Barriers Connected In Series Patents (Class 96/9)
  • Patent number: 8157899
    Abstract: A particulate material processing apparatus has a vessel and a processing tank. The vessel has a charging port for charging a particulate material into the vessel. The processing tank receives the particulate material charged from the charging port. The processing tank is shaped so as to narrow towards the bottom. At least the lower part of the processing tank is made of a gas-permeable material that allows the process gas for processing the particulate material to pass through. The upper part of the processing tank has lower gas permeability than the lower part of the processing tank.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: April 17, 2012
    Assignee: Daikin Industries, Ltd.
    Inventors: Tomohiro Isogai, Katsuya Nakai, Tatsuo Suzuki, Taku Hirakawa, Hiroyuki Shimada
  • Patent number: 8157891
    Abstract: A membrane cartridge is manufactured by repeatedly folding and joining two strips of membrane to form a cross-pleated cartridge with a stack of openings or fluid passageways configured in an alternating cross-flow arrangement. The cartridge can be modified for other flow configurations including co-flow and counter-flow arrangements. Methods for manufacturing such cross-pleated membrane cartridges, as well as apparatus used in the manufacturing process are described. Cross-pleated membrane cartridges comprising water-permeable membranes can be used in a variety of applications, including in heat and water vapor exchangers. In particular they can be incorporated into energy recovery ventilators (ERVs) for exchanging heat and water vapor between air streams being directed into and out of buildings.
    Type: Grant
    Filed: January 14, 2009
    Date of Patent: April 17, 2012
    Assignee: DPoint Technologies Inc.
    Inventors: Greg Montie, James Franklin Dean, Curtis Mullen, Robert Hill
  • Patent number: 8157999
    Abstract: A system, method and device are disclosed for bio-processing a feed stream and providing a constant output by operating a continuous single-pass tangential-flow process. The single-pass process provides high conversion concentration while operating at relatively low feed flow rates, and the process can also be used to provide constant output diafiltration.
    Type: Grant
    Filed: May 15, 2011
    Date of Patent: April 17, 2012
    Assignee: SPF Innovations, LLC
    Inventors: Gaston de los Reyes, Leon Mir
  • Publication number: 20120085238
    Abstract: The present invention involves the use of a multi-stage membrane system for gas, vapor, and liquid separations. In this multi-stage membrane system, high selectivity and high permeance or at least high selectivity polybenzoxazole membranes or cross-linked polybenzoxazole membranes are applied for a pre-membrane or both the pre-membrane and the secondary membrane. A primary membrane can be from conventional glassy polymers. This multi-stage membrane system can reduce inter-stage compression cost, increase product recovery and product purity for gas, vapor, and liquid separations. It can also save the cost compared to the system using all the high cost polybenzoxazole membranes or cross-linked polybenzoxazole membranes.
    Type: Application
    Filed: December 19, 2011
    Publication date: April 12, 2012
    Applicant: UOP LLC
    Inventors: Lubo Zhou, Chunqing Liu, Carlos A. Cabrera, Peter K. Coughlin
  • Patent number: 8152901
    Abstract: A jacket material into which a gas adsorbing device and core material are inserted is decompressed in a vacuum chamber, the opening is sealed, and then the jacket material is exposed to the atmosphere. In the atmospheric pressure, a pressure of about 1 atm which is equivalent to the pressure difference between the inside and outside is applied to the jacket material of the heat insulator. The jacket material is made of a plastic laminated film and is deformed by pressure. A protruding portion is plunged into a container to drill through holes, and a gas adsorbent in the container communicates with the inside of the jacket material. Thus, both during holding and in applying to the vacuum heat insulator, the gas adsorbent can be applied to the vacuum heat insulator without degradation, and the high degree of vacuum can be kept for a long time.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 10, 2012
    Assignee: Panasonic Corporation
    Inventors: Masamichi Hashida, Kazutaka Uekado, Akiko Yuasa
  • Patent number: 8147598
    Abstract: A jacket material into which a gas adsorbing device and core material are inserted is decompressed in a vacuum chamber, the opening is sealed, and then the jacket material is exposed to the atmosphere. In the atmospheric pressure, a pressure of about 1 atm which is equivalent to the pressure difference between the inside and outside is applied to the jacket material of the heat insulator. The jacket material is made of a plastic laminated film and is deformed by pressure. A protruding portion is plunged into a container to drill through holes, and a gas adsorbent in the container communicates with the inside of the jacket material. Thus, both during holding and in applying to the vacuum heat insulator, the gas adsorbent can be applied to the vacuum heat insulator without degradation, and the high degree of vacuum can be kept for a long time.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: April 3, 2012
    Assignee: Panasonic Corporation
    Inventors: Masamichi Hashida, Kazutaka Uekado, Akiko Yuasa
  • Publication number: 20120073791
    Abstract: A core unit for an energy recovery system for exchanging heat and vapor between two independent intake and exhaust airstreams without intermixing thereof, the core unit having a fibrous microporous support substrate and a sulfonated block copolymer having at least one end block A and at least one interior block B wherein each A block contains essentially no sulfonic acid or sulfonate ester functional groups and each B block is a polymer block containing from about 10 to about 100 mol percent sulfonic acid or sulfonate ester functional groups based on the number of monomer units, and wherein the sulfonated block copolymer is laminated on the microporous support substrate
    Type: Application
    Filed: September 29, 2010
    Publication date: March 29, 2012
    Inventor: Donn Dubois
  • Patent number: 8123833
    Abstract: A process for producing a gas-containing cleaning water which contains a specific gas dissolved in water, which process comprises dissolving the specific gas into water under an increased pressure exceeding an atmospheric pressure to prepare a gas-containing water having a concentration of the gas exceeding solubility of the gas under an atmospheric pressure and, then, removing a portion of the dissolved gas by decreasing pressure on the gas-containing water; an apparatus for producing a gas-containing cleaning water which comprises an apparatus for dissolving a gas (14) in which a specific gas is dissolved into water under a pressure exceeding the atmospheric pressure and an apparatus for removing a portion of a dissolved gas (15) in which the pressure on the gas-containing water obtained from the apparatus for dissolving a gas is decreased to a pressure lower than the pressure under which the gas has been dissolved so that a portion of the dissolved gas is removed; and a cleaning apparatus using the gas-con
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: February 28, 2012
    Assignee: Kurita Water Industries Ltd.
    Inventors: Hiroshi Morita, Hiroto Tokoshima
  • Patent number: 8114192
    Abstract: A gas separation process for treating off-gas streams from reaction processes, and reaction processes including such gas separation. The invention involves flowing the off-gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, and passing the permeate/sweep gas mixture to the reaction. The process recovers unreacted feedstock that would otherwise be lost in the waste gases in an energy efficient manner.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: February 14, 2012
    Assignee: Membrane Technology & Research, Inc
    Inventors: Richard W. Baker, Johannes G. Wijmans, Timothy C. Merkel
  • Patent number: 8114191
    Abstract: A system for capturing carbon dioxide is provided including a feed line transporting an exhaust gas, a first separator, a first compressor, a first membrane, a first ejector, a second separator, a second compressor, and a carbon dioxide storage tank. The first membrane is configured to filter the exhaust gas into a retentate stream of exhaust gas and a permeate stream of exhaust gas. The permeate stream of exhaust gas includes a larger amount of carbon dioxide than the retentate stream. The first ejector is configured to compress the permeate stream. The second compressor is configured to further compress the exhaust gas received from the second separator. The carbon dioxide storage tank is configured to receive the exhaust gas from the second compressor. A second membrane can be on the retentate stream of the first membrane, where a second ejector is on the permeate side of the second membrane.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: February 14, 2012
    Assignee: General Electric Company
    Inventor: Shahryar Rabiei
  • Patent number: 8110022
    Abstract: A hydrogen purifier utilizing a hydrogen permeable membrane, and a gas-tight seal, where the seal is uses a low temperature melting point metal, which upon heating above the melting point subsequently forms a seal alloy with adjacent metals, where the alloy has a melting point above the operational temperature of the purifier. The purifier further is constructed such that a degree of isolation exists between the metal that melts to form the seal and the active area of the purifier membrane, so that the active area of the purifier membrane is not corrupted. A method of forming a hydrogen purifier utilizing a hydrogen permeable membrane with a seal of the same type is also disclosed.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: February 7, 2012
    Assignee: Genesis Fueltech, Inc.
    Inventor: Peter David DeVries
  • Patent number: 8110027
    Abstract: An air separation module and blanket has an air separation module having an air inlet, an oxygen outlet and a nitrogen outlet. At least one tank has air separation elements for separating oxygen from air, and delivers the separated oxygen to the oxygen outlet, and delivers nitrogen to the nitrogen outlet. A resistance heating element is positioned between the blanket and the air separation module. Further, an inventive blanket for use with the air separation module is also disclosed and claimed.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: February 7, 2012
    Assignee: Hamilton Sundstrand Corporation
    Inventor: William Joseph Beeson
  • Patent number: 8092581
    Abstract: A gas separation membrane has: a polymeric microporous membrane which has a polyolefin as a main component, and which is manufactured by wet phase separation process, and has a porosity of 20 to 80%, an average pore diameter of 1 to 100 nm and a piercing strength at 100° C. of 2 to 50 N; and a gas-separating thin film, which is provided on at least one surface, and/or the interior of the polymeric microporous membrane, and which comprises a fluorine-containing gas-separating resin as a main component, and has an average thickness of 0.01 ?m to less than 0.4 ?m. The gas separation membrane having an oxygen-nitrogen separation factor not smaller than 1.4.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: January 10, 2012
    Assignee: Asahi Kasei Chemicals Corporation
    Inventors: Sho Sugiyama, Takuya Hasegawa, Takahiko Kondo, Hidetoshi Masugi, Takashi Nozaki
  • Publication number: 20120000355
    Abstract: A system and process for the removal of carbon dioxide (CO2) from a feed natural gas having variable flow rates and inlet CO2 levels.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: UOP LLC
    Inventors: Bhargav Sharma, William Echt
  • Publication number: 20120000363
    Abstract: An air filter device includes a permeation film arranged at a boundary portion between an outside air passage and an inside air passage, such that one side surface of the permeation film is exposed to outside air in the outside air passage and the other side surface of the permeation film is exposed to inside air in the inside air passage. The permeation film is configured such that specific gas passes through the permeation film between the outside air passage and the inside air passage. Furthermore, a turbulent flow generation portion is provided to generate a turbulent flow in at least one of the outside air flowing through near the one side surface of the permeation film and the inside air flowing through near the other side surface of the permeation film.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 5, 2012
    Applicant: DENSO CORPORATION
    Inventors: Satoshi Mizutani, Katsunori Iwase, Kazushi Shikata, Kenichi Kato, Yoshinobu Suzuki, Mika Kawakita, Hajime Murakami
  • Patent number: 8083834
    Abstract: The present invention discloses a new process of treating natural gas using high gas permeability polybenzoxazole polymer membranes operated at high temperatures that can provide sufficient dew point margin for the product gas. The high gas permeability polybenzoxazole polymer membranes can be used for a single stage membrane system or for the first stage membrane in a two stage membrane system for natural gas upgrading. Simulation study has demonstrated that a costly membrane pretreatment system such as a MemGuard™ system will not be required in the present new process. The new process can achieve significant capital cost saving and reduce the existing membrane footprint greater than 50%.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: December 27, 2011
    Assignee: UOP LLC
    Inventors: Lubo Zhou, Chunqing Liu
  • Publication number: 20110305310
    Abstract: The invention relates to an equipment and a system for processing a gaseous mixture by permeation. The equipment of the invention includes m*n separation modules Pij, n and n being natural integers higher than or equal to 2, i being a natural integer from 1 to m, and j is a natural interger from 1 to n. Each of the separation modules P1 includes a permeate inlet Epij, the permeate inlet Ep11 of the separation module P11 corresponding to the F inlet for supplying the gaseous mixture into said equipment, a permeate outlet Spij and a retentate outlet Srij. Furthermore, the permeate outlet Spij is connected to the permeate inlet Epi+1j of the separation module Pj+1j, and the retentate outlet Srij is connected to the permeate inlet Epij+1 of the separation module Pij+1. The equipment does not use any intermediate recycling.
    Type: Application
    Filed: June 9, 2008
    Publication date: December 15, 2011
    Inventors: Jose Gregorio Sanchez, Alejandro Carlos Mourgues Codern
  • Patent number: 8075773
    Abstract: A hollow fiber membrane module, a hollow fiber membrane module unit using the hollow fiber membrane module, and a water treatment method using the module or the module unit enable the efficient contact of microorganisms on the surface of a membrane with a gas, the module and the unit having excellent durability. The hollow fiber membrane module is formed in such a manner that the end parts of sheet-form hollow fiber membranes are formed in a substantially rectangular shape and the end face of the anchoring member on a side where the hollow fiber membranes open is formed in a substantially circular shape. The hollow fiber membrane module unit is formed in such a manner that a plurality of modules is disposed. The water treatment method is used to purify treated water with the microorganisms adhered onto the outer surfaces of the hollow fiber membranes by using the module or the unit.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: December 13, 2011
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Kenji Watari, Satoshi Takeda
  • Publication number: 20110296984
    Abstract: A scrubber for controlling carbon dioxide levels in a shipping container containing respiring produce is disclosed. The scrubber is relatively small, utilizes a gas-selective membrane having a CO2/O2 selectivity ratio greater than 1:1, and fits inside the shipping container (such as a sea van container). In contrast to current methods of controlling CO2 levels in shipping containers, such as the use of hydrated lime, the scrubbers of the present invention are efficient, relatively inexpensive, do not take up shipping space within the container, and do not present handling or disposal issues. A method for controlling the carbon dioxide levels inside a shipping container containing respiring produce, utilizing the carbon dioxide scrubbers defined, is also disclosed.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 8, 2011
    Applicant: Chiquita Brands International, Inc.
    Inventors: Richard F. Macleod, Frederick Robert Forgnone, William Garrison Lester
  • Publication number: 20110290113
    Abstract: The invention provides systems and methods for exchanging gas in an oxygenator device, and methods for preparing and using such oxygenator devices. The systems and methods can be used to transfer oxygen to blood to assist lung function in a patient.
    Type: Application
    Filed: May 26, 2011
    Publication date: December 1, 2011
    Inventors: Jeffrey T. Borenstein, Joseph L. Charest, James Ching-Ming Hsiao, Tatiana Kniazeva
  • Patent number: 8066799
    Abstract: The present disclosure relates to a high molecular weight, monoesterified polyimide polymer. Such high molecular weight, monoesterified polyimide polymers are useful in forming crosslinked polymer membranes for the separation of fluid mixtures. According to its broadest aspect, the method of making a crosslinked membrane comprises the following steps: (a) preparing a polyimide polymer comprising carboxylic acid functional groups from a reaction solution comprising monomers and at least one solvent; (b) treating the polyimide polymer with a diol at esterification conditions in the presence of dehydrating conditions to form a monoesterified polyimide polymer; and (c) subjecting the monoesterified fiber to transesterification conditions to form a crosslinked fiber membrane, wherein the dehydrating conditions at least partially remove water produced during step (b). The crosslinked membranes can be used to separate at least one component from a feed stream including more than one component.
    Type: Grant
    Filed: January 10, 2008
    Date of Patent: November 29, 2011
    Assignees: Chevron U.S.A. Inc., Georgia Tech Research Corporation
    Inventors: Stephen J. Miller, Imona C. Omole, William J. Kronos
  • Patent number: 8066800
    Abstract: A method for separating CO2 from a processed fluid includes exposing a film to the processed fluid and reacting the CO2 with tetrahedrally coordinated zinc hydroxide moieties contained within the film to facilitate the transport of the CO2 through the film.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: November 29, 2011
    Assignee: Hamilton Sundstrand Corporation
    Inventor: Haralambos Cordatos
  • Publication number: 20110268618
    Abstract: The present application relates to separation processes and systems and more specifically to hybrid carbon dioxide separation processes. In one embodiment, the system for the separation or removal of carbon dioxide comprises an apparatus for a selective separation of carbon dioxide (CO2) from flue gas—typically exhaust gases, syngas or natural gas streams—using one or more so-called CO2 reverse selective membrane(s) in the first separation unit to enrich a feed gas stream which contains carbon dioxide with CO2 and by separating other constituents of the gas stream. Thus, the feed gas stream is separated in the first separation unit by CO2-reverse-selective separation into a CO2-lean gas stream and a CO2-enriched gas stream. The CO2-enriched gas stream is fed to a second separation unit which is a CO2-selective separation unit. The second separation results in a purified CO2-rich gas stream and a remaining CO2-lean gas stream.
    Type: Application
    Filed: January 14, 2010
    Publication date: November 3, 2011
    Inventor: Matthias Finkenrath
  • Patent number: 8048198
    Abstract: The present invention discloses a new type of high performance mixed matrix membranes (MMMs) and methods for making and using the same. The MMMs comprise a continuous polymer matrix and at least two types of molecular sieves dispersed therein. The continuous polymer matrix in the MMM contains at least one type of polymer. The MMM in the form of a dense film, asymmetric flat sheet membrane or otherwise prepared exhibits simultaneously improved selectivity and permeability for gas separations compared to polymer membranes made from a continuous polymer matrix without any molecular sieves or with only one type of molecular sieve. MMMs of the present invention are suitable for a wide range of gas, vapor, and liquid separations such as alcohol/water, CO2/CH4, H2/CH4, O2/N2, CO2/N2, olefin/paraffin, iso/normal paraffins, and other light gases separations.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: November 1, 2011
    Assignee: UOP LLC
    Inventors: Chunqing Liu, David A. Lesch, Stephen T. Wilson
  • Patent number: 8034161
    Abstract: The present invention is directed to degassing devices for dialysate circuits. One embodiment has a first housing and a second housing positioned within the first housing in an annular relationship. A second embodiment comprises a dialysate regeneration system with urease, a dialyzer, and a housing with an external wall, where the external wall is exposed to atmosphere and comprises a material that passes gas but does not pass liquid and where the housing is positioned between the urease and dialyzer.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: October 11, 2011
    Assignee: Fresenius Medical Care Holdings, Inc.
    Inventors: Victor Gura, Carlos Jacobo Ezon, Masoud Beizai
  • Publication number: 20110239866
    Abstract: An integrated fiber membrane module for air dehydration and air separation includes dehydration and separation units disposed concentrically in a generally cylindrical module. Air flows through the outer dehydration unit, becomes dried, and is then directed, in an opposite direction, through the separation unit. The permeate gas from the separation unit serves as a sweep gas for the dehydration unit. A portion of dried gas produced by the dehydration unit may be used as a sweep gas for the separation unit, and also for the dehydration unit. The module makes it feasible to dry and separate air using a device which occupies relatively little space, and which is therefore especially suited for use in aircraft and in other cramped environments.
    Type: Application
    Filed: March 28, 2011
    Publication date: October 6, 2011
    Applicant: GENERON IGS, INC.
    Inventors: Frederick L. Coan, Jeffrey C. Schletz
  • Publication number: 20110233470
    Abstract: An ion transport membrane system comprising (a) a pressure vessel having an interior, an exterior, an inlet, and an outlet; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein any inlet and any outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; and (c) one or more gas manifolds in flow communication with interior regions of the membrane modules and with the exterior of the pressure vessel. The ion transport membrane system may be utilized in a gas separation device to recover oxygen from an oxygen-containing gas or as an oxidation reactor to oxidize compounds in a feed gas stream by oxygen permeated through the mixed metal oxide ceramic material of the membrane modules.
    Type: Application
    Filed: January 18, 2008
    Publication date: September 29, 2011
    Applicant: AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: VanEric Edward Stein, Michael Francis Carolan, Christopher M. Chen, Phillip Andrew Armstrong, Harold W. Wahle, Theodore R. Ohrn, Kurt E. Kneidel, Keith Gerard Rackers, James Erik Blake, Shankar Nataraj, Rene Hendrik Elias van Doorn, Merrill Anderson Wilson
  • Publication number: 20110232485
    Abstract: A composite desiccant material is formed by a porous, absorbent substrate of PVA foam or non-woven fibrous sheet is soaked in a solution of a hygroscopic desiccant such as CaCl. The desiccant is held in pores or fibrous entraining areas sized ranging from 50 microns to 1000 microns. Thin sheets are arranged in a stack in a multi-chamber system, while in an absorption state, uses this stack in a main chamber to absorb H2O from atmospheric gas flowing through that chamber. In a regeneration state atmospheric flow is stopped and low-grade energy releases the H2O from the desiccant into that chamber. Fans circulate moist air through the main chamber and into an adjacent chamber for H2O transfer through or past a partially permeable barrier into a cooling/condensing area. Both H2O and dry gas may be produced.
    Type: Application
    Filed: March 28, 2011
    Publication date: September 29, 2011
    Inventor: Joseph Ellsworth
  • Publication number: 20110232491
    Abstract: Hydrogen-processing assemblies, components of hydrogen-processing assemblies, and fuel-processing and fuel cell systems that include hydrogen-processing assemblies. The hydrogen-processing assemblies include a hydrogen-separation assembly positioned within the internal volume of an enclosure in a spaced relation to at least a portion of the internal perimeter of the body of the enclosure.
    Type: Application
    Filed: June 9, 2011
    Publication date: September 29, 2011
    Applicant: IDATECH, LLC
    Inventors: William A. Pledger, Vernon Wade Popham, R. Todd Studebaker, Kyle Taylor
  • Patent number: 8025715
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to a carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: September 27, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventors: Johannes G. Wijmans, Timothy C. Merkel, Richard W. Baker
  • Patent number: 8016923
    Abstract: Disclosed herein are combustion systems, power plants, and flue gas treatment systems that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In yet another embodiment, the invention is a flue gas treatment system that incorporates three membrane separation units with a carbon dioxide liquefaction unit.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: September 13, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventors: Richard W. Baker, Johannes G Wijmans, Timothy C Merkel, Haiqing Lin, Ramin Daniels, Scott Thompson
  • Publication number: 20110203458
    Abstract: A membrane gas dryer includes an upstream fitting assembly, a downstream fitting assembly, a purge tube, and a sample element. The upstream fitting assembly and the downstream fitting assembly include fitting bodies and barrier sleeves. The fitting bodies and the barrier sleeves form purge plenums that are in fluid communication with the purge tube. Sealing interfaces on the fitting bodies maintain fluid-tight seals around the purge plenums as the barrier sleeves rotate about fitting bodies. The sample element includes a water-permeable membrane and passes inside the purge tube such that moisture in a sample gas flowing in a downstream direction through the sample element between the fitting body to the downstream fitting body passes moisture through the water-permeable membrane and into a purge gas flowing in the purge tube in one of an upstream direction or a downstream direction between the purge plenums.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 25, 2011
    Applicant: Perma Pure LLC
    Inventors: T. Paul Smith, David J. Burke
  • Publication number: 20110200897
    Abstract: The present disclosure is directed to a system for delivery of a target material and/or energy. The system includes a source configured to provide a mixture containing the target material and a non-target material, a delivery conduit coupled to the source to receive the mixture from the source, and an in-line extraction device concentric to the delivery conduit. The in-line extraction device is configured to selectively extract the target material and/or energy from the mixture in the delivery conduit and to delivery it to a downstream facility.
    Type: Application
    Filed: February 14, 2011
    Publication date: August 18, 2011
    Applicant: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 7988770
    Abstract: A jacket material into which a gas adsorbing device and core material are inserted is decompressed in a vacuum chamber, the opening is sealed, and then the jacket material is exposed to the atmosphere. In the atmospheric pressure, a pressure of about 1 atm which is equivalent to the pressure difference between the inside and outside is applied to the jacket material of the heat insulator. The jacket material is made of a plastic laminated film and is deformed by pressure. A protruding portion is plunged into a container to drill through holes, and a gas adsorbent in the container communicates with the inside of the jacket material. Thus, both during holding and in applying to the vacuum heat insulator, the gas adsorbent can be applied to the vacuum heat insulator without degradation, and the high degree of vacuum can be kept for a long time.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: August 2, 2011
    Assignee: Panasonic Corporation
    Inventors: Masamichi Hashida, Kazutaka Uekado, Akiko Yuasa
  • Patent number: 7981099
    Abstract: A high performance flatus gas filter assembly, and a body waste collection pouch with which it may be used, along with a method for making such an assembly, are disclosed. The assembly includes a filter pad having first and second layers of deodorizing filter media with an imperforate gas and odor barrier layer sandwiched therebetween for blocking the direct flow of gases between the opposing inner faces of the filter layers. An envelope of liquid and gas impermeable material defines a chamber for enclosing the pad. The envelope has walls with first and second openings communicating with central portions of the first and second filter layers, and defines a peripheral space about the pad to permit the outward flow of flatus gases from the peripheral edge surface of one of the filter layers inwardly into the peripheral edge surface of the other of the filter layers.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: July 19, 2011
    Assignee: Hollister Incorporated
    Inventor: Donncha R. Butler
  • Publication number: 20110167821
    Abstract: Disclosed herein are combustion systems, power plants, and flue gas treatment systems that incorporate sweep-based membrane separation units to remove carbon dioxide from combustion gases. In its most basic embodiment, the invention is a combustion system that includes three discrete units: a combustion unit, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In a preferred embodiment, the invention is a power plant including a combustion unit, a power generation system, a carbon dioxide capture unit, and a sweep-based membrane separation unit. In yet another embodiment, the invention is a flue gas treatment system that incorporates three membrane separation units with a carbon dioxide liquefaction unit.
    Type: Application
    Filed: March 24, 2011
    Publication date: July 14, 2011
    Applicant: Membrane Technology and Research, Inc
    Inventors: Richard W. Baker, Johannes G. Wijmans, Timothy C. Merkel, Haiqing Lin, Ramin Deniels, Scott Thompson
  • Patent number: 7967987
    Abstract: A system, method and device are disclosed for bio-processing a feed stream and providing a constant output by operating a continuous single-pass tangential-flow process. The single-pass process provides high conversion concentration while operating at relatively low feed flow rates, and the process can also be used to provide constant output diafiltration.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: June 28, 2011
    Assignee: SPF Innovations, LLC
    Inventors: Gaston de los Reyes, Leon Mir
  • Patent number: 7964020
    Abstract: A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves flowing the flue gas stream to be treated across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: June 21, 2011
    Assignee: Membrane Technology & Research, Inc
    Inventors: Richard W Baker, Johannes G Wijmans, Timothy C Merkel, Haiqing Lin, Ramin Daniels, Scott Thompson
  • Patent number: 7947117
    Abstract: This invention describes a new hydrogen purification process that employs a combination of at least three membrane separation units. This process allows non-stationary operations and is particularly suitable for the production of hydrogen for the purpose of its use in a fuel cell.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: May 24, 2011
    Assignee: IFP Energies Nouvelles
    Inventors: Fabrice Giroudiere, Elsa Jolimaitre, Nicolas Boudet, Helene Rodeschini
  • Patent number: 7938868
    Abstract: The inventive stage system for producing hydrogen consists of at least two upstream/downstream stages, respectively, each of which comprises, optionally, a catalytic reactor (C1 to C5) followed by a separator comprising a space (E1 to E4) for circulation of a gaseous mixture contacting at least one oxygen extracting membrane and a hydrogen collecting space, wherein the reactor (C1) of the upstream stage is connected to a reaction gaseous mixture source, the circulation stage (E1) of the upstream stage separator is connected to the reactor (C2) of the downstream stage and the spaces for extracting/collecting oxygen from two separators are connected to a hydrogen collecting circuit (TC, 8) which is common for two stages.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: May 10, 2011
    Assignee: Compagnie Européenne des Technologies de l'Hydrogène (C.E.T.H.)
    Inventors: Eric Gernot, Arnaud Deschamps
  • Publication number: 20110099969
    Abstract: A hybrid multichannel porous structure for processing between two fluid streams of different compositions includes a housing and one or more structures disposed within the cavity of the housing in a shell and tube configuration. Each structure includes a body made of a porous, inorganic material and a plurality of channels for processing an optional sweep stream. Each channel is coated with a membrane layer. A feed stream introduced into the housing is in direct contact with the structures such that a gas selectively permeates through the body and into the channels. The gas combines with the sweep stream to form a permeate that exits from each channel. The remaining feed stream forms a retentate that exits from the housing. The feed stream may consist of syngas containing hydrogen gas and the sweep stream may contain nitrogen gas. A power plant that incorporates the hybrid structure is disclosed.
    Type: Application
    Filed: November 2, 2009
    Publication date: May 5, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Anthony Yu-Chung Ku, Kevin Paul McEvoy, Patrick Daniel Willson, Parag Parkash Kulkarni, Roger Allen Shisler, Anoop Muralidhara Kurup
  • Patent number: 7922902
    Abstract: A hollow fiber membrane module, a hollow fiber membrane module unit using the hollow fiber membrane module, and a water treatment method using the module or the module unit enable the efficient contact of microorganisms on the surface of a membrane with a gas, the module and the unit having excellent durability. The hollow fiber membrane module is formed in such a manner that the end parts of sheet-form hollow fiber membranes are formed in a substantially rectangular shape and the end face of the anchoring member on a side where the hollow fiber membranes open is formed in a substantially circular shape. The hollow fiber membrane module unit is formed in such a manner that a plurality of modules is disposed. The water treatment method is used to purify treated water with the microorganisms adhered onto the outer surfaces of the hollow fiber membranes by using the module or the unit.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: April 12, 2011
    Assignee: Mitsubishi Rayon Co., Ltd.
    Inventors: Kenji Watari, Satoshi Takeda
  • Patent number: 7922795
    Abstract: A nanoscale membrane exposed on opposite sides thereof and having an average thickness of less than about 100 nm, and a lateral length to thickness aspect ratio that is more than 10,000 to 1 is disclosed. Also disclosed are methods of making such membranes, and use thereof in a number of devices including fuel cells, sensor devices, electrospray devices, and supports for examining a sample under electron microscopy.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 12, 2011
    Assignee: University of Rochester
    Inventors: Christopher C. Striemer, Philippe M. Fauchet
  • Publication number: 20110081460
    Abstract: The presently disclosed subject matter is directed to an article that enables on-demand blooming of an oxygen-sensitive product packaged within the interior of the article. Specifically, the product can be packaged between two films, wherein at least one of the films is oxygen-permeable. The edges of the films can be attached to one or more suspension frames, such that the product is suspended between the two frames. The oxygen-impermeable film is covered in with an oxygen-impermeable material that can be removed on demand to promote blooming.
    Type: Application
    Filed: October 6, 2009
    Publication date: April 7, 2011
    Inventors: Michael Lee Becraft, Joseph E. Owensby, Blake Coates, Donald Keith Moore, JR., Slawomir Opuszko, James A. Mize, Eugenio Longo
  • Publication number: 20110079143
    Abstract: Certain aspects and examples are directed to sorbent devices and methods of using them. In certain embodiments, a sorbent device comprising a body comprising a sampling inlet, a sampling outlet and a cavity between the inlet and the outlet, the cavity comprising a serial arrangement of at least four different sorbent materials is described. In some embodiments, the sorbent materials are arranged from a material with a weakest sorbent strength to a material with a strongest sorbent strength with the weakest sorbent strength material adjacent to the sampling inlet.
    Type: Application
    Filed: October 2, 2009
    Publication date: April 7, 2011
    Inventors: Lee Marotta, Miles Snow
  • Patent number: 7918921
    Abstract: A gas-separation membrane module assembly and a gas-separation process using the assembly. The assembly includes a set of tubes, each containing gas-separation membrane elements, arranged within a housing. The housing contains tube sheets that divide the space within the housing into three separate, gas-tight spaces, with the tubes mounted in the central space. Feed gas enters the tubes through apertures positioned to feed multiple membrane elements within a tube in parallel, and one or more manifolds are used to collect residue gas from the membrane elements and direct the gas to the residue port or to a second group of membrane elements within the tube. The assembly can be used in various ways to carry out gas separation processes.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: April 5, 2011
    Assignee: Membrane Technology and Research, Inc
    Inventor: Nicholas P Wynn
  • Publication number: 20110068264
    Abstract: An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.
    Type: Application
    Filed: September 23, 2009
    Publication date: March 24, 2011
    Inventors: Jun Xu, David B. Watson, William B. Whitten
  • Publication number: 20110048228
    Abstract: The filter of the invention is a cartridge filter comprising a structure that can maintain a filter medium in an air stream to filter particulates to protect a gas turbine power system. The filter combines a mechanically adequate filter structure and an effective filter medium for to obtain a useful system.
    Type: Application
    Filed: June 11, 2009
    Publication date: March 3, 2011
    Inventors: Michael W. Handley, Mark Brandenhoff, Kirit Patel, Timothy D. Sporre
  • Publication number: 20110048068
    Abstract: The invention relates to a device for drying a gas, in particular air, that comprises at least one chamber (5) with an inlet (a) for the flow of gas to be treated and an outlet (5b) for the flow of treated gas, said chamber being limited by at least one membrane (6) having a water vapour perviousness that is significantly higher than the perviousness to other gases or vapours, a humidity absorbing material being provided or flowing against the membrane (6) on the side opposite the chamber. The device includes a stack of plates (P1, P2) provided with central openings (A, B); each chamber (5) is formed by a central opening (A) located between two parallel membranes (6) while the humidity absorbing material is provided against each membrane (6); each plate (P1) is sandwiched between two plates (P2, P3) including a housing (B, B1) for the humidity absorbing material; and a plurality of chambers (5) are stacked and connected in series.
    Type: Application
    Filed: February 4, 2009
    Publication date: March 3, 2011
    Applicant: R + Alliance
    Inventors: Ignacio Valor Herencia, Juan Manuel Juarez-Galan
  • Publication number: 20110041693
    Abstract: An article comprising a microporous membrane. A first porous fabric is laminated to a first side of the microporous membrane. A second porous fabric is laminated to a second opposite side of the microporous membrane to form a laminate with the membrane and the first porous fabric. The laminate has two fabric sides separated by the microporous membrane. A treatment material is applied to the laminate to form a treated laminate. The treated laminate has an oil resistance of at least a number 7 determined by AATCC 118 testing on both fabric sides and has an air permeability through the treated laminate of at least 0.01 CFM per square foot determined by ASTM D737 testing.
    Type: Application
    Filed: November 1, 2010
    Publication date: February 24, 2011
    Inventors: Martin Gregory Hatfield, Nusrat Farzana