Abstract: A method and apparatus which enables a complete multi-stepped chemical treatment process to occur within a single, sealed-bladdered vessel 31. The entire chemical process occurs without interruption of the sealed-bladdered vessel 31 such as opening the sealed-bladdered vessel 31 between various steps of the process. The sealed-bladdered vessel 31 is loaded with a batch to be dissolved, treated, decanted, rinsed and/or dried. A pressure filtration step may also occur. The self-contained chemical processing apparatus 32 contains a sealed-bladder 32, a fluid pump 34, a reservoir 20, a compressed gas inlet, a vacuum pump 24, and a cold trap 23 as well as the associated piping 33, numerous valves 21,22,25,26,29,30,35,36 and other controls associated with such an apparatus. The claimed invention allows for dissolution and/or chemical treatment without the operator of the self-contained chemical processing apparatus 38 coming into contact with any of the process materials.
Abstract: In a method of coextracting neptunium and plutonium, a nitric acid solution containing a mixture of neptunium and plutonium is oxidized by irradiation of ultraviolet light. As a result, different valences of neptunium are adjusted all into the valence 6, which can remain in water, and in the meantime, valences of plutonium are adjusted into the valence 4 or 6, which can be extracted in the organic phase. It is therefore possible to coextract neptunium and plutonium without difficulty. The coextracted neptunium and plutonium can be used in forming mixed fuel by blending at least a portion of at least one of neptunium and plutonium which neptunium and plutonium have been formed by separating a nitric acid solution containing neptunium and plutonium by exposing the solution and a reducing agent to ultraviolet radiation to adjust the valences, and extracting the solution using an organic phase to extract plutonium from the solution into the organic phase.
Abstract: In a method of separating neptunium and plutonium, a nitric acid solution containing a mixture of neptunium and plutonium is oxidized by irradiation of ultraviolet light in the presence of a reducing agent. As a result, different valences of neptunium are adjusted all into the valence 5, which can remain in water, and in the meantime, valences of plutonium are adjusted into the valence 4 or 6, which can be extracted in the organic phase. It is therefore possible to separate neptunium and plutonium from each other without difficulty.
Abstract: A method of separating and recovering Pu and Np from a Pu- and Np-containing nitric acid solution. The method comprises the steps of subjecting a nitric acid solution containing Pu and Np to valence adjustment by adding a reducing agent consisting of hydroxylamine nitrate and hydrazlne to said nitric acid solution so as to reduce Pu and Np in said nitric acid solution to Pu (III) and Np (IV), respectively; adjusting a nitric acid concentration of said nitric acid solution after said valence adjustment to 6 to 8 M; bringing said nitric acid solution after said nitric acid concentration adjustment into contact with a strong basic anion exchange resin so as to cause Np to be selectively adsorbed by said resin and to separate and recover Pu as a plutonium nitrate solution; and eluting said adsorbed Np (IV) by using diluted nitric acid of 1 M or below so as to recover Np as a neptunium nitrate solution.