrogen purification device that includes an enclosure containing a separation assembly, which is adapted to receive a mixed gas stream containing hydrogen gas and to produce a stream that contains pure or at least substantially pure hydrogen gas therefrom. In some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processor, and in some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processing or fuel cell system.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: October 26, 2010
    Assignee: Idatech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Patent number: 7819944
    Abstract: A dehydration method by which water is selectively separated from a water-containing mixture 31 with a separation membrane. The separation membrane is a DDR type zeolite membrane 2. The dehydration method includes bringing the mixture 31 into contact with one side of the DDR type zeolite membrane 2 and causing a pressure difference between that side of the DDR type zeolite membrane 2 which is in contact with the mixture and the other side of the DDR type zeolite membrane 2 to thereby cause the water to selectively permeate and separate out. By the dehydration method, water can be selectively separated from a water-containing mixture without the need of a high energy cost. The separation membrane has excellent acid resistance.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 26, 2010
    Assignee: NGK Insulators, Ltd.
    Inventors: Kenji Yajima, Kunio Nakayama, Makiko Niino, Toshihiro Tomita
  • Patent number: 7789941
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, fuel processing and fuel cell systems that include hydrogen purification devices, and methods for operating the same. In some embodiments, operation of the fuel processing system is initiated by heating at least the reforming region of the fuel processing system to at least a selected hydrogen-producing operating temperature. In some embodiments, an electric heater is utilized to perform this initial heating. In some embodiments, use of the electric heater is discontinued after startup, and a burner or other combustion-based heating assembly combusts a fuel to heat at least the hydrogen producing region, such as due to the reforming region utilizing an endothermic catalytic reaction to produce hydrogen gas.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: September 7, 2010
    Assignee: IdaTech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Patent number: 7771519
    Abstract: Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: August 10, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Christopher Francis Miller
  • Patent number: 7758670
    Abstract: A gas-separation membrane assembly, and a gas-separation process using the assembly. The assembly incorporates multiple gas-separation membranes in an array within a single vessel or housing, and is equipped with two permeate ports, enabling permeate gas to be withdrawn from both ends of the membrane module permeate pipes.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: July 20, 2010
    Assignee: Membrane Technology and Research, Inc
    Inventors: Nicholas P. Wynn, Donald A. Fulton, Kaaeid A. Lokhandwala, Jurgen Kaschemekat
  • Patent number: 7753991
    Abstract: A water transport assembly, is provided including a housing having a first chamber therein, which is accessible through an opening in the housing. The housing additionally includes a sample inlet port and a sample outlet port, both of which are in fluid communication with the first chamber. A flat ion exchange membrane is attached to the housing in a plane over the opening in the housing, to seal the opening in a vapor tight seal. Water will pass through the membrane based upon the vapor pressure on each side of the membrane, to either dry or humidify sample passing through the first chamber. When the flat ion exchange membrane is a flat, thin ion exchange membrane it is preferable that the thin ion exchange membrane have a thickness of between about 0.1 and about 3.0 mils.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: July 13, 2010
    Assignee: Kertzman Systems, Inc.
    Inventor: Jack Kertzman
  • Patent number: 7749304
    Abstract: A method for storing hydrogen is described. The hydrogen is infused into hollow spheres. The spheres are made from a polymer which has a tensile strength sufficient to contain hydrogen under selected internal pressure conditions; and has a permeation coefficient which can be adjusted under variable humidity conditions. Adjustment of the humidity level after the hydrogen is infused results in the walls of the spheres becoming impermeable to hydrogen. The hydrogen stored in the spheres can then be released at a desired time by readjusting the humidity level. The released hydrogen can be directed to any type of equipment which is fueled by hydrogen or otherwise uses the gas. Related articles and systems are also described.
    Type: Grant
    Filed: January 30, 2006
    Date of Patent: July 6, 2010
    Assignee: General Electric Company
    Inventor: Lawrence Bernard Kool
  • Patent number: 7749381
    Abstract: In a hollow fiber membrane flat module according to the present invention, both ends of hollow fiber membrane bundle which are formed by bundling a plurality of hollow fiber membrane as a sheet are fixed to two housing separately by a fixing resin while maintaining an opening condition in an opening end section in the follow fiber membrane. Furthermore, a maximum width in an orthogonal direction to a longitudinal direction of the hollow fiber membrane is no longer than 25 mm in a cross section which is orthogonal to a longitudinal direction of the housings, and a maximum deflection in the housings which are measured according to a method for measuring the deflection according to the present invention is not more than 1% of a distance between the two housings.
    Type: Grant
    Filed: January 30, 2008
    Date of Patent: July 6, 2010
    Assignee: Mitsubishi Rayon, Co., Ltd.
    Inventors: Yoshihito Nakahara, Tetsuya Torichigai, Masatoshi Kamata, Masanori Ito, Kenji Honjou, Hiroyuki Okazaki, Yoshihiro Kakumoto
  • Patent number: 7713331
    Abstract: An elongated flow-through degassing apparatus includes an elongated gas and liquid impermeable outer member and a gas-permeable, liquid-impermeable inner barrier extending within the outer member and at least partially along a first chamber defined within the outer member. The apparatus also includes inlet and outlet connection structures operably coupled to respective portions of the outer member and a second chamber defined by the inner barrier to further enable a sealed engagement between the outer member and the inner barrier, and to provide for connection devices to operably couple the degassing apparatus of the present invention to respective spaced apart components. The degassing apparatus may be sufficiently flexible so as to be readily manipulatable into desired configurations.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: May 11, 2010
    Assignee: Rheodyne, LLC
    Inventors: Yuri Gerner, Carl W. Sims, Thomas J. Thielen
  • Patent number: 7703472
    Abstract: A gas flow isolation device includes a gas flow isolation valve movable from an opened condition to a closed condition. The module isolation valve in one embodiment includes a rupture disk in flow communication with a flow of gas when the module isolation valve is in an opened condition. The rupture disk ruptures when a predetermined pressure differential occurs across it causing the isolation valve to close. In one embodiment the valve is mechanically linked to the rupture disk to maintain the valve in an opened condition when the rupture disk is intact, and which permits the valve to move into a closed condition when the rupture disk ruptures. In another embodiment a crushable member maintains the valve in an open condition, and the flow of gas passed the valve upon rupturing of the rupture disk compresses the crushable member to close the isolation valve.
    Type: Grant
    Filed: December 7, 2005
    Date of Patent: April 27, 2010
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, John Albert Cooke, Michael David Buzinski
  • Patent number: 7700213
    Abstract: Provided is a liquid-gas separator of a direct liquid feed fuel cell. The liquid-gas separator includes an empty ball shaped main body; a gas extraction membrane which is attached to an opening formed in the main body, and selectively extracts gas from the main body; an inlet which is formed in the main body and guides the liquid and gas into the main body; an outlet which is formed on the main body and guides the liquid to the outside of the main body; and a flexible tube having a hollow structure, one end of which is connected to the outlet and the other end of which is immersed in the liquid fuel.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: April 20, 2010
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Xiaobing Luo, Sang-kyun Kang, Do-young Seung
  • Patent number: 7686868
    Abstract: A membrane separation module (10) has a shell (11) having inlet port (20), outlet port (21) and a plurality of membrane units (12) disposed therebetween. Each membrane unit (12) has a plurality of elongated membrane elements (13), with at least a portion of each membrane element (13) having a semipermeable surface to permit selective permeation of one or more components of a multi-component feed fluid. The plurality of elongated membrane elements (13) are attached to collecting manifolds (16) (17), with one of those manifolds (16) (17) being unrestrained, permitting axial movement of each membrane element (13) in response to temperature changes. At least one manifold (16) (17) from each membrane unit (12) is in fluid communication with a manifold (16) (17) from one other membrane unit (12).
    Type: Grant
    Filed: September 23, 2003
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Upstream Research Company
    Inventor: Paul J. Rubas
  • Publication number: 20100074820
    Abstract: To provide a simple highly-pure Xe retrieval method and device with high retrieval efficiency by functionally removing such elements as water, CO2 and FCs from waste gases from semiconductor production processes, such as the plasma etching, that contain low-concentration Xe. For samples containing xenon and fluorocarbon, this invention is characterized by having at least first adsorption means (A1) filled with synthetic zeolite with pore size of 4A or smaller and aluminum oxide, arranged serially, gas separation means (A2) composed of silicone or polyethylene hollow fiber gas separation membrane modules 4, second adsorption means (A3) filled with either activated carbon, synthetic zeolite with pore size of 5A or larger, molecular sieving carbon with pore size of 5A or larger, or a combination of these, and reaction means (A4) filled with calcium compounds as reactant.
    Type: Application
    Filed: November 30, 2007
    Publication date: March 25, 2010
    Inventors: Masahiro Kimoto, Terumasa Koura, Yukio Fukuda, Masaki Narazaki, Taiji Hashimoto, Toru Sakai, Kazuo Yokogi
  • Patent number: 7682422
    Abstract: A method for separating and recovering oxygen-rich air from the air, comprising, using a gas separation membrane module where a laminate consisting of a permeate-side spacer for forming a permeate gas channel communicated with a hollow section in a core tube for collecting and discharging a permeate gas and two flat-film gas separation membranes sandwiching the spacer and a feed-side spacer for forming a feed gas channel are spirally wound around the core tube such that the laminate and the feed-side spacer are alternately superimposed, vacuuming the hollow section of the core tube to 95 kPaA (absolute pressure) or less by vacuuming means while feeding the air into the feed gas channel by air feed means such that a maximum feed-air flow rate and a maximum static pressure divided by an effective membrane area of the gas separation membrane are 100 m3/min·m2 or less and 4000 Pa/m2 or less, respectively, to separate and recover oxygen-rich air from the hollow section of the core tube.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: March 23, 2010
    Assignee: UBE Industries, Ltd.
    Inventor: Nozomu Tanihara
  • Patent number: 7678177
    Abstract: A membrane air dryer includes a proportioning valve for providing sweep air to the dryer. The valve may be located in an easily accessible location and may be oriented so that the movable valve element extends transverse to the length of the shell. The valve may be configured to allow air to flow back from the delivery port to the fibers during a compressor unload cycle to maintain pressure on the fibers, while blocking flow of air from the delivery port to the sweep chamber.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: March 16, 2010
    Assignee: New York Air Brake Corporation
    Inventor: Randall W. Nichols
  • Patent number: 7658788
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: February 9, 2010
    Assignees: Air Products and Chemicals, Inc., SOFCO-EFS Holdings LLC
    Inventors: Michael Jerome Holmes, Theodore R. Ohrn, Christopher Ming-Poh Chen
  • Patent number: 7628842
    Abstract: A purification system and method for purifying a hydrogen stream supplied from a storage tank mounted in a vehicle to produce a purified hydrogen stream for use in a PEM fuel cell system that is utilized within the vehicle. The hydrogen is purified within a membrane separator having hydrogen transport membrane elements having a dense metallic layer such as palladium to separate the hydrogen from the impurities. The separated hydrogen is supplied to the PEM fuel cell. In order to heat the membrane to its operational temperature, heat is recovered from the hydrogen permeate stream of the membrane system in a first heat exchanger and heat is generated by combusting the retentate stream containing residual hydrogen and impurities.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: December 8, 2009
    Assignee: Praxair Technology, Inc.
    Inventors: Joseph Michael Schwartz, Raymond Francis Drnevich
  • Patent number: 7621982
    Abstract: A liquid-gas separator for a direct liquid feed fuel cell includes a tube having an opening portion at a sidewall thereof; liquid extracting members that selectively transmit the liquid in the tube and located at both ends of the tube; a gas extracting membrane that selectively transmits the gas and covers the opening portion; an inlet that guides the liquid and the gas into the tube; chambers that surround an outer side of the liquid extracting member; and outlets that guide the liquid in the chambers to the outside by being connected to the chamber.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: November 24, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kyun Kang, Xiaobing Luo, Dong-kee Sohn, Hae-kyoung Kim
  • Patent number: 7622086
    Abstract: A selectively permeable membrane type reactor including a catalyst for promoting a chemical reaction, a selectively permeable membrane which selectively allows a specific component to pass therethrough, and a carrier for disposing the catalyst and the selectively permeable membrane the carrier being a tubular body having two or more gas passage cells partitioned and formed by a partition wall formed of a porous body, the catalyst being individually disposed in some of the cells of the carrier, the selectively permeable membrane being individually disposed in the remainder of the cells, and the cell in which the catalyst is disposed and the cell in which the selectively permeable membrane is disposed being adjacently disposed with the partition wall positioned therebetween.
    Type: Grant
    Filed: January 17, 2005
    Date of Patent: November 24, 2009
    Assignee: NGK Insulators, Ltd.
    Inventors: Akira Takahashi, Nobuhiko Mori
  • Patent number: 7615104
    Abstract: A fuel system for an energy conversion device includes a deoxygenator system with an oxygen permeable membrane formed from a multiple of layers. The layers include a sealant layer, an oxygen permeability layer and a porous backing layer. The layered composite oxygen permeable membrane maximizes the oxygen transfer rate and minimizes the fuel leakage rate.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: November 10, 2009
    Assignees: United Technologies Corporation, Membrane Technology & Research, Inc.
    Inventors: Haralambos Cordatos, Louis J. Spadaccini, Ingo Pinnau
  • Publication number: 20090272266
    Abstract: A process for enriching the content of oxygen in oxygen- and nitrogen-containing gases in a separation apparatus which has an interior which is divided into a substrate chamber and into a permeate chamber by an oxygen-conducting ceramic membrane is described. The process comprises the introduction of oxygen- and nitrogen-containing sweep gas into the permeate chamber and the establishment of a pressure in the substrate chamber so that the oxygen partial pressure in substrate chamber and sweep chamber results in the transfer of oxygen through the ceramic membrane. The process is distinguished by high operational safety.
    Type: Application
    Filed: January 23, 2006
    Publication date: November 5, 2009
    Applicants: Uhde GmbH, BORSIG Process Heat Exchanger GmbH
    Inventors: Steffen Werth, Baerbel Kolbe
  • Patent number: 7611568
    Abstract: A liquid-gas separator for a direct liquid feed fuel cell includes: a housing having an open hole; a gas extracting membrane that covers the open hole and transmits only the gas; a liquid extracting member that defines a first chamber that contacts the gas extracting membrane and a second chamber that does not contact the gas extracting membrane, and selectively transmits the liquid in the first chamber to the second chamber; an inlet that guides the liquid and the gas into the housing; and an outlet that is connected to the second chamber and guides the liquid in the second chamber to the outside.
    Type: Grant
    Filed: June 2, 2006
    Date of Patent: November 3, 2009
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kyun Kang, Dong-kee Sohn, Woong-ho Cho, Sang-hyeon Choi
  • Patent number: 7604681
    Abstract: A process for removing carbon dioxide or nitrogen from gas, especially natural gas. The process uses three membrane separation stages without compression between the second and third stages.
    Type: Grant
    Filed: May 26, 2006
    Date of Patent: October 20, 2009
    Assignees: Lummus Technology, Inc., Membrane Technology and Research, Inc.
    Inventors: Michael G. Malsam, Kaaeid A. Lokhandwala
  • Patent number: 7601202
    Abstract: The invention relates to a method for reducing the carbon dioxide concentration in air of a closed or partially closed unit of space. The inventive method may comprise the steps of removing an air flow from the unit of space, guiding the air flow in a membrane system that may contain at least one membrane module having a CO2/O2 selectivity of greater than 2, removing the carbon dioxide permeated through the membrane, and returning the air flow that has been depleted of carbon dioxide in the membrane system to the unit of space. The inventive method may be optionally combined with an oxygen enrichment method. The invention also relates to corresponding devices for carrying out the inventive method.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: October 13, 2009
    Assignee: Blue Membranes GmbH
    Inventors: Andreas Noack, Jürgen Kunstmann, Christian Gnabs, Norman Bischofberger, Norbert A. Paul, Jörg Rathenow
  • Patent number: 7588612
    Abstract: A mobile inert gas generator can include various components supported by a wheeled vehicle. The generator can include a feed air compressor, a separation device for separating an inert gas from a feed air gas, and a booster compressor, each of which can have various sensors and actuators for controlling the operation thereof. An electronic control system can be connected to the sensors and actuators to allow for convenient operation of the generator. The electronic control system can include a control panel disposed in a cab.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: September 15, 2009
    Assignee: Bank of America, N.A.
    Inventors: Herman Theodore Marwitz, Terry Wheaton, Brian Chung, David Scheierl, James Yang, Keith Michael
  • Patent number: 7588628
    Abstract: The present invention provides methods for making a microporous ceramic material using a metal silicon powder and including a reaction sintering process of the silicon. A material for forming a microporous ceramic material used in these methods includes a metal silicon powder, a silicon nitride powder and/or a silicon carbide powder, and if desired, a yttrium oxide powder and/or an aluminum oxide powder. These methods can make a microporous ceramic material that can be used preferably as a gas or liquid filter, a catalyst carrier or a support of a gas separation membrane.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: September 15, 2009
    Assignees: Noritake Co., Limited, Chubu Electric Power Co., Inc.
    Inventors: Yasunori Ando, Seiji Yamada, Hisatomi Taguchi, Yosuke Takahashi, Shigeo Nagaya, Kiyoshi Komura
  • Patent number: 7585355
    Abstract: A temperature-humidity exchanger comprising: a moisture permeable membrane which transmits moisture therethrough; a dry gas separator in which low-temperature dry gas is caused to flow; and a wet gas separator in which high-temperature wet gas is caused to flow, in which the moisture permeable membrane, the dry gas separator, the moisture permeable membrane, and the wet gas separator are repeatedly stacked in the stated order, wherein in the dry gas separator and the wet gas separator: a plurality of channel grooves which are divided by half in the stacking direction, are open to a direction in which the channel grooves come into contact with the moisture permeable membrane, and are arrayed parallel to one another are provided; an aggregate communication groove which is made to communicate with both end portions of the plurality of channel grooves, for aggregating gas caused to flow through the channel grooves to at least one is provided; and a supply manifold and an exhaust manifold which are made to communi
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: September 8, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshihide Gonjo, Hideo Ichimura, Mitsuie Matsumura
  • Patent number: 7585356
    Abstract: Thin layers of a mixed composition are deposited on a porous substrate by chemical vapor deposition in an inert atmosphere at high temperature. The resulting membrane has excellent stability to water vapor at high temperatures. An exemplary membrane comprises an amorphous mixed-element surface layer comprising silica and at least one oxide of additional element, an optional porous substrate on which said surface layer is deposited, and a porous support on which said substrate or mixed-element surface layer is deposited, wherein the permeance of the membrane is higher than 1×10?7 mol m?2 s?1 Pa?1 and the selectivity of H2 over CO, CO2, and CH4 is larger than 100, and wherein the H2 permeance of the membrane after exposure to a stream containing 60 mol % water vapor at 673 K for 120 h is at least 50% of its initial H2 permeance.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: September 8, 2009
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: S. Ted Oyama, Yungeng Gu
  • Patent number: 7582137
    Abstract: A device for use in a fluid system includes a flow perturbation element within a fluid channel. The flow perturbation element has a gas permeable surface for removing dissolved gas from passing fluid. A gas permeable membrane is coated on the gas permeable surface and allows the dissolved gas transport out of passing fluid into a gas-removal channel. The gas permeable membrane may be coated on the fuel perturbation elements using any of a variety of methods.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: September 1, 2009
    Assignee: United Technologies Corporation
    Inventors: Alexander G. Chen, Louis J. Spadaccini, Louis Chiappetta, Haralambos Cordatos
  • Publication number: 20090202874
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, and fuel processing and fuel cell systems that include hydrogen purification devices. In some embodiments, the fuel processing systems and the hydrogen purification membranes include a metal membrane, which is at least substantially comprised of palladium or a palladium alloy. In some embodiments, the membrane contains trace amounts of carbon, silicon, and/or oxygen. In some embodiments, the membranes form part of a hydrogen purification device that includes an enclosure containing a separation assembly, which is adapted to receive a mixed gas stream containing hydrogen gas and to produce a stream that contains pure or at least substantially pure hydrogen gas therefrom. In some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processor, and in some embodiments, the membrane(s) and/or purification device forms a portion of a fuel processing or fuel cell system.
    Type: Application
    Filed: August 11, 2008
    Publication date: August 13, 2009
    Applicant: IdaTech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Publication number: 20090193974
    Abstract: A membrane cartridge is manufactured by repeatedly folding and joining two strips of membrane to form a cross-pleated cartridge with a stack of openings or fluid passageways configured in an alternating cross-flow arrangement. The cartridge can be modified for other flow configurations including co-flow and counter-flow arrangements. Methods for manufacturing such cross-pleated membrane cartridges, as well as apparatus used in the manufacturing process are described. Cross-pleated membrane cartridges comprising water-permeable membranes can be used in a variety of applications, including in heat and water vapor exchangers. In particular they can be incorporated into energy recovery ventilators (ERVs) for exchanging heat and water vapor between air streams being directed into and out of buildings.
    Type: Application
    Filed: January 14, 2009
    Publication date: August 6, 2009
    Inventors: Greg Montie, James Franklin Dean, Curtis Mullen, Robert Hill
  • Patent number: 7569099
    Abstract: A fuel system for an energy conversion device includes a multiple of non-metallic fuel plates, gaskets, oxygen permeable membranes, porous substrate plates, and vacuum frame plates. Intricate 3-dimension fuel channel structures such as laminar flow impingement elements within the fuel channel dramatically enhance oxygen diffusivity in the FSU. The fuel plates are manufactured from a relatively soft non-metallic material. The non-metallic fuel plates and gasket arrangement provide an effective sealing interface between the fuel plate and oxygen permeable membrane, since compression may be applied to the plates without damaging the relatively delicate oxygen permeable membrane.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: August 4, 2009
    Assignee: United Technologies Corporation
    Inventors: Charles C. Coffin, Thomas G. Tillman, He Huang, Brian M. Welch
  • Patent number: 7556675
    Abstract: Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: July 7, 2009
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, Eric Minford, William Emil Waldron
  • Patent number: 7537641
    Abstract: A process and equipment for treating natural gas produced by a well that has recently been stimulated, and that contains an undesirably high concentration of the fracturing gas used to stimulate the well. The process involves treating the gas by membrane separation, and provides for control of treatment parameters to compensate for the changing concentration of fracturing gas in the produced gas, as well as changes in gas flow rate.
    Type: Grant
    Filed: December 2, 2005
    Date of Patent: May 26, 2009
    Assignee: Membrane Technology and Research, Inc.
    Inventors: Kaaeid A. Lokhandwala, Ankur Jariwala
  • Patent number: 7520919
    Abstract: The transducer-protector device for medical apparatus comprises a housing formed by two half-shells, a membrane defining a gas-permeable anti-contamination barrier, a female Luer first connection port, a second connection port for connection to a flexible tube, a helical bellows-conformed deformable member. The device, which operates in a service line of an extracorporeal blood circuit associated to a dialysis machine, is for protecting the machine from contaminating agents originating from the circuit. The device is simple and economical to manufacture.
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: April 21, 2009
    Assignee: Gambro Lundia AB
    Inventor: Luca Caleffi