Exhibiting Three-dimensional Carrier Confinement (e.g., Quantum Dots, Etc.) Patents (Class 977/774)
  • Patent number: 11859118
    Abstract: Quantum dots that are cadmium-free and/or stoichiometncally tuned are disclosed, as are methods of making them. Inclusion of the quantum dots and others in a stabilizing polymer matrix is also disclosed. The polymers are chosen for their strong binding affinity to the outer layers of the quantum dots such that the bond dissociation energy between the polymer material and the quantum dot is greater than the energy required to reach the melt temperature of the cross-linked polymer.
    Type: Grant
    Filed: December 8, 2022
    Date of Patent: January 2, 2024
    Inventors: Lianhua Qu, Hunaid Nulwala
  • Patent number: 11845061
    Abstract: Some variations provide an interspersed assembly of nanoparticles, the assembly comprising a first phase containing first nanoparticles and a second phase containing second nanoparticles, wherein the second phase is interspersed with the first phase, and wherein the first nanoparticles are compositionally different than the second nanoparticles. The interspersed assembly may be a semi-ordered assembly comprising discrete first-phase particles surrounded by a continuous second phase. Other variations provide a core-shell assembly of nanoparticles, the assembly comprising a first phase containing first nanoparticles and a second phase containing compositionally distinct second nanoparticles, wherein the second phase forms a shell surrounding a core of the first phase. The disclosed assemblies may have a volume from 1 ?m3 to 1 mm3, a packing fraction from 20% to 100%, and an average relative surface roughness less than 5%, for example.
    Type: Grant
    Filed: September 19, 2020
    Date of Patent: December 19, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Christopher S. Roper, Shanying Cui, Adam F. Gross, Xin Guan
  • Patent number: 11822098
    Abstract: A quantum dot lens, a backlight module, a display device and a manufacturing method of the quantum dot lens are provided. The quantum dot lens includes: a first lens, which is a convex lens and is provided with a first lens surface; a second lens, which is a concave lens and is provided with a second lens surface opposite to the first lens surface; and a quantum dot fluorescent resin layer, provided between the first lens surface and the second lens surface, and including more than one quantum dot fluorescent material. With the above structure, the quantum dot lens has a simple manufacturing process and ease of mass production, saves the quantum dot fluorescent material, and solves the problems of poor consistency and blue light leakage of existing quantum dot lenses.
    Type: Grant
    Filed: September 13, 2021
    Date of Patent: November 21, 2023
    Inventors: Xiaohua Qiu, Chong Wan, Haiyan Wei
  • Patent number: 11807787
    Abstract: A luminescence conversion material is provided. The luminescence conversion material includes: a hybrid luminescence conversion particle, a first cladding material covering the hybrid luminescence conversion particle, and a second cladding material formed on the first cladding material and covering the first cladding material. The hybrid luminescence conversion particle includes a matrix and a plurality of quantum dots uniformly dispersed in the matrix. The first cladding material includes silicon oxide. The ratio ? (absorbance ratio ?: A939/A1000-1150) of the absorbance at 939 cm?1 (A939) to the absorbance peak at 1000-1150 cm?1 (A1000-1150) in a FTIR spectrum of the first cladding material is less than or equal to 0.8.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: November 7, 2023
    Inventors: Chin-Cheng Weng, Ming-Chang Li, Po-Jung Hsu
  • Patent number: 11795393
    Abstract: The disclosure provides a quantum dot structure, a manufacturing method thereof, and a quantum dot light-emitting device. The quantum dot structure includes a core structure and a shell layer. The core structure includes a first metal element, at least one second metal element, and a non-metal element that bind through a chemical bond. The first metal element is a group III element, the non-metal element is a group V element, and the second metal element is a metal element different from the first metal element. In an inside-to-outside direction of the core structure, the content of the first metal element is in a descending order, the sum of content of the second metal element is in an ascending order, and the size of an optical band gap of the core structure is in the ascending order.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: October 24, 2023
    Assignee: BOE Technology Group Co., Ltd.
    Inventors: Xuyong Yang, Fan Cao, Haiqiao Ye, Yang Liu, Jingwen Feng
  • Patent number: 11676377
    Abstract: An enhanced vision system includes a first optic subsystem and a transparent photodetector subsystem disposed within a common housing. The first optic subsystem may include passive devices such as simple or compound lenses, active devices such as low-light enhancing image intensifiers, or a combination of passive and active devices. The transparent photodetector subsystem receives the visible image exiting the first optic subsystem and converts a portion of the electromagnetic energy in the visible image to a signal communicated to image analysis circuitry. On a real-time or near real-time basis, the image analysis circuitry detects and identifies structures, objects, and/or individuals in the visible image. The image analysis circuitry provides an output that includes information regarding the structure, objects, and individuals to the system user contemporaneous with the system user viewing the visible image.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: June 13, 2023
    Assignee: EOTech, LLC
    Inventors: Jon Burnsed, Stephen Styonavich, Michael Iosue
  • Patent number: 11643597
    Abstract: Disclosed are a semiconductor nanocrystal particle including indium (In), zinc (Zn), and phosphorus (P), wherein a mole ratio of the zinc relative to the indium is greater than or equal to about 25:1, and the semiconductor nanocrystal particle includes a core including a first semiconductor material including indium, zinc, and phosphorus and a shell disposed on the core and including a second semiconductor material including zinc and sulfur, a method of producing the same, and an electronic device including the same. The semiconductor nanocrystal particle emits blue light having a maximum peak emission at a wavelength of less than or equal to about 470 nanometers.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: May 9, 2023
    Inventors: Tae Hyung Kim, Hyun A Kang, Eun Joo Jang, Dae Young Chung
  • Patent number: 11637260
    Abstract: The present disclosure provides a quantum dot-based display panel, a method and a display device. A pixel of the display panel includes four sub-pixels of R, G, B and W, each of which uses blue light as backlight, both the red sub-pixel and the green sub-pixel include quantum dots, the blue sub-pixel includes a light transmitting layer, and a white sub-pixel includes a yellow light conversion layer. Quantum dots of the yellow light conversion layer are configured to convert a portion of the blue light to yellow light and at the same time transmit the other portion of the blue light such that the obtained yellow light and the transmitted blue light are mixed to form white light. Thereby, R, G, B and W four-color display based on the quantum dots is realized, which enhances the richness of color, display brightness and resolution, the utilization ratio of backlight.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: April 25, 2023
    Inventor: Juanjuan You
  • Patent number: 11634631
    Abstract: The invention relates to highly luminescent nanostructures with improved blue light absorbance, particularly core/shell nanostructures comprising a ZnSe core and InP and/or ZnS shell layers. The invention also relates to methods of producing such nanostructures.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: April 25, 2023
    Assignee: Nanosys, Inc.
    Inventors: John Curley, Chunming Wang, Jay Yamanaga, Xiaofeng Zhang, Christian Ippen
  • Patent number: 11621403
    Abstract: A cadmium-free, core shell quantum dot, a quantum dot polymer composite, and electronic devices including the quantum dot polymer composite. The core shell quantum dot has an extinction coefficient per gram of greater than or equal to 0.3, an ultraviolet-visible absorption spectrum curve that has a positive differential coefficient value at 450 nm, wherein the core shell quantum dot includes a semiconductor nanocrystal core including indium and phosphorus, and optionally zinc, and a semiconductor nanocrystal shell disposed on the semiconductor nanocrystal core, the shell including zinc, selenium, and sulfur, wherein the core shell quantum dot has a quantum efficiency of greater than or equal to about 80%, and is configured to emit green light upon excitation.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: April 4, 2023
    Inventors: Nayoun Won, Mi Hye Lim, Tae Gon Kim, Taekhoon Kim, Shang Hyeun Park, Shin Ae Jun
  • Patent number: 11591514
    Abstract: The present invention relates to semiconducting light emitting nanoparticles and compositions.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: February 28, 2023
    Inventor: Itai Lieberman
  • Patent number: 11584887
    Abstract: Provided are an inorganic fluorescent nanoparticle composite that can suppress the degradation of inorganic fluorescent nanoparticles when sealed in glass and a wavelength conversion member using the inorganic fluorescent nanoparticle composite. An inorganic fluorescent nanoparticle composite 1 is made up by including: an inorganic fluorescent nanoparticle 2; and an inorganic fine particle 3 deposited on a surface of the inorganic fluorescent nanoparticle 2.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: February 21, 2023
    Inventor: Tamio Ando
  • Patent number: 11506930
    Abstract: The present disclosure provides a curved-surface vehicle-mounted display module, a vehicle-mounted display device and a vehicle. The curved-surface vehicle-mounted display module includes a back plate, a backlight assembly and a liquid crystal panel. The back plate is configured to support the backlight assembly and the liquid crystal panel. The backlight assembly includes a flexible substrate and LEDs. The flexible substrate includes at least one backlight block, each backlight block is provided with a plurality of LEDs, and a distance between two adjacent LEDs is a predefined value.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: November 22, 2022
    Inventors: Zan Zhang, Yue Zhai, Wenyang Li, Shouyang Leng, Rui Han, Zeyuan Tong, Weining Chi, Fengping Wang, Zhipeng Zhang, Dong Cui
  • Patent number: 11499095
    Abstract: A quantum dot and its preparation method and application. The method includes the steps of forming a compound quantum dot core first, then adding a precursor of a metal element M2 to be alloyed into the reaction system containing the compound quantum dot core. The metal element M2 undergoes cation exchange with a metal element M1 in the existing compound quantum dot core, thereby forming a quantum dot with an alloy core. In this method, the distribution of alloyed components is not only adjusted by changing the feeding ratio of the metal elements and the non-metal elements, but also by a more real-time, more direct, and more precise adjustments through various reaction condition parameters of the actual reaction process, thereby achieving a more precise composition and energy level distribution control for alloyed quantum dots.
    Type: Grant
    Filed: December 25, 2018
    Date of Patent: November 15, 2022
    Inventors: Yixing Yang, Lei Qian, Chengyu Yang, Jielong Qiu, Zhiwen Nie
  • Patent number: 11466322
    Abstract: The present invention relates to a composition for DNA sequence analysis and a method for DNA sequence analysis, the method comprising treating a sample with the composition. The composition of the present invention can attain efficient optical identification at a single-DNA molecule level by linking both an A/T-specific DNA-binder agent and an A/T-non-specific complementary DNA-binder agent to DNA, and thus can be helpfully used in studying chromosomal organization of genomes, protein immunolocalization, and the like.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: October 11, 2022
    Inventors: Kyubong Jo, Seonghyun Lee, Jihyun Park, Eunji Shin
  • Patent number: 11359138
    Abstract: A phosphor may have the empirical formula: (AB)1+x+2yAl11?x?y(AC)xLiyO17:E, where 0<x+y<11; x>0; AC=B, Ga, In, or combinations thereof; AB=Na, K, Rb, Cs, or combinations thereof; and E=Eu, Ce, Yb, Mn, or combinations thereof. The phosphor may be used in conversion LED components.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: June 14, 2022
    Assignee: OSRAM OLED GmbH
    Inventors: Alexey Marchuk, Dominik Baumann
  • Publication number: 20150129793
    Abstract: The present invention provides a novel method to synthesize composite nanoparticle structures combining the functions of individual nanoparticle components, such as quantum dots, gold nanoparticles and iron oxide nanoparticles. This novel technology solves some of the major problems of the commonly used synthesis methods such as poorly-controlled ratios between different components in a composite nanoparticle. This platform technology has great potential in applying nanotechnology in biomedical detection and imaging, solar cells, as well as environmental monitoring.
    Type: Application
    Filed: November 11, 2014
    Publication date: May 14, 2015
    Inventor: Gang RUAN
  • Publication number: 20150132230
    Abstract: The present invention provides a diagnostic reagent or assay for assessing the activity of a protease in vivo or in vitro and methods of detecting the presence of a cancerous or precancerous cell. The assays are comprised of two particles linked via an oligopeptide linkage that comprises a consensus sequence specific for the target protease. Cleavage of the sequence by the target protease can be detected visually or using various sensors, and the diagnostic results can be correlated with cancer prognosis.
    Type: Application
    Filed: January 26, 2015
    Publication date: May 14, 2015
    Inventors: Stefan H. Bossmann, Deryl L. Troyer, Matthew T. Basel
  • Patent number: 9029936
    Abstract: A memory device includes a semiconductor channel, a tunnel dielectric layer located over the semiconductor channel, a first charge trap including a plurality of electrically conductive nanodots located over the tunnel dielectric layer, dielectric separation layer located over the nanodots, a second charge trap including a continuous metal layer located over the separation layer, a blocking dielectric located over the second charge trap, and a control gate located over the blocking dielectric.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: May 12, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Purayath, George Samachisa, George Matamis, James Kai, Yuan Zhang
  • Patent number: 9019595
    Abstract: Optical resonators that are enhanced with photoluminescent phosphors and are designed and configured to output light at one or more wavelengths based on input/pump light, and systems and devices made with such resonators. In some embodiments, the resonators contain multiple optical resonator cavities in combination with one or more photoluminescent phosphor layers or other structures. In other embodiments, the resonators are designed to simultaneously resonate at the input/pump and output wavelengths. The photoluminescent phosphors can be any suitable photoluminescent material, including semiconductor and other materials in quantum-confining structures, such as quantum wells and quantum dots, among others.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 28, 2015
    Assignee: VerLASE Technologies LLC
    Inventor: Ajaykumar R. Jain
  • Patent number: 9011818
    Abstract: Water soluble InAs(ZnCdS) semiconductor nanocrystals with bright and stable emission in the near infrared (NIR) wavelength range have been prepared. The NIR semiconductor nanocrystals can be functionalized to enable imaging of specific cellular proteins. In addition, the utility of the NIR region for in vivo biological imaging is clearly demonstrated by the superior ability of InAs(ZnCdS) semiconductor nanocrystals to image tumor vasculature.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: April 21, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter M. Allen, Wenhao Liu, Moungi G. Bawendi
  • Patent number: 9005480
    Abstract: The present invention describes a solventless ligand exchange using a siloxane polymer having a binding ligand that displaces the binding ligand on a quantum dot material.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 14, 2015
    Assignee: Nanosys, Inc.
    Inventors: Paul T. Furuta, Robert Dubrow
  • Patent number: 9005985
    Abstract: This invention provides compositions that have a light emitting reporter linked to biomolecules, preferably, nucleotide oligomers. The light reporter particles are silylated and functionalized to produce a coated light reporter particle, prior to covalently linking the biomolecules to the light reporter particle. The light reporter particles of the invention can be excited by a light excitation source such as UV or IR light, and when the biomolecule is DNA, the attached DNA molecule(s) are detectable by amplification techniques such as PCR.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: April 14, 2015
    Assignee: APDN (B.V.I.) Inc.
    Inventors: Thomas Kwok, Benjamin MingHwa Liang, Stephane Shu Kin So
  • Publication number: 20150094647
    Abstract: Exemplary methods of opening pores and moving molecules into tissue comprising, applying plasma to the surface of tissue and applying a carrier including one or more molecules to the surface of the tissue are disclosed herein.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Applicant: EP Technologies LLC
    Inventors: Sameer Kalghatgi, Daphne Pappas Antonakas, Tsung-Chan Tsai, Robert L. Gray
  • Patent number: 8994056
    Abstract: An improved approach is described to implement an LED-based large area display which uses an array of single color solid state lighting elements (e.g. LEDs). In some embodiments, the panel comprises an array of blue LEDs, where each pixel of the array comprises three blue LEDs. An overlay is placed over the array of blue LEDs, where the overlay comprises a printed array of phosphor portions. Each pixel on the PCB comprised of three blue LEDs is matched to a corresponding portion of the overlay having the printed phosphor portions. The printed phosphor portions of the overlay includes a number of regions of blue light excitable phosphor materials that are configured to convert, by a process of photoluminescence, blue excitation light generated by the light sources into green or red and colored light. Regions of the overlay associated with generating blue light comprise an aperture/window that allows blue light to pass through the overlay.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: March 31, 2015
    Assignee: Intematix Corporation
    Inventor: Charles Edwards
  • Patent number: 8994269
    Abstract: A lamp includes a single string of light emitting diodes (LEDs), driven in common, configured to cause the lamp to emit a visible light output via a bulb. The lamp also includes a lighting industry standard lamp base, which has connectors arranged in a standard three-way lamp configuration, for providing electricity from a three-way lamp socket. Circuitry connected to receive electricity from the connectors of the lamp base as standard three-way control setting inputs drives the string of LEDs. The circuitry is configured to detect the standard three-way control setting inputs and to adjust the common drive to the string of LEDs to selectively produce a different visible light outputs of the lamp via the bulb responsive to the three-way control setting inputs. The lamp may also include nanophosphors pumped by emissions of the LEDs, so that the lamp produces a white light output of particularly desirable characteristics.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: March 31, 2015
    Assignee: Abl IP Holding LLC
    Inventors: David P. Ramer, Jack C. Rains, Jr.
  • Publication number: 20150083970
    Abstract: A quantum dot-resin nanocomposite including a nanoparticle including a curable resin and a plurality of quantum dots contacting the nanoparticle. Also, a method of preparing the nanocomposite, and a molded article including the nanocomposite.
    Type: Application
    Filed: June 18, 2014
    Publication date: March 26, 2015
    Inventors: Haeng Deog KOH, Hyun A KANG, Eun Joo JANG, Na Youn Won
  • Publication number: 20150086169
    Abstract: The present inventions relate to optical components which include quantum confined semiconductor nanoparticles, wherein at least a portion of the nanoparticles include a ligand attached to a surface thereof, the ligand being represented by the formula: X-Sp-Z, wherein: X represents a primary amine group, a secondary amine group, a urea, a thiourea, an imidizole group, an amide group, an other nitrogen containing group, a carboxylic acid group, a phosphonic or arsonic acid group, a phosphinic or arsinic acid group, a phosphate or arsenate group, a phosphine or arsine oxide group; Sp represents a spacer group, such as a group capable of allowing a transfer of charge or an insulating group; and Z represents: (i) a reactive group capable of communicating specific chemical properties to the nanocrystal as well as provide specific chemical reactivity to the surface of the nanocrystal, and/or (ii) a group that is cyclic, halogenated, or polar a-protic.
    Type: Application
    Filed: September 29, 2014
    Publication date: March 26, 2015
  • Publication number: 20150083969
    Abstract: A nanocrystal particle including at least one semiconductor material and at least one halogen element, the nanocrystal particle including: a core comprising a first semiconductor nanocrystal; and a shell surrounding the core and comprising a crystalline or amorphous material, wherein the halogen element is present as being doped therein or as a metal halide
    Type: Application
    Filed: September 24, 2014
    Publication date: March 26, 2015
    Inventors: Hyunki KIM, Shin Ae JUN, Eun Joo JANG, Yongwook KIM, Tae Gon KIM, Yuho WON, Taekhoon KIM, Hyo Sook JANG
  • Publication number: 20150085347
    Abstract: This invention relates to a metamaterial structure, which can simultaneously cause resonance at a wavelength of light that excites quantum dots and a wavelength of light produced by the quantum dots in a local space where quantum dots are located. The metamaterial structure, which can resonate with two wavelengths unlike conventional metamaterial structures that resonate with a single wavelength, includes a substrate, a quantum dot layer, and a resonance layer formed between the substrate and the quantum dot layer and having two rectangular holes which are formed to cross each other so that resonance occurs at two different resonance wavelengths.
    Type: Application
    Filed: September 22, 2014
    Publication date: March 26, 2015
    Inventors: Choongi CHOI, Jongho CHOE
  • Patent number: 8980218
    Abstract: The present application relates to a method for preparing stoichiometrically pure maghemite iron superparamagnetic nanoparticles. The method for preparing maghemite (?-Fe2O3) superparamagnetic nanoparticles disclosed in the present application is characterized by a step of reduction and appropriate steps of oxidation of the Fe-based composition obtained by the same. The maghemite nanoparticles obtained show a suitable size as well as binding properties without any surface modification. These nanoparticles can be therefore easily used as reagents for detection of inorganic and/or organic molecules as well as nanocarriers of organic and/or biomolecules.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: March 17, 2015
    Assignees: Universita' Degli Studi di Padova
    Inventors: Umberto Russo, Luca Nodari, Fabio Vianello, Massimiliano Magro, Giorgio Valle
  • Publication number: 20150073167
    Abstract: The present disclosure provides a method for manufacturing a nanodot, including: providing a hydrolysable silane, wherein the hydrolysable silane has one or more hydrolysable groups and one or more substituted or non-substituted hydrocarbon groups; and performing a one-step heat treatment to hydrolyze and condensate the hydrolysable silane to form a nanodot. The nanodot includes: a core, the core is selected from the group consisting of a semiconductor core or a metal core; and a self-assembled monolayer (SAM) including the substituted or non-substituted hydrocarbon groups, wherein the self-assembled monolayer is connected to the core by covalent bonds.
    Type: Application
    Filed: June 2, 2014
    Publication date: March 12, 2015
    Applicant: National Sun Yat-sen University
    Inventors: Shu-Chen HSIEH, Pei-Ying LIN
  • Publication number: 20150070932
    Abstract: A light source unit includes: a light guiding plate having a front surface and a rear surface facing each other, and a side surface between the front surface and the rear surface; a light guiding bar disposed on the side surface of the light guiding plate; a quantum dot package disposed on a surface of the light guiding bar; and a dot light source which provides light to the quantum dot package.
    Type: Application
    Filed: July 29, 2014
    Publication date: March 12, 2015
    Inventors: Dong Earn KIM, Jeong Hee LEE, Eun Joo JANG, Min Jong BAE, Sang Eui LEE
  • Publication number: 20150065694
    Abstract: Here, we describe a preassembled plasmonic resonance nanocluster. One embodiment is used for microbe detection and typing. The metallic nanoparticle acceptors with microbe surface antigen epitope, and quantum dot (QD) donors with Fab antibody, are assembled into an immuno-mediated 3D-oriented complex with enhanced energy transfer and fluorescence quenching. The coherent plasmonic resonance between the metal and QD nanoparticles is exploited to achieve improved donor-acceptor resonance within the nanocluster, which in the presence of microbial particles is disassembled in a highly specific manner. The nanocluster provides high detection specificity and sensitivity of the microbes, with a sensitivity limit down to 1-100 particles per microliter and to attomolar levels of a surface antigen epitope. A few specific examples of the plasmonic resonance nanocluster used in microbe detection are disclosed along with ways in which the complex can be easily modified for additional microbes.
    Type: Application
    Filed: August 29, 2014
    Publication date: March 5, 2015
    Applicant: United States Department of Energy
    Inventors: Fanqing Frank Chen, Mohamed Shehata Draz
  • Patent number: 8969831
    Abstract: Disclosed herein is a system for stimulating emission from at least one an emitter, such as a quantum dot or organic molecule, on the surface of a photonic crystal comprising a patterned dielectric substrate. Embodiments of this system include a laser or other source that illuminates the emitter and the photonic crystal, which is characterized by an energy band structure exhibiting a Fano resonance, from a first angle so as to stimulate the emission from the emitter at a second angle. The coupling between the photonic crystal and the emitter may result in spectral and angular enhancement of the emission through excitation and extraction enhancement. These enhancement mechanisms also reduce the emitter's lasing threshold. For instance, these enhancement mechanisms enable lasing of a 100 nm thick layer of diluted organic molecules solution with reduced threshold intensity. This reduction in lasing threshold enables more efficient organic light emitting devices and more sensitive molecular sensing.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: March 3, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Ofer Shapira, Marin Soljacic, Bo Zhen, Song-Liang Chua, Jeongwon Lee, John Joannopoulos
  • Patent number: 8969027
    Abstract: The present invention provides a diagnostic reagent or assay for assessing the activity of a protease in vivo or in vitro and methods of detecting the presence of a cancerous or precancerous cell. The assays are comprised of two particles linked via an oligopeptide linkage that comprises a consensus sequence specific for the target protease. Cleavage of the sequence by the target protease can be detected visually or using various sensors, and the diagnostic results can be correlated with cancer prognosis.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: March 3, 2015
    Assignee: Kansas State University Research Foundation
    Inventors: Stefan H. Bossmann, Deryl L. Troyer, Matthew T. Basel
  • Patent number: 8962757
    Abstract: Innovative graft polymers designed for the efficient delivery of antisense molecules into biological cells and for maintaining the biological activity of these molecules while in serum and other aqueous environments are provided. Such polymers may comprise an anionic graft polymer comprising an anionic polymer backbone with pendant carboxylic acid groups and pendant chains comprising amphipathic or hydrophilic polymers covalently bonded to a portion of said pendant carboxylic acid groups. Antisense molecule delivery vectors comprising such polymers in combination with cationic agents for delivery of antisense molecules are also disclosed.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: February 24, 2015
    Assignee: Rutgers, The State University of New Jersey
    Inventors: David I. Devore, Charles Roth
  • Publication number: 20150049491
    Abstract: A glass tube including quantum dots under oxygen-free conditions is described. An optical component and other products including such glass tube, a composition including quantum dots, and methods are also disclosed.
    Type: Application
    Filed: August 14, 2014
    Publication date: February 19, 2015
    Inventors: Karthik VENKATARAMAN, John R. LINTON, Robert J. NICK, Abhishek GUPTA
  • Publication number: 20150043056
    Abstract: A method of generating light is disclosed. The method comprises: directing an optical pulse to a semiconductor optical amplifier being at a temperature above 0° C. The optical pulse is preferably characterized by a wavelength within an emission spectrum of the semiconductor optical amplifier and by a pulse area selected to induce Rabi oscillations in the semiconductor optical amplifier, and to emit light at a frequency of at least 1 THz.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Inventors: Amir CAPUA, Gadi Eisenstein
  • Patent number: 8946022
    Abstract: Nanostructure-based charge storage regions are included in non-volatile memory devices and integrated with the fabrication of select gates and peripheral circuitry. One or more nanostructure coatings are applied over a substrate at a memory array area and a peripheral circuitry area. Various processes for removing the nanostructure coating from undesired areas of the substrate, such as target areas for select gates and peripheral transistors, are provided. One or more nanostructure coatings are formed using self-assembly based processes to selectively form nanostructures over active areas of the substrate in one example. Self-assembly permits the formation of discrete lines of nanostructures that are electrically isolated from one another without requiring patterning or etching of the nanostructure coating.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: February 3, 2015
    Assignee: SanDisk Technologies Inc.
    Inventors: Vinod Robert Purayath, James K Kai, Masaaki Higashitani, Takashi Orimoto, George Matamis, Henry Chien
  • Publication number: 20150021521
    Abstract: The present invention relates to a composition including quantum dots and an emission stabilizer, products including same, and methods, including methods for improving, or enhancing the emission stability of quantum dots. Inclusion of an emission stabilizer in a composition can improve or enhance the stability of at least one emissive property of the quantum dots in the composition against degradation compared to a composition that is the same in all respects except that it does not include the emission stabilizer. Examples of such emissive properties include, by way of example only, lumen output, lumen stability, color point (e.g., CIE x, CIE y) stability, wavelength stability, FWHM of the major peak emission, absorption, solid state EQE, and quantum dot emission efficiency.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 22, 2015
    Applicant: QD VISION, INC.
  • Publication number: 20150021548
    Abstract: A semiconductor nanocrystal characterized by having a solid state photoluminescence external quantum efficiency at a temperature of 90° C. or above that is at least 95% of the solid state photoluminescence external quantum efficiency of the semiconductor nanocrystal at 25° C. is disclosed. A semiconductor nanocrystal having a multiple LO phonon assisted charge thermal escape activation energy of at least 0.5 eV is also disclosed. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 590 nm to 650 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 5.5. A semiconductor nanocrystal capable of emitting light with a maximum peak emission at a wavelength in a range from 545 nm to 590 nm characterized by an absorption spectrum, wherein the absorption ratio of OD at 325 nm to OD at 450 nm is greater than 7.
    Type: Application
    Filed: August 4, 2014
    Publication date: January 22, 2015
  • Publication number: 20150014586
    Abstract: Quantum dots and methods of making quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
    Applicant: QD VISION, INC.
  • Publication number: 20150014629
    Abstract: A coated quantum dot and methods of making coated quantum dots are provided.
    Type: Application
    Filed: May 21, 2014
    Publication date: January 15, 2015
  • Patent number: 8929411
    Abstract: An apparatus comprises a laser system and a light sensor system. The laser system is associated with a housing and configured to generate a first laser beam and direct the first laser beam toward a surface of an object in which the surface has a plurality of quantum dots. The first laser beam is configured to cause the plurality of quantum dots to generate light. The laser system is further configured to generate a second laser beam and direct the second laser beam toward the light generated by the plurality of quantum dots. The second laser beam is configured to amplify a portion of the light generated by the plurality of quantum dots. The light sensor system is associated with the housing and configured to detect the portion of the light to form data.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: January 6, 2015
    Assignee: The Boeing Company
    Inventor: Morteza Safai
  • Publication number: 20150001464
    Abstract: There is provided a quantum dot light-emitting device including: a light-emitting layer containing a quantum dot luminescent material; and a metal-based particle assembly layer being a layer consisting of a particle assembly including 30 or more metal-based particles separated from each other and disposed in two-dimensions, said metal-based particles having an average particle diameter in a range of 200 to 1600 nm, an average height in a range of 55 to 500 nm, and an aspect ratio, as defined by a ratio of said average particle diameter to said average height, in a range of 1 to 8, wherein said metal-based particles that compose said metal-based particle assembly layer are disposed such that an average distance between adjacent metal-based particles may be in a range of 1 to 150 nm. The quantum dot light-emitting device provides enhanced emission via the metal-based particle assembly layer and thus presents high luminous efficiency.
    Type: Application
    Filed: September 28, 2012
    Publication date: January 1, 2015
    Inventor: Tomohiro Fukuura
  • Patent number: 8920766
    Abstract: Provided are methods for making quantum nanostructures based on use of a combination of nucleation and growth precursors. The methods can be used to provide quantum nanostructures of a selected size. Also provided are quantum nanostructures, compositions comprising the quantum nanostructures, and uses of the quantum nanostructures. The quantum nanostructures can be used, for example, in imaging applications.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: December 30, 2014
    Assignee: University of Rochester
    Inventors: Todd D. Krauss, Christopher M. Evans
  • Patent number: 8916064
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can be used as refractive index matching components, filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: December 23, 2014
    Assignee: Nanosys, Inc.
    Inventors: Mingjun Liu, Robert S. Dubrow, William P. Freeman, Adrienne D. Kucma, J. Wallace Parce
  • Publication number: 20140369024
    Abstract: The invention provides a process for the production of a solid polymer with embedded luminescent nano particles, comprising (1) mixing luminescent nano particles with an outer surface coated with capping molecules comprising a first functional group and a second functional group and a precursor of a solid polymer, and (2) allowing the solid polymer to be formed; wherein the first functional group is configured to bind to the outer surface of the quantum dot and the second functional group is miscible with the precursor of the solid polymer and/or is able to react with the precursor of the solid polymer. The invention also provides a luminescent polymeric article comprising a solid polymer with in the polymer article embedded luminescent nano particles with an outer surface coated with capping molecules comprising a first functional group and a second functional group.
    Type: Application
    Filed: January 25, 2013
    Publication date: December 18, 2014
    Applicant: Koninklijke Philips N.V.
    Inventors: Shu Xu, Rifat Ata Mustafa Hikmet
  • Patent number: 8911887
    Abstract: Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MOx and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: December 16, 2014
    Assignee: Los Alamos National Security, LLC
    Inventors: Nobuhiro Fuke, Alexey Y. Koposov, Milan Sykora, Laura Hoch