Exhibiting Three-dimensional Carrier Confinement (e.g., Quantum Dots, Etc.) Patents (Class 977/774)
  • Publication number: 20150132230
    Abstract: The present invention provides a diagnostic reagent or assay for assessing the activity of a protease in vivo or in vitro and methods of detecting the presence of a cancerous or precancerous cell. The assays are comprised of two particles linked via an oligopeptide linkage that comprises a consensus sequence specific for the target protease. Cleavage of the sequence by the target protease can be detected visually or using various sensors, and the diagnostic results can be correlated with cancer prognosis.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 14, 2015
    Inventors: Stefan H. Bossmann, Deryl L. Troyer, Matthew T. Basel
  • Publication number: 20150129793
    Abstract: The present invention provides a novel method to synthesize composite nanoparticle structures combining the functions of individual nanoparticle components, such as quantum dots, gold nanoparticles and iron oxide nanoparticles. This novel technology solves some of the major problems of the commonly used synthesis methods such as poorly-controlled ratios between different components in a composite nanoparticle. This platform technology has great potential in applying nanotechnology in biomedical detection and imaging, solar cells, as well as environmental monitoring.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventor: Gang RUAN
  • Patent number: 9029936
    Abstract: A memory device includes a semiconductor channel, a tunnel dielectric layer located over the semiconductor channel, a first charge trap including a plurality of electrically conductive nanodots located over the tunnel dielectric layer, dielectric separation layer located over the nanodots, a second charge trap including a continuous metal layer located over the separation layer, a blocking dielectric located over the second charge trap, and a control gate located over the blocking dielectric.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: May 12, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Purayath, George Samachisa, George Matamis, James Kai, Yuan Zhang
  • Patent number: 9019595
    Abstract: Optical resonators that are enhanced with photoluminescent phosphors and are designed and configured to output light at one or more wavelengths based on input/pump light, and systems and devices made with such resonators. In some embodiments, the resonators contain multiple optical resonator cavities in combination with one or more photoluminescent phosphor layers or other structures. In other embodiments, the resonators are designed to simultaneously resonate at the input/pump and output wavelengths. The photoluminescent phosphors can be any suitable photoluminescent material, including semiconductor and other materials in quantum-confining structures, such as quantum wells and quantum dots, among others.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 28, 2015
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9011818
    Abstract: Water soluble InAs(ZnCdS) semiconductor nanocrystals with bright and stable emission in the near infrared (NIR) wavelength range have been prepared. The NIR semiconductor nanocrystals can be functionalized to enable imaging of specific cellular proteins. In addition, the utility of the NIR region for in vivo biological imaging is clearly demonstrated by the superior ability of InAs(ZnCdS) semiconductor nanocrystals to image tumor vasculature.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 21, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter M. Allen, Wenhao Liu, Moungi G. Bawendi
  • Patent number: 9005985
    Abstract: This invention provides compositions that have a light emitting reporter linked to biomolecules, preferably, nucleotide oligomers. The light reporter particles are silylated and functionalized to produce a coated light reporter particle, prior to covalently linking the biomolecules to the light reporter particle. The light reporter particles of the invention can be excited by a light excitation source such as UV or IR light, and when the biomolecule is DNA, the attached DNA molecule(s) are detectable by amplification techniques such as PCR.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 14, 2015
    Assignee: APDN (B.V.I.) Inc.
    Inventors: Thomas Kwok, Benjamin MingHwa Liang, Stephane Shu Kin So
  • Patent number: 9005480
    Abstract: The present invention describes a solventless ligand exchange using a siloxane polymer having a binding ligand that displaces the binding ligand on a quantum dot material.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 14, 2015
    Assignee: Nanosys, Inc.
    Inventors: Paul T. Furuta, Robert Dubrow
  • Publication number: 20150094647
    Abstract: Exemplary methods of opening pores and moving molecules into tissue comprising, applying plasma to the surface of tissue and applying a carrier including one or more molecules to the surface of the tissue are disclosed herein.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Applicant: EP Technologies LLC
    Inventors: Sameer Kalghatgi, Daphne Pappas Antonakas, Tsung-Chan Tsai, Robert L. Gray
  • Patent number: 8994056
    Abstract: An improved approach is described to implement an LED-based large area display which uses an array of single color solid state lighting elements (e.g. LEDs). In some embodiments, the panel comprises an array of blue LEDs, where each pixel of the array comprises three blue LEDs. An overlay is placed over the array of blue LEDs, where the overlay comprises a printed array of phosphor portions. Each pixel on the PCB comprised of three blue LEDs is matched to a corresponding portion of the overlay having the printed phosphor portions. The printed phosphor portions of the overlay includes a number of regions of blue light excitable phosphor materials that are configured to convert, by a process of photoluminescence, blue excitation light generated by the light sources into green or red and colored light. Regions of the overlay associated with generating blue light comprise an aperture/window that allows blue light to pass through the overlay.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: March 31, 2015
    Assignee: Intematix Corporation
    Inventor: Charles Edwards
  • Patent number: 8994269
    Abstract: A lamp includes a single string of light emitting diodes (LEDs), driven in common, configured to cause the lamp to emit a visible light output via a bulb. The lamp also includes a lighting industry standard lamp base, which has connectors arranged in a standard three-way lamp configuration, for providing electricity from a three-way lamp socket. Circuitry connected to receive electricity from the connectors of the lamp base as standard three-way control setting inputs drives the string of LEDs. The circuitry is configured to detect the standard three-way control setting inputs and to adjust the common drive to the string of LEDs to selectively produce a different visible light outputs of the lamp via the bulb responsive to the three-way control setting inputs. The lamp may also include nanophosphors pumped by emissions of the LEDs, so that the lamp produces a white light output of particularly desirable characteristics.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 31, 2015
    Assignee: Abl IP Holding LLC
    Inventors: David P. Ramer, Jack C. Rains, Jr.
  • Publication number: 20150085347
    Abstract: This invention relates to a metamaterial structure, which can simultaneously cause resonance at a wavelength of light that excites quantum dots and a wavelength of light produced by the quantum dots in a local space where quantum dots are located. The metamaterial structure, which can resonate with two wavelengths unlike conventional metamaterial structures that resonate with a single wavelength, includes a substrate, a quantum dot layer, and a resonance layer formed between the substrate and the quantum dot layer and having two rectangular holes which are formed to cross each other so that resonance occurs at two different resonance wavelengths.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 26, 2015
    Applicant: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Choongi CHOI, Jongho CHOE
  • Publication number: 20150083970
    Abstract: A quantum dot-resin nanocomposite including a nanoparticle including a curable resin and a plurality of quantum dots contacting the nanoparticle. Also, a method of preparing the nanocomposite, and a molded article including the nanocomposite.
    Type: Application
    Filed: June 18, 2014
    Publication date: March 26, 2015
    Inventors: Haeng Deog KOH, Hyun A KANG, Eun Joo JANG, Na Youn Won
  • Publication number: 20150086169
    Abstract: The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula: X-Sp-Z, wherein: X represents a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, an other nitrogen containing group, a carboxylic acid group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 26, 2015
    Inventors: CRAIG BREEN, JOHN R. LINTON, JONATHAN S. STECKEL, MARSHALL COX, SETH COE-SULLIVAN, MARK COMERFORD
  • Publication number: 20150083969
    Abstract: A nanocrystal particle including at least one semiconductor material and at least one halogen element, the nanocrystal particle including: a core comprising a first semiconductor nanocrystal; and a shell surrounding the core and comprising a crystalline or amorphous material, wherein the halogen element is present as being doped therein or as a metal halide
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventors: Hyunki KIM, Shin Ae JUN, Eun Joo JANG, Yongwook KIM, Tae Gon KIM, Yuho WON, Taekhoon KIM, Hyo Sook JANG
  • Patent number: 8980218
    Abstract: The present application relates to a method for preparing stoichiometrically pure maghemite iron superparamagnetic nanoparticles. The method for preparing maghemite (?-Fe2O3) superparamagnetic nanoparticles disclosed in the present application is characterized by a step of reduction and appropriate steps of oxidation of the Fe-based composition obtained by the same. The maghemite nanoparticles obtained show a suitable size as well as binding properties without any surface modification. These nanoparticles can be therefore easily used as reagents for detection of inorganic and/or organic molecules as well as nanocarriers of organic and/or biomolecules.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 17, 2015
    Assignees: Universita' Degli Studi di Padova
    Inventors: Umberto Russo, Luca Nodari, Fabio Vianello, Massimiliano Magro, Giorgio Valle
  • Publication number: 20150073167
    Abstract: The present disclosure provides a method for manufacturing a nanodot, including: providing a hydrolysable silane, wherein the hydrolysable silane has one or more hydrolysable groups and one or more substituted or non-substituted hydrocarbon groups; and performing a one-step heat treatment to hydrolyze and condensate the hydrolysable silane to form a nanodot. The nanodot includes: a core, the core is selected from the group consisting of a semiconductor core or a metal core; and a self-assembled monolayer (SAM) including the substituted or non-substituted hydrocarbon groups, wherein the self-assembled monolayer is connected to the core by covalent bonds.
    Type: Application
    Filed: June 2, 2014
    Publication date: March 12, 2015
    Applicant: National Sun Yat-sen University
    Inventors: Shu-Chen HSIEH, Pei-Ying LIN
  • Publication number: 20150070932
    Abstract: A light source unit includes: a light guiding plate having a front surface and a rear surface facing each other, and a side surface between the front surface and the rear surface; a light guiding bar disposed on the side surface of the light guiding plate; a quantum dot package disposed on a surface of the light guiding bar; and a dot light source which provides light to the quantum dot package.
    Type: Application
    Filed: July 29, 2014
    Publication date: March 12, 2015
    Inventors: Dong Earn KIM, Jeong Hee LEE, Eun Joo JANG, Min Jong BAE, Sang Eui LEE
  • Publication number: 20150065694
    Abstract: Here, we describe a preassembled plasmonic resonance nanocluster. One embodiment is used for microbe detection and typing. The metallic nanoparticle acceptors with microbe surface antigen epitope, and quantum dot (QD) donors with Fab antibody, are assembled into an immuno-mediated 3D-oriented complex with enhanced energy transfer and fluorescence quenching. The coherent plasmonic resonance between the metal and QD nanoparticles is exploited to achieve improved donor-acceptor resonance within the nanocluster, which in the presence of microbial particles is disassembled in a highly specific manner. The nanocluster provides high detection specificity and sensitivity of the microbes, with a sensitivity limit down to 1-100 particles per microliter and to attomolar levels of a surface antigen epitope. A few specific examples of the plasmonic resonance nanocluster used in microbe detection are disclosed along with ways in which the complex can be easily modified for additional microbes.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Applicant: United States Department of Energy
    Inventors: Fanqing Frank Chen, Mohamed Shehata Draz
  • Patent number: 8969831
    Abstract: Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Ofer Shapira, Marin Soljacic, Bo Zhen, Song-Liang Chua, Jeongwon Lee, John Joannopoulos
  • Patent number: 8969027
    Abstract: The present invention provides a diagnostic reagent or assay for assessing the activity of a protease in vivo or in vitro and methods of detecting the presence of a cancerous or precancerous cell. The assays are comprised of two particles linked via an oligopeptide linkage that comprises a consensus sequence specific for the target protease. Cleavage of the sequence by the target protease can be detected visually or using various sensors, and the diagnostic results can be correlated with cancer prognosis.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 3, 2015
    Assignee: Kansas State University Research Foundation
    Inventors: Stefan H. Bossmann, Deryl L. Troyer, Matthew T. Basel
  • Patent number: 8962757
    Abstract: Innovative graft polymers designed for the efficient delivery of antisense molecules into biological cells and for maintaining the biological activity of these molecules while in serum and other aqueous environments are provided. Such polymers may comprise an anionic graft polymer comprising an anionic polymer backbone with pendant carboxylic acid groups and pendant chains comprising amphipathic or hydrophilic polymers covalently bonded to a portion of said pendant carboxylic acid groups. Antisense molecule delivery vectors comprising such polymers in combination with cationic agents for delivery of antisense molecules are also disclosed.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 24, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: David I. Devore, Charles Roth
  • Publication number: 20150049491
    Abstract: A glass tube including quantum dots under oxygen-free conditions is described. An optical component and other products including such glass tube, a composition including quantum dots, and methods are also disclosed.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: Karthik VENKATARAMAN, John R. LINTON, Robert J. NICK, Abhishek GUPTA
  • Publication number: 20150043056
    Abstract: A method of generating light is disclosed. The method comprises: directing an optical pulse to a semiconductor optical amplifier being at a temperature above 0° C. The optical pulse is preferably characterized by a wavelength within an emission spectrum of the semiconductor optical amplifier and by a pulse area selected to induce Rabi oscillations in the semiconductor optical amplifier, and to emit light at a frequency of at least 1 THz.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Inventors: Amir CAPUA, Gadi Eisenstein
  • Patent number: 8946022
    Abstract: Nanostructure-based charge storage regions are included in non-volatile memory devices and integrated with the fabrication of select gates and peripheral circuitry. One or more nanostructure coatings are applied over a substrate at a memory array area and a peripheral circuitry area. Various processes for removing the nanostructure coating from undesired areas of the substrate, such as target areas for select gates and peripheral transistors, are provided. One or more nanostructure coatings are formed using self-assembly based processes to selectively form nanostructures over active areas of the substrate in one example. Self-assembly permits the formation of discrete lines of nanostructures that are electrically isolated from one another without requiring patterning or etching of the nanostructure coating.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 3, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, James K Kai, Masaaki Higashitani, Takashi Orimoto, George Matamis, Henry Chien
  • Publication number: 20150021548
    Abstract: A semiconductor nanocrystal characterized by having a solid state photoluminescence external quantum efficiency at a temperature of 90° C. or above that is at least 95% of the solid state photoluminescence external quantum efficiency of the semiconductor nanocrystal at 25° C. is disclosed. A semiconductor nanocrystal having a multiple LO phonon assisted charge thermal escape activation energy of at least 0.5 eV is also disclosed. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 590 nm to 650 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 5.5. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 545 nm to 590 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 7.
    Type: Application
    Filed: August 4, 2014
    Publication date: January 22, 2015
    Inventors: WENHAO LIU, CRAIG BREEN, SETH COE-SULLIVAN
  • Publication number: 20150021521
    Abstract: The present invention relates to a composition including quantum dots and an emission stabilizer, products including same, and methods, including methods for improving, or enhancing the emission stability of quantum dots. Inclusion of an emission stabilizer in a composition can improve or enhance the stability of at least one emissive property of the quantum dots in the composition against degradation compared to a composition that is the same in all respects except that it does not include the emission stabilizer. Examples of such emissive properties include, by way of example only, lumen output, lumen stability, color point (e.g., CIE x, CIE y) stability, wavelength stability, FWHM of the major peak emission, absorption, solid state EQE, and quantum dot emission efficiency.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 22, 2015
    Applicant: QD VISION, INC.
    Inventors: ROBERT J. NICK, CRAIG BREEN
  • Publication number: 20150014629
    Abstract: A coated quantum dot and methods of making coated quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Inventors: CRAIG BREEN, WENHAO LIU
  • Publication number: 20150014586
    Abstract: Quantum dots and methods of making quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Applicant: QD VISION, INC.
    Inventors: WENHAO LIU, CRAIG BREEN
  • Patent number: 8929411
    Abstract: An apparatus comprises a laser system and a light sensor system. The laser system is associated with a housing and configured to generate a first laser beam and direct the first laser beam toward a surface of an object in which the surface has a plurality of quantum dots. The first laser beam is configured to cause the plurality of quantum dots to generate light. The laser system is further configured to generate a second laser beam and direct the second laser beam toward the light generated by the plurality of quantum dots. The second laser beam is configured to amplify a portion of the light generated by the plurality of quantum dots. The light sensor system is associated with the housing and configured to detect the portion of the light to form data.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 6, 2015
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20150001464
    Abstract: There is provided a quantum dot light-emitting device including: a light-emitting layer containing a quantum dot luminescent material; and a metal-based particle assembly layer being a layer consisting of a particle assembly including 30 or more metal-based particles separated from each other and disposed in two-dimensions, said metal-based particles having an average particle diameter in a range of 200 to 1600 nm, an average height in a range of 55 to 500 nm, and an aspect ratio, as defined by a ratio of said average particle diameter to said average height, in a range of 1 to 8, wherein said metal-based particles that compose said metal-based particle assembly layer are disposed such that an average distance between adjacent metal-based particles may be in a range of 1 to 150 nm. The quantum dot light-emitting device provides enhanced emission via the metal-based particle assembly layer and thus presents high luminous efficiency.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 1, 2015
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventor: Tomohiro Fukuura
  • Patent number: 8920766
    Abstract: Provided are methods for making quantum nanostructures based on use of a combination of nucleation and growth precursors. The methods can be used to provide quantum nanostructures of a selected size. Also provided are quantum nanostructures, compositions comprising the quantum nanostructures, and uses of the quantum nanostructures. The quantum nanostructures can be used, for example, in imaging applications.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: December 30, 2014
    Assignee: University of Rochester
    Inventors: Todd D. Krauss, Christopher M. Evans
  • Patent number: 8916064
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can be used as refractive index matching components, filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 23, 2014
    Assignee: Nanosys, Inc.
    Inventors: Mingjun Liu, Robert S. Dubrow, William P. Freeman, Adrienne D. Kucma, J. Wallace Parce
  • Publication number: 20140369024
    Abstract: The invention provides a process for the production of a solid polymer with embedded luminescent nano particles, comprising (1) mixing luminescent nano particles with an outer surface coated with capping molecules comprising a first functional group and a second functional group and a precursor of a solid polymer, and (2) allowing the solid polymer to be formed; wherein the first functional group is configured to bind to the outer surface of the quantum dot and the second functional group is miscible with the precursor of the solid polymer and/or is able to react with the precursor of the solid polymer. The invention also provides a luminescent polymeric article comprising a solid polymer with in the polymer article embedded luminescent nano particles with an outer surface coated with capping molecules comprising a first functional group and a second functional group.
    Type: Application
    Filed: January 25, 2013
    Publication date: December 18, 2014
    Applicant: Koninklijke Philips N.V.
    Inventors: Shu Xu, Rifat Ata Mustafa Hikmet
  • Patent number: 8911887
    Abstract: Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MOx and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 16, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: Nobuhiro Fuke, Alexey Y. Koposov, Milan Sykora, Laura Hoch
  • Patent number: 8906721
    Abstract: A method for manufacturing a semiconductor light emitting device includes forming a lower cladding layer over a GaAs substrate; forming a quantum dot active layer over the lower cladding layer; forming a first semiconductor layer over the quantum dot active layer; forming a diffraction grating by etching the first semiconductor layer; forming a second semiconductor layer burying the diffraction grating; and forming an upper cladding layer having a conductive type different from that of the lower cladding layer over the second semiconductor layer, wherein the processes after forming the quantum dot active layer are performed at a temperature not thermally deteriorating or degrading quantum dots included in the quantum dot active layer.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: December 9, 2014
    Assignees: Fujitsu Limited, The University of Tokyo
    Inventors: Nobuaki Hatori, Tsuyoshi Yamamoto, Manabu Matsuda, Yasuhiko Arakawa
  • Publication number: 20140346442
    Abstract: Disclosed herein is an isolable colloidal particle comprising a nanoparticle and an inorganic capping agent bound to the surface of the nanoparticle, a method for making the same in a biphasic solvent mixture, and the formation of structures and solids from the isolable colloidal particle. The process can yield photovoltaic cells, piezoelectric crystals, thermoelectric layers, optoelectronic layers, light emitting diodes, ferroelectric layers, thin film transistors, floating gate memory devices, phase change layers, and sensor devices.
    Type: Application
    Filed: May 16, 2012
    Publication date: November 27, 2014
    Applicant: THE UNIVERSITY OF CHICAGO
    Inventors: Angshuman Nag, Dmitri V. Talapin
  • Patent number: 8895319
    Abstract: The present invention provides a nanohybrid type nitrogen monoxide detecting sensor and a production method therefor in which the nanohybrid type nitrogen monoxide detecting sensor includes a fluorescent semiconducting quantum dot and a transition metal compound. Employing a nanohybrid structure including semiconducting quantum dot nano-particles combined with a molecule recognizer selectively forming a bonding to nitrogen monoxide, the nitrogen monoxide detecting sensor is enabled to detect an infinitesimal amount of nitrogen monoxide by bringing about photoluminescence upon detection of nitrogen monoxide.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: November 25, 2014
    Assignee: Korea Institute of Ceramic Engineering and Technology
    Inventors: Eunhae Koo, Sung-ho Yoon, Jong-chul Lee, Jong-hee Kim
  • Patent number: 8890323
    Abstract: A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: November 18, 2014
    Assignee: Cornell Research Foundation
    Inventors: Samuel M. Stavis, Joshua B. Edel, Kevan T. Samiee, Harold G. Craighead
  • Publication number: 20140333984
    Abstract: A thermochromic window, the sunlight transmittance of which is adjustable depending on temperature, and a method of fabricating the same. The thermochromic window includes a substrate, a plurality of nanodots formed on the substrate, and a thermochromic thin film coating the substrate and the nanodots. The thermochromic thin film is made of a thermochromic material. The thickness of the thermochromic thin film disposed on the substrate is smaller than the thickness of the thermochromic thin film disposed on the nanodots.
    Type: Application
    Filed: May 13, 2014
    Publication date: November 13, 2014
    Applicant: SAMSUNG CORNING PRECISION MATERIALS CO., LTD.
    Inventors: Yongwon CHOI, Yung-Jin JUNG, Chang Gyu KIM, Hyun Bin KIM
  • Publication number: 20140333977
    Abstract: Provided is a display device. The display device includes a backlight unit generating a plurality of flat lights and a spatial light modulator (SLM) unit generating an interference pattern by using the plurality of lights according to hologram data and displaying a hologram based on the generated interference pattern. The backlight unit is manufactured as an organic light emitting diode including a plurality of quantum dots.
    Type: Application
    Filed: March 14, 2014
    Publication date: November 13, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Chi-Sun HWANG, Hye Yong CHU, Jong Sool JEONG
  • Publication number: 20140334181
    Abstract: A backlight unit of a display device includes a light bar and a light guide plate (LGP), where a plurality of ultraviolet (UV) light emitting diodes (LEDs) are arranged on the light bar, and a light incident surface of the LGP and the UV LEDs are oppositely arranged. at least one red-green-blue (RGB) quantum dot phosphor layer is arranged in a path of a light from the UV LEDs to a light emitting surface of the LGP. The RGB quantum dot phosphor layer comprises a red quantum dot fluorescence film, a green quantum dot fluorescence film, and a blue quantum dot fluorescence film that are successively arranged.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 13, 2014
    Applicant: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD
    Inventors: Che chang HU, Yong FAN
  • Patent number: 8883903
    Abstract: Preparation of semiconductor nanocrystals and their dispersions in solvents and other media is described. The nanocrystals described herein have small (1-10 nm) particle size with minimal aggregation and can be synthesized with high yield. The capping agents on the as-synthesized nanocrystals as well as nanocrystals which have undergone cap exchange reactions result in the formation of stable suspensions in polar and nonpolar solvents which may then result in the formation of high quality nanocomposite films.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: November 11, 2014
    Assignee: Pixelligent Technologies, LLC
    Inventors: Zehra Serpil Gonen Williams, Yijun Wang, Robert J. Wiacek, Xia Bai, Linfeng Gou, Selina I. Thomas, Wei Xu, Jun Xu, Rakesh Patel
  • Patent number: 8883266
    Abstract: A method of fabricating quantum confinements is provided. The method includes depositing, using a deposition apparatus, a material layer on a substrate, where the depositing includes irradiating the layer, before a cycle, during a cycle, and/or after a cycle of the deposition to alter nucleation of quantum confinements in the material layer to control a size and/or a shape of the quantum confinements. The quantum confinements can include quantum wells, nanowires, or quantum dots. The irradiation can be in-situ or ex-situ with respect to the deposition apparatus. The irradiation can include irradiation by photons, electrons, or ions. The deposition is can include atomic layer deposition, chemical vapor deposition, MOCVD, molecular beam epitaxy, evaporation, sputtering, or pulsed-laser deposition.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: November 11, 2014
    Assignees: The Board of Trustees of the Leland Stanford Junior University, Honda Patents & Technologies North America, LLC
    Inventors: Timothy P. Holme, Andrei Iancu, Hee Joon Jung, Michael C Langston, Munekazu Motoyama, Friedrich B. Prinz, Takane Usui, Hitoshi Iwadate, Neil Dasgupta, Cheng-Chieh Chao
  • Publication number: 20140326921
    Abstract: The invention relates to a continuous-flow synthesis process for the preparation of high quality indium phosphide/zinc sulfide core/shell semiconduting nanocrystals in particular quantum dots (QD) conducted in a micro-reaction system comprising at least one mixing chamber connected to one reaction chamber.
    Type: Application
    Filed: November 26, 2012
    Publication date: November 6, 2014
    Inventors: Huachang Lu, Werner Hoheisel, Leslaw Mleczko, Stephan Nowak
  • Publication number: 20140326302
    Abstract: An solar cell of the present invention includes a p-type semiconductor layer, an n-type semiconductor layer, and a superlattice semiconductor layer interposed between the p-type semiconductor layer and the n-type semiconductor layer, in which the superlattice semiconductor layer has a superlattice structure in which barrier layers and quantum dot layers each including a plurality of quantum dots are stacked alternately and repeatedly, the superlattice semiconductor layer contains an n-type dopant and has at least two intermediate energy levels at which electrons photoexcited from the valence band of the quantum dots or the barrier layers can be present for a certain period of time, each of the intermediate energy levels is located between the top of the valence band of the barrier layers and the bottom of the conduction band of the barrier layers, each of the intermediate energy levels is formed from one or a plurality of quantum levels of the quantum dots, and the superlattice semiconductor layer contains an
    Type: Application
    Filed: September 20, 2012
    Publication date: November 6, 2014
    Inventors: Yasuhiko Arakawa, Tomohiro Nozawa, Makoto Izumi
  • Patent number: 8877505
    Abstract: Embodiments of a composition for stabilizing fluorescent signal of nanoparticles and methods for its use are disclosed. In some embodiments, the composition has a pH from 7 to 10 and includes borate, protein and/or protein hydrolysate, an amine, a preservative, and a nonionic surfactant. In particular embodiments, the amine is an N-ethanol substituted amine, such as ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N,N-dimethylethanolamine, or a combination thereof. In some embodiments, a fluorescent particle solution, such as a quantum dot solution or quantum dot conjugate solution, is diluted in the composition and stored at 4° C. In certain embodiments, the fluorescence intensity of the diluted fluorescent particle remains substantially the same when stored at 4° C. for at least one month or at least three months. In particular embodiments, a diluted quantum dot conjugate is used to detect a hybridized probe or a protein antigen.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: November 4, 2014
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Eric May, Alexandra Nagy, Jerome Kosmeder
  • Publication number: 20140319406
    Abstract: A magnetic material is disclosed, which includes magnetic particles containing at least one magnetic metal selected from the group including Fe, Co and Ni, and at least one non-magnetic metal selected from Mg, Al, Si, Ca, Zr, Ti, Hf, Zn, Mn, rare earth elements, Ba and Sr; a first coating layer of a first oxide that covers at least a portion of the magnetic particles; oxide particles of a second oxide that is present between the magnetic particles and constitutes an eutectic reaction system with the first oxide; and an oxide phase that is present between the magnetic particles and has an eutectic structure of the first oxide and the second oxide.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Tomohiro Suetsuna, Seiichi Suenaga, Toshihide Takahashi, Tomoko Eguchi, Koichi Harada, Yasuyuki Hotta
  • Publication number: 20140322373
    Abstract: In certain embodiments, a material comprising one or more semiconductive substances is vaporized to generate a vapor phase condensate. The vapor phase condensate is allowed to form nanoparticles. The nanoparticles are annealed to yield substantially spherical nanoparticles.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Inventor: Kalin Spariosu
  • Patent number: 8871175
    Abstract: A quantum nanomaterial having a bandgap that may be tuned to enable the quantum nanomaterial to detect IR radiation in selected regions including throughout the MWIR region and into the LWIR region is provided. The quantum nanomaterials may include tin telluride (SnTe) nanomaterials and/or lead tin telluride (PbxSn1-xTe) nanomaterials. Additionally, a method of manufacturing nanomaterial that is tunable for detecting IR radiation in selected regions, such as throughout the MWIR region and into the LWIR region, is also provided.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: October 28, 2014
    Assignee: The Boeing Company
    Inventors: Larken Elizabeth Euliss, Adam Franklin Gross, Keith John Davis, Nicole L. Abueg
  • Patent number: 8871623
    Abstract: Methods are provided for forming a nanostructure array. An example method includes providing a first layer, providing nanostructures dispersed in a solution comprising a liquid form of a spin-on-dielectric, wherein the nanostructures comprise a silsesquioxane ligand coating, disposing the solution on the first layer, whereby the nanostructures form a monolayer array on the first layer, and curing the liquid form of the spin-on-dielectric to provide a solid form of the spin-on-dielectric. Numerous other aspects are provided.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: October 28, 2014
    Assignee: SanDisk Corporation
    Inventors: Jian Chen, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, J. Wallace Parce