Barriers Connected In Series Patents (Class 96/9)
  • Publication number: 20140013952
    Abstract: A filter group (40) for fluids, comprising an external casing (19) having any section, suitable for receiving at least a filter membrane (16, 18) which develops parallel to the axis of the casing (19), for dividing an internal volume of the casing (19) into two chambers (28, 29), of which a first chamber (28) is in communication with an inlet conduit (12) for the fluid to be filtered and a second chamber (29) is in communication with an outlet conduit (14) of the filtered fluid.
    Type: Application
    Filed: March 6, 2012
    Publication date: January 16, 2014
    Applicant: UFI INNOVATION CENTER S.R.L.
    Inventor: Giorgio Girondi
  • Publication number: 20130333563
    Abstract: The invention relates to a method of generating oxygen. The method comprises the steps of: intermittently guiding a stream of oxygen comprising gas through at least one adsorption chamber (12) being equipped with an oxygen separation adsorbent (16), thereby defining an adsorption mode and a desorption mode of the at least one adsorption chamber (12), and thereby enriching the oxygen comprising gas with respect to oxygen, guiding the enriched oxygen comprising gas to a primary side of a dense membrane (52), heating the dense membrane(52) to a temperature at which it is permeable for oxygen, generating an oxygen flow through the dense membrane (52) to its secondary side, thereby separating the oxygen from the enriched oxygen comprising gas and forming a stream of oxygen. According to the invention, the invention further comprises the step of guiding at least a part of the generated oxygen through the at least one adsorption chamber (12) being in desorption mode.
    Type: Application
    Filed: February 27, 2012
    Publication date: December 19, 2013
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Rainer Hilbig, Achim Gerhard Rolf Koerber, Mareike Klee, Wilco Cornelis Keur
  • Publication number: 20130319230
    Abstract: An exemplary embodiment of the present invention provides a carbon-dioxide (“CO2”) sequestration system comprising a CO2 source, a process-water source, a membrane module, and a sequestration duct. The membrane module comprises a first section, a second section, and a membrane. The first section can be configured to receive gaseous CO2 at a first pressure from the CO2 source. The second section can be configured to receive process-water at a second pressure from the process-water source, wherein the first pressure is greater than the second pressure. The membrane can be positioned between the first section and the second section and can comprise a plurality of apertures configured such that the gaseous CO2 passes through the plurality of apertures and dissolves into the process-water to form a process-water-CO2-soluution. The sequestration duct can be in fluid communication with the second section and configured to transport the process-water-CO2 solution to a sequestration site.
    Type: Application
    Filed: June 4, 2013
    Publication date: December 5, 2013
    Applicant: SOUTHERN COMPANY
    Inventor: Dhansukhbhai V. Patel
  • Patent number: 8591739
    Abstract: The present invention discloses a method and apparatus for separating particles and dissolved matter from a fluid stream. Specifically, the present invention includes a first pressure source which transports untreated fluid into a separator annulus with a filter element disposed therein. The untreated fluid is placed under appropriate pressure sufficient to produce turbulent flow, increased particle kinetics and/or cavitation physics allowing the desired fluid to penetrate and pass into and through the filter media. The filtered fluid is then transported to a collection tank. The contaminant particulate matter retained on the exterior of the filter media may be removed by the instantaneous reverse pressurization of the separator annulus by a second pressure source thereby removing the contaminant particles away from contact with the filter media, and which may then be transported to a waste collection tank or a concentrator for further treatment.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 26, 2013
    Assignee: Tervita, LLC
    Inventors: Raymond Ford Johnson, Markley Dean Johnson, Rodney Grage
  • Patent number: 8580011
    Abstract: A gas and liquid mixture separation and collection system for zero gravity operation that can be applied to a urinal toilet is disclosed. There is an inlet to receive the gas and liquid mixture. The mixture is directed to a filter having an air side. A vacuum pump on the air side of the filter generates a pressure delta to force the inlet flow. A peristaltic pump is used to transfer liquid away from the filter surface. In doing so, the flow on the liquid side of the membrane filter may contain some gas left over from the inlet flow mixture, but there is substantially less gas than in the gas and liquid mixture at the inlet. The filtered mixture is directed to an expandable collection bag that is attached to the air side of the filter so the filter process can be repeated to remove more gas from the mixture.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: November 12, 2013
    Assignee: Bigelow Aerospace
    Inventor: Jay Ingham
  • Patent number: 8568510
    Abstract: A gas separation process for treating off-gas streams from reaction processes, and reaction processes including such gas separation. The invention involves flowing the off-gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, and passing the permeate/sweep gas mixture to the reaction. The process recovers unreacted feedstock that would otherwise be lost in the waste gases in an energy-efficient manner.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: October 29, 2013
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G Wijmans, Richard W Baker, Timothy C Merkel
  • Patent number: 8551226
    Abstract: Disclosed is an exhaust gas treating system having an exhaust gas treating apparatus for carbon dioxide capture process which additionally removes harmful substances remaining in the gas discharged from the existing flue-gas desulfurization process by using separation membrane so as to efficiently carry out the carbon dioxide capture process. The exhaust gas treating system using polymer membrane, comprises a carbon dioxide capture equipment for capturing carbon dioxide from the exhaust gas of a boiler, a flue-gas denitrification equipment placed between the boiler and the carbon dioxide capture equipment, a dust-collecting equipment and a flue-gas desulfurization equipment.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 8, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Hyung-Keun Lee, Won-Kil Choi, Hang-Dae Jo
  • Publication number: 20130255483
    Abstract: A fast gas is recovered from a feed gas containing a fast gas and at least one slow gas using a gas separation membrane. A controller may control a control valve associated with a partial recycle of a permeate gas from the membrane for combining with the feed gas. A controller may control a control valve associated with the backpressure of a residue gas from the membrane.
    Type: Application
    Filed: May 20, 2013
    Publication date: October 3, 2013
    Applicant: L'Air Liquide, Societe Anonyme pour I'Etude et I'Exploitation des Procedes Georges Claude
    Inventors: Edgar S. SANDERS, JR., Sarang Gadre, Michael D. Bennett, Ian R. Roman, David J. Hassee, Indrasts Mondal
  • Publication number: 20130247761
    Abstract: A fast gas is recovered from a feed gas containing a fast gas and at least one slow gas using a gas separation membrane. A controller may control a control valve associated with a partial recycle of a permeate gas from the membrane for combining with the feed gas. A controller may control a control valve associated with the backpressure of a residue gas from the membrane.
    Type: Application
    Filed: May 21, 2013
    Publication date: September 26, 2013
    Applicant: L'Air Liquide, Societe Anonyme pour I'Etude et Exploitation des Procedes Georges Claude
    Inventors: Edgar S. SANDERS, JR., Sarang GADRE, Michael D. BENNETT, Ian C. ROMAN, David J. HASSE, Indrasis MONDAL
  • Publication number: 20130253250
    Abstract: A method is proposed for operating a plant for purifying a high-pressure gas mixture from easily permeating components, which plant comprises membrane gas separating units having a high-pressure chamber and a low-pressure chamber with a selectively permeable membrane therebetween, in which method the low-pressure chamber of at least one membrane gas separating unit is continuously flushed with purified gas mixture (semi-finished product or product), wherein the pressure difference between the aforementioned chambers of the membrane gas separating unit and, likewise, the flow rate of the purified gas mixture used for flushing are maintained so that the amount of each easily permeating component in the product does not exceed the desired values. The proposed method makes it possible to purify a raw material from one or more easily permeating components simultaneously, increase purification efficiency, and provide the possibility of using raw material with a higher content of easily permeating components.
    Type: Application
    Filed: May 18, 2013
    Publication date: September 26, 2013
    Inventors: Mikhail Alexandrovich GULYANSKY, Nicolay Leonidovich DOKUCHAEV, Alexander Alexandrovich KOTENKO, Eugeny Gennadievich KRASHENINNIKOV, Sergey Vladimirovich POTEKHIN, Mikhail Mikhailovich CHELYAK, Marina Kadyrovna TEREKHOVA
  • Publication number: 20130239804
    Abstract: Disclosed herein is a gas separation process that utilizes ejector recycle with a membrane separation step in combination with a second separation step. The second separation step may be a second membrane separation step, or may involve a different type of separation process.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: MEMBRANE TECHNOLOGY AND RESEARCH, INC.
    Inventor: Livia Serbanescu-Martin
  • Patent number: 8535413
    Abstract: An apparatus and process is taught for the formation of ethanol from a fermentation medium in the absence of an ethanol concentration distillation step.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 17, 2013
    Assignee: Chevron U.S.A. Inc.
    Inventors: Paul Bryan, Oluwasijibomi Okeowo
  • Publication number: 20130213223
    Abstract: A system adapted to separate a natural gas feed stream into a sweetened gas stream, at least one liquid waste stream and at least one gaseous waste stream, and to discharge, recover or destroy the at least one liquid waste stream and the at least one gaseous waste stream.
    Type: Application
    Filed: February 21, 2013
    Publication date: August 22, 2013
    Inventor: Richard Paul Posa
  • Patent number: 8506685
    Abstract: In accordance with at least selected embodiments of the present invention, an improved liquid degassing membrane contactor or module includes a high pressure housing and at least one degassing cartridge therein. It may be preferred that the high pressure housing is a standard, ASME certified, reverse osmosis (RO) or water purification pressure housing or vessel (made of, for example, polypropylene, polycarbonate, stainless steel, corrosion resistant filament wound fiberglass reinforced epoxy tubing, with pressure ratings of, for example, 150, 250, 300, 400, or 600 psi, and with, for example 4 or 6 ports, and an end cap at each end) and that the degassing cartridge is a self-contained, hollow-fiber membrane cartridge adapted to fit in the RO high pressure housing.
    Type: Grant
    Filed: August 16, 2010
    Date of Patent: August 13, 2013
    Assignee: Celgard LLC
    Inventors: Gareth P. Taylor, Amitava Sengupta
  • Patent number: 8501668
    Abstract: The invention provides a porous nanoscale membrane. In one embodiment, the membrane can be used as a filtration device to screen agents that disrupt or prevent molecular interactions. In one embodiment, the membrane allows for screening agents that disrupt or prevent molecular interactions using a small sample volume with efficient high-throughput screening applications.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: August 6, 2013
    Assignee: University of Rochester
    Inventors: James L. McGrath, Harold C. Smith
  • Patent number: 8500848
    Abstract: The present disclosed embodiments relate to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial membrane water vapor rejection into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently expelled through a membrane vapor rejection unit to ambient conditions.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: August 6, 2013
    Assignee: The Texas A&M University System
    Inventors: David E. Claridge, Charles H. Culp
  • Patent number: 8500872
    Abstract: The invention is a ceramic tube made of two parts. A first part of the tube is made of a sensitive material for facilitating oxygen separation in the membrane. The second part is made of a different material that does not react with CO2 and/or H2O. Accordingly, by means of this Invention, there is provided a ceramic tube that is stabilized and does not deteriorate upon exposure to CO2 and/or H2O at temperatures below the operating temperatures.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: August 6, 2013
    Assignee: Technion Research & Development Foundation Ltd.
    Inventor: Ilan Riess
  • Patent number: 8496806
    Abstract: Provided is a dehydrator that requires no excessively large apparatus structure and achieves cost-saving while maintaining suction efficiency at a desired level by use of suction means. A dehydrator 100 for separating water from a target liquid 13 includes at least two water separation membrane units 1a and 1b which are provided in series in a flow direction of the target liquid 13. The water separation membrane unit 1a on an upstream side out of the water separation membrane units 1a and 1b is connected to suction means 7 for sucking a gas phase containing water through one condenser 4, and the one condenser 4 condenses water in the gas phase and thereby separates the water. The gas phase sucked by the suction means 7 from the one condenser 4 is transferred to at least one downstream condenser 8 provided downstream of the one condenser 4, and the downstream condenser 8 condenses water in the gas phase and thereby separates the water.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: July 30, 2013
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Atsuhiro Yukumoto, Hiroyuki Osora, Yoshio Seiki, Haruaki Hirayama, Yukio Tanaka, Hideo Kashiwagi, Katsufumi Inoue
  • Patent number: 8496732
    Abstract: The present disclosure relates to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial condensation into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently condensed and removed from the system at ambient conditions.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: July 30, 2013
    Assignee: The Texas A&M University System
    Inventors: Charles H. Culp, David E. Claridge
  • Publication number: 20130186179
    Abstract: A HEPA filter which utilizes spun bond scrim material and ePTFE membrane for use in an aseptic pharmaceutical filtration air handling system for installation and testing is provided. The installation and testing configuration includes the ePTFE filter with a low or ultra-low concentration of challenging aerosol in the upstream side of the filter along with a scanning device for determining the upstream concentration, all completed in situ within a pharmaceutical air handling system. At the downstream side of the ePTFE filter is positioned another scanner which may be a discrete particle scanner for calculating the penetration percentage of the aerosol through the filtering media of ultra-low concentrations. The system and configuration allows for exposure to ePTFE filtration media for certification by low or ultra-low concentrations of oil based challenging compounds.
    Type: Application
    Filed: May 2, 2012
    Publication date: July 25, 2013
    Inventor: Michael W. Osborne
  • Patent number: 8454728
    Abstract: A method is described for recycling hydrogen (H2) supplied to a chamber (10) in a gas stream comprising hydrogen and at least one other gas, such as silane. A gas comprising at least hydrogen is drawn from the chamber (10) using a first vacuum pump (32) that exhausts gas therefrom at a sub-atmospheric pressure. A portion of the gas exhausted from the first vacuum pump (32), for example between 70 and 95% of this gas, is diverted away from a second vacuum pump (34) backing the first vacuum pump (32). In one embodiment, the diverted portion of the sub-atmospheric pressure gas is treated to produce a purified gas comprising hydrogen, which is stored in a storage vessel (14). The composition of the purified gas is analysed, and, depending on the results of the analysis, at least one of hydrogen and silane is added to the stored gas so that the composition of the stored gas is similar to that of the gas initially supplied to the chamber (10). Gas is then supplied to the chamber (10) from the storage vessel (14).
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: June 4, 2013
    Assignee: Edwards Limited
    Inventor: Robert Bruce Grant
  • Patent number: 8454724
    Abstract: A system and process for the removal of carbon dioxide (CO2) from a feed natural gas having variable flow rates and inlet CO2 levels.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: June 4, 2013
    Assignee: UOP LLC
    Inventors: Bhargav Sharma, William Echt
  • Publication number: 20130098246
    Abstract: Disclosed is an exhaust gas treating system having an exhaust gas treating apparatus for carbon dioxide capture process which additionally removes harmful substances remaining in the gas discharged from the existing flue-gas desulfurization process by using separation membrane so as to efficiently carry out the carbon dioxide capture process. The exhaust gas treating system using polymer membrane, comprises a carbon dioxide capture equipment for capturing carbon dioxide from the exhaust gas of a boiler, a flue-gas denitrification equipment placed between the boiler and the carbon dioxide capture equipment, a dust-collecting equipment and a flue-gas desulfurization equipment.
    Type: Application
    Filed: April 20, 2012
    Publication date: April 25, 2013
    Applicant: Korea Institute of Energy Research
    Inventors: Hyung-Keun Lee, Won-Kil Choi, Hang-Dae Jo
  • Publication number: 20130098242
    Abstract: The invention relates to a specific apparatus, more particularly a chain of gas separation membrane modules, for separation of gas mixtures into two fractions each of elevated purity.
    Type: Application
    Filed: May 26, 2011
    Publication date: April 25, 2013
    Applicant: Evonik Fibres Gmbh
    Inventors: Markus Ungerank, Goetz Baumgarten, Markus Priske, Harald Roegl
  • Patent number: 8419829
    Abstract: A method and system for coal-to-liquids (CTL) conversion is provided. The system includes a coal gasifier configured to partially oxidize a coal fuel stream to generate a flow of synthesis gas (syngas), a Fischer-Tropsch (FT) reactor configured to receive the flow of syngas and to generate a stream of tail gas, and an absorber coupled in flow communication downstream of the FT reactor and configured to receive the stream of tail gas. The absorber is further configured to generate a first flow including carbon dioxide, C2 hydrocarbons, and higher boiling gas components (C3+) and a second flow including C1, carbon monoxide, hydrogen, and nitrogen. The system also includes a first membrane separator including a selective membrane configured to separate the second flow from the absorber generating a permeate flow of hydrogen and a non-permeate flow of combustion turbine fuel gas including methane and hydrogen.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: April 16, 2013
    Assignee: General Electric Company
    Inventor: Paul Steven Wallace
  • Patent number: 8419828
    Abstract: The invention concerns a process for the removal of gaseous acidic contaminants, especially carbon dioxide and/or hydrogen sulphide, in two or more stages from a gaseous hydrocarbonaceous feedstream (1) comprising hydrocarbons and said acidic contaminants, using one or more membranes in each separation stages. The gaseous hydrocarbonaceous feedstream is especially a natural gas stream. The process is especially suitable for feedstreams comprising very high amounts of acidic contaminants, especially carbon dioxide, e.g. more than 25 vol. %, or even more than 45 vol. %. In a first stage (2) a pure or almost pure stream of acidic contaminants is separated from the feedstream, the acidic contaminants (4) stream suitably containing less than 5 vol % of hydrocarbons. The remaining stream (3) comprises the hydrocarbons and still a certain amount of gaseous acidic contaminants.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: April 16, 2013
    Assignee: Shell Oil Company
    Inventors: Zaida Diaz, Henricus Abraham Geers, Ewout Martijn Van Jarwaarde, Arian Nijmeijer, Eric Johannes Puik
  • Patent number: 8414686
    Abstract: The present invention is directed to degassing devices for dialysate circuits. One embodiment has a first housing and a second housing positioned within the first housing in an annular relationship. A second embodiment comprises a dialysate regeneration system with urease, a dialyzer, and a housing with an external wall, where the external wall is exposed to atmosphere and comprises a material that passes gas but does not pass liquid and where the housing is positioned between the urease and dialyzer.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 9, 2013
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Victor Gura, Carlos Jacobo Ezon, Masoud Beizai
  • Patent number: 8398755
    Abstract: An integrated fiber membrane module for air dehydration and air separation includes dehydration and separation units disposed concentrically in a generally cylindrical module. Air flows through the outer dehydration unit, becomes dried, and is then directed, in an opposite direction, through the separation unit. The permeate gas from the separation unit serves as a sweep gas for the dehydration unit. A portion of dried gas produced by the dehydration unit may be used as a sweep gas for the separation unit, and also for the dehydration unit. The module makes it feasible to dry and separate air using a device which occupies relatively little space, and which is therefore especially suited for use in aircraft and in other cramped environments.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: March 19, 2013
    Assignee: Generon IGS, Inc.
    Inventors: Frederick L. Coan, Jeffrey C. Schletz
  • Patent number: 8388743
    Abstract: One aspect of the present teachings includes a separation membrane arranged in a hollow case. A particular component concentration chamber and a particular component dilution chamber are arranged in series in the hollow case. The particular component concentration chamber is capable of increasing concentration of the particular component by allowing permeation of the particular gas through the separation membrane. The particular component dilution chamber is capable of increasing concentration of the particular component by not allowing permeation of the particular gas through the separation membrane. The particular component concentration chamber and the particular component dilution chamber are configured such that only a gas containing the particular component and permeated through the separation membrane or only a gas containing the particular component not permeated through the separation membrane in one of the chambers disposed on an upstream side (i.e.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: March 5, 2013
    Assignee: Aisan Kogyo Kabyshiki Kaisha
    Inventors: Masataka Suzuki, Takashi Suefuji, Akio Muraishi, Katsuhiko Makino, Toshiyuki Iwasaki, Takashi Mani
  • Publication number: 20130042755
    Abstract: A system for providing nitrogen enriched air (NEA) from ambient air uses at least two gas separation membranes that are selectively gas permeable for oxygen and nitrogen. The oxygen/nitrogen selectivity and oxygen permeance of two of the membranes are different such that (1) the selectivity of first membrane is less than the second membrane and the oxygen permeance of first membrane is greater than the second membrane, or (2) the selectivity of first membrane is greater than the second membrane and the oxygen permeance of first membrane is less than the second membrane. The system is very compact, is energy efficient, and highly effective for generating NEA. It is ideally suited for mobile, remote and specialized end use applications, such as automotive vehicles, marine vessels, off-shore platform fuel storage and especially for supplying NEA to blanket ullage of onboard aircraft fuel storage tanks.
    Type: Application
    Filed: August 14, 2012
    Publication date: February 21, 2013
    Applicant: CMS TECHNOLOGIES HOLDINGS INC.
    Inventors: Sudipto Majumdar, Kenneth J. Pennisi, Donald J. Stookey
  • Publication number: 20130011301
    Abstract: Hydrogen generation assemblies, hydrogen purification devices, and their components, and methods of manufacturing those assemblies, devices, and components are disclosed. In some embodiments, the assemblies may include a vaporization region with packing material configured to transfer heat from a heated exhaust stream to a liquid-containing feed stream, and/or an insulation base adjacent a combustion region and configured to reduce external temperature of an enclosure. In some embodiments, the assemblies may include a cooling block configured to maintain an igniter assembly in thermal communication with a feed stream conduit, an igniter assembly including a catalytic coating, and/or a fuel stream distribution assembly. In some embodiments, the assemblies may include a heat conducting assembly configured to conduct heat from external heaters to an enclosure portion.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 10, 2013
    Inventor: David J. Edlund
  • Patent number: 8343257
    Abstract: The instant invention generally provides polymer pi-bond-philic filler composite comprising a molecularly self-assembling material and a pi-bond-philic filler, and a process of making and an article comprising the polymer pi-bond-philic filler composite. The instant invention also generally provides a process of separating a pi-bond-philic gas from a separable gas mixture comprising the pi-bond-philic gas.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: January 1, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: Scott T. Matteucci, Shawn D. Feist, Peter N. Nickias, Leonardo C. Lopez, Michael S. Paquette, Jeffrey C. Munro
  • Patent number: 8337590
    Abstract: The invention relates to a device for drying a gas, in particular air, that comprises at least one chamber (5) with an inlet (5a) for the flow of gas to be treated and an outlet (5b) for the flow of treated gas, said chamber being limited by at least one membrane (6) having a water vapor perviousness that is significantly higher than the perviousness to other gases or vapors, a humidity absorbing material being provided or flowing against the membrane (6) on the side opposite the chamber. The device includes a stack of plates (P1, P2) provided with central openings (A, B); each chamber (5) is formed by a central opening (A) located between two parallel membranes (6) while the humidity absorbing material is provided against each membrane (6); each plate (P1) is sandwiched between two plates (P2, P3) including a housing (B, B1) for the humidity absorbing material; and a plurality of chambers (5) are stacked and connected in series.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: December 25, 2012
    Assignee: R + I Alliance
    Inventors: Ignacio Valor Herencia, Juan Manuel Juarez Galan
  • Publication number: 20120312161
    Abstract: A method and a device for reducing the humidity of a gas in a housing interior, in particular in a battery housing interior, includes leading a gas through a first selectively permeable membrane and into an intermediate space. The intermediate space has the first selectively permeable membrane as an inlet and a second selectively permeable membrane as an outlet. The gas is then cooled in the intermediate space by a cooling unit such that a water vapor portion of the gas is condensed into water and the gas having a reduced water vapor content is directed through the second selectively permeable membrane into the housing interior.
    Type: Application
    Filed: October 28, 2010
    Publication date: December 13, 2012
    Applicant: Robert Bosch GmbH
    Inventors: Alexander Reitzle, Ulrich Zimmermann
  • Patent number: 8328906
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: December 11, 2012
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Kronos
  • Patent number: 8313556
    Abstract: The present disclosure is directed to a system for delivery of a target material and/or energy. The system includes a source configured to provide a mixture containing the target material and a non-target material, a delivery conduit coupled to the source to receive the mixture from the source, and an in-line extraction device concentric to the delivery conduit. The in-line extraction device is configured to selectively extract the target material and/or energy from the mixture in the delivery conduit and to delivery it to a downstream facility.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: November 20, 2012
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8308852
    Abstract: A jacket material into which a gas adsorbing device and core material are inserted is decompressed in a vacuum chamber, the opening is sealed, and then the jacket material is exposed to the atmosphere. In the atmospheric pressure, a pressure of about 1 atm which is equivalent to the pressure difference between the inside and outside is applied to the jacket material of the heat insulator. The jacket material is made of a plastic laminated film and is deformed by pressure. A protruding portion is plunged into a container to drill through holes, and a gas adsorbent in the container communicates with the inside of the jacket material. Thus, both during holding and in applying to the vacuum heat insulator, the gas adsorbent can be applied to the vacuum heat insulator without degradation, and the high degree of vacuum can be kept for a long time.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: November 13, 2012
    Assignee: Panasonic Corporation
    Inventors: Masamichi Hashida, Kazutaka Uekado, Akiko Yuasa
  • Publication number: 20120260799
    Abstract: An apparatus and a method for recovery of sulfur hexafluoride is provided. Sulfur hexafluoride (SF6) may be separated with high-concentration and improved recovery ratio through a multi-stage separation and recovery processes using a plurality of separation membrane modules, and as well, SF6 gas may be concentrated to maximize the SF6 recovery ratio before the separation and recovery processes through the separation membrane modules. Furthermore, sulfur dioxide (SO2) and moisture included in the SF6 waste gas may be removed effectively so as to extend the service life of the separation membrane modules.
    Type: Application
    Filed: October 28, 2011
    Publication date: October 18, 2012
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sang Hyup Lee, Hyun Jung Lee, Joong Kee Lee, Joo Man Woo, Min Woo Lee, Han Byul Kim
  • Patent number: 8268055
    Abstract: A membrane gas dryer includes an upstream fitting assembly, a downstream fitting assembly, a purge tube, and a sample element. The upstream fitting assembly and the downstream fitting assembly include fitting bodies and barrier sleeves. The fitting bodies and the barrier sleeves form purge plenums that are in fluid communication with the purge tube. Sealing interfaces on the fitting bodies maintain fluid-tight seals around the purge plenums as the barrier sleeves rotate about fitting bodies. The sample element includes a water-permeable membrane and passes inside the purge tube such that moisture in a sample gas flowing in a downstream direction through the sample element between the fitting body to the downstream fitting body passes moisture through the water-permeable membrane and into a purge gas flowing in the purge tube in one of an upstream direction or a downstream direction between the purge plenums.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: September 18, 2012
    Assignee: Perma Pure LLC
    Inventors: T. Paul Smith, David J. Burke
  • Patent number: 8246719
    Abstract: Method for processing an article comprising mixed conducting metal oxide material. The method comprises contacting the article with an oxygen-containing gas and either reducing the temperature of the oxygen-containing gas during a cooling period or increasing the temperature of the oxygen-containing gas during a heating period; during the cooling period, reducing the oxygen activity in the oxygen-containing gas during at least a portion of the cooling period and increasing the rate at which the temperature of the oxygen-containing gas is reduced during at least a portion of the cooling period; and during the heating period, increasing the oxygen activity in the oxygen-containing gas during at least a portion of the heating period and decreasing the rate at which the temperature of the oxygen-containing gas is increased during at least a portion of the heating period.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: August 21, 2012
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Michael Francis Carolan, John Charles Bernhart
  • Patent number: 8241502
    Abstract: A hollow fiber membrane module, a hollow fiber membrane module unit using the hollow fiber membrane module, and a water treatment method using the module or the module unit enable the efficient contact of microorganisms on the surface of a membrane with a gas, the module and the unit having excellent durability. The hollow fiber membrane module is formed in such a manner that the end parts of sheet-form hollow fiber membranes are formed in a substantially rectangular shape and the end face of the anchoring member on a side where the hollow fiber membranes open is formed in a substantially circular shape. The hollow fiber membrane module unit is formed in such a manner that a plurality of modules is disposed. The water treatment method is used to purify treated water with the microorganisms adhered onto the outer surfaces of the hollow fiber membranes by using the module or the unit.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: August 14, 2012
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Kenji Watari, Satoshi Takeda
  • Publication number: 20120186452
    Abstract: A multiple layer HEPA filter media includes, in an exemplary embodiment, a first layer that includes a nonwoven synthetic fabric formed from a plurality of bicomponent synthetic fibers with a spunbond process, and having a bond area pattern of a plurality of substantially parallel discontinuous lines of bond area. The filter media also includes a second layer laminated onto the first layer. The second layer is formed from a micro-porous membrane. Further, the filter media includes a third layer laminated onto the second layer, with the third layer including a synthetic nonwoven fabric formed from a plurality of synthetic fibers. The synthetic fibers include at least two different synthetic fibers having different melting points. The third layer has a cover factor of less than about seven. In addition, the multiple layer filter media further includes a plurality of corrugations.
    Type: Application
    Filed: January 26, 2011
    Publication date: July 26, 2012
    Inventors: Alan Smithies, Vishal Bansal, Nusrat Farzana, Cynthia Polizzi
  • Patent number: 8226750
    Abstract: A hydrogen purifier utilizing a hydrogen-permeable membrane to purify hydrogen from mixed gases containing hydrogen is disclosed. Improved mechanical support for the permeable membrane is described, enabling forward or reverse differential pressurization of the membrane, which further stabilizes the membrane from wrinkling upon hydrogen uptake.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: July 24, 2012
    Assignee: Genesis Fueltech, Inc.
    Inventor: Peter David DeVries
  • Patent number: 8226751
    Abstract: A composite membrane material characterized by comprising a hydrogen-permeable membrane which is selectively permeable to hydrogen and is formed by rolling to a thickness of 30 ?m or less which is difficult for the membrane by itself to retain its shape, and a shape-retention mesh which is disposed on at least one side of the hydrogen-permeable membrane and is composed of a wire of a high-melting metal which does not cause thermal diffusion into the hydrogen-permeable membrane, wherein the hydrogen-permeable membrane and the shape-retention mesh are superposed and subjected to a pleat processing in a non-bonded state so that they are separable and the hydrogen-permeable membrane has a surface area increased at least 3 times per unit area. This material is used to constitute a hydrogen separation element.
    Type: Grant
    Filed: September 15, 2006
    Date of Patent: July 24, 2012
    Assignee: Nippon Seisen Co., Ltd.
    Inventors: Hideomi Ishibe, Hiroyasu Taga
  • Patent number: 8221530
    Abstract: A water trap (1) improved with respect to handling and operational safety includes: two semipermeable membranes (2) and at least one tank (7), wherein the membranes have a water penetration pressure greater than 750 hPa and are made of the same or different PTFE laminates. The gas flow is divided in a ratio between 10:90 and 25:75 into the flush-/purge branch and analysis branch to the sensors (12) and a path parallel to the sensors (12), respectively, with the aid of the membranes and downstream filter elements and via the material and configuration.
    Type: Grant
    Filed: June 4, 2010
    Date of Patent: July 17, 2012
    Assignee: Draeger Medical GmbH
    Inventors: Gerd Peter, Thomas Maxeiner, Thomas Wuske
  • Patent number: 8192524
    Abstract: Disclosed herein are processes for producing a CO2-depleted product gas stream. The processes involve feeding a natural gas feed stream comprising greater than about 10 vol % CO2 to at least one membrane unit comprising a plurality of polymer membranes to provide a CO2-rich permeate comprising at least 95 vol % CO2 and a CO2-depleted product gas stream. The polymer membranes comprise a crosslinked polyimide polymer having covalent ester crosslinks and have a CO2 permeance of at least 20 GPU and a CO2/CH4 selectivity of greater than 20, at 35 degrees C. and a feed pressure of 100 psia. Also disclosed herein is an apparatus incorporating the crosslinked polyimide polymer for producing a CO2-depleted product gas stream from a natural gas feed stream.
    Type: Grant
    Filed: January 29, 2009
    Date of Patent: June 5, 2012
    Assignee: Chevron U.S.A. Inc.
    Inventors: Daniel Chinn, Siji Okeowo, Jeff D. Euhus, Shabbir Husain
  • Patent number: 8182590
    Abstract: A process for forming a porous nanoscale membrane is described. The process involves applying a nanoscale film to one side of a substrate, where the nanoscale film includes a semiconductor material; masking an opposite side of the substrate; etching the substrate, beginning from the masked opposite side of the substrate and continuing until a passage is formed through the substrate, thereby exposing the film on both sides thereof to form a membrane; and then simultaneously forming a plurality of randomly spaced pores in the membrane. The resulting porous nanoscale membranes, characterized by substantially smooth surfaces, high pore densities, and high aspect ratio dimensions, can be used in filtration devices, microfluidic devices, fuel cell membranes, and as electron microscopy substrates.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: May 22, 2012
    Assignee: University of Rochester
    Inventors: Christopher C. Striemer, Philippe M. Fauchet, Thomas R. Gaborski, James L. McGrath
  • Publication number: 20120118148
    Abstract: The present disclosure relates to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial condensation into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently condensed and removed from the system at ambient conditions.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 17, 2012
    Applicant: The Texas A&M University System
    Inventors: Charles H. Culp, David E. Claridge
  • Publication number: 20120118147
    Abstract: The present disclosed embodiments relate to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial membrane water vapor rejection into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently expelled through a membrane vapor rejection unit to ambient conditions.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 17, 2012
    Applicant: The Texas A&M University System
    Inventors: David E. Claridge, Charles H. Culp
  • Publication number: 20120118155
    Abstract: The present disclosure relates to systems and methods for dehumidifying air by establishing a humidity gradient across a water selective permeable membrane in a dehumidification unit. Water vapor from relatively humid atmospheric air entering the dehumidification unit is extracted by the dehumidification unit without substantial condensation into a low pressure water vapor chamber operating at a partial pressure of water vapor lower than the partial pressure of water vapor in the relatively humid atmospheric air. For example, water vapor is extracted through a water permeable membrane of the dehumidification unit into the low pressure water vapor chamber. As such, the air exiting the dehumidification unit is less humid than the air entering the dehumidification unit. The low pressure water vapor extracted from the air is subsequently condensed and removed from the system at ambient conditions.
    Type: Application
    Filed: November 11, 2011
    Publication date: May 17, 2012
    Applicant: The Texas A&M Unversity System
    Inventors: David E. Claridge, Charles H. Culp