Ceramic Powder Or Flake Patents (Class 977/776)
  • Patent number: 8999369
    Abstract: Methods and devices relating to polymer-bioceramic composite implantable medical devices, such as stents are disclosed. A suspension solution is formed including a fluid, a biodegradable polymer, and bioceramic particles. The biodegradable polymer and particles are precipitated from the suspension to form a mixture. A composite is formed by combining the mixture with another polymer and a scaffolding is formed from the composite.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: April 7, 2015
    Assignee: Abbott Cardiovascular Systems Inc.
    Inventors: David C. Gale, Yunbing Wang, Syed Faiyaz Ahmed Hossainy, Bin Huang, Garth L. Wilkes, Vincent J. Gueriguian
  • Patent number: 8967492
    Abstract: A droplet generation system includes a first nozzle configuration structured to receive a liquid and a gas under pressure in a controllable feed ratio, and to merge the liquid and gas to form an intermediate stream that is a mixture of the gas and of a dispersed phase of the liquid. A second nozzle configuration is connected to receive the intermediate stream from the first nozzle configuration and has a valve mechanism with one or more controllable operating parameters to emit a stream of droplets of the liquid. The mean size of the droplets is dependent on the controllable feed ratio of the liquid and gas and the flow rate of the stream of droplets is dependent on the controllable operating parameter(s) of the valve mechanism. A corresponding method is disclosed, as is the application of the system and method to the production of nanoparticles in a thermochemical reactor.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: March 3, 2015
    Assignee: Commonwealth Scientific and Industrial Research Organisation
    Inventors: Jonian Nikolov, Kok Seng Lim, Han Kwon Chang, Hee Dong Jang
  • Patent number: 8906498
    Abstract: A method of making a sandwich of impact resistant material, the method comprising: providing a powder; performing a spark plasma sintering process on powder to form a tile; and coupling a ductile backing layer to the tile. In some embodiments, the powder comprises micron-sized particles. In some embodiments, the powder comprises nano-particles. In some embodiments, the powder comprises silicon carbide particles. In some embodiments, the powder comprises boron carbide particles. In some embodiments, the ductile backing layer comprises an adhesive layer. In some embodiments, the ductile backing layer comprises: a layer of polyethylene fibers; and an adhesive layer coupling the layer of polyethylene fibers to the tile, wherein the adhesive layer comprises a thickness of 1 to 3 millimeters.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 9, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: Maximilian A. Biberger
  • Patent number: 8871175
    Abstract: A quantum nanomaterial having a bandgap that may be tuned to enable the quantum nanomaterial to detect IR radiation in selected regions including throughout the MWIR region and into the LWIR region is provided. The quantum nanomaterials may include tin telluride (SnTe) nanomaterials and/or lead tin telluride (PbxSn1-xTe) nanomaterials. Additionally, a method of manufacturing nanomaterial that is tunable for detecting IR radiation in selected regions, such as throughout the MWIR region and into the LWIR region, is also provided.
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: October 28, 2014
    Assignee: The Boeing Company
    Inventors: Larken Elizabeth Euliss, Adam Franklin Gross, Keith John Davis, Nicole L. Abueg
  • Publication number: 20140295178
    Abstract: Provided is a process for producing satisfactory particles held in porous silica. The process comprises (a) the step of preparing porous silica, (b) the step of bringing the porous silica into contact with a liquid which contains either a metal or a compound that has the metal as a component element and infiltrating the liquid into the pores of the porous silica, and (c) the step of subjecting, after the step (b), the impregnated porous silica to a heat treatment to thereby form fine particles comprising the metal or the metal compound in the pores of the porous silica. When porous silica is synthesized by hydrolyzing an alkoxysilane in a solvent-free system, it is possible to synthesize porous silica having a fine pore diameter. Use of this porous silica as a template facilitates formation of particles (e.g., W, Cu, Cr, Mn, Fe, Co, or Ni or an oxide of any of these metals) that show peculiar properties not observed in the bulk material.
    Type: Application
    Filed: August 28, 2012
    Publication date: October 2, 2014
    Applicant: Tokyo Metropolitan Industrial Technology Research Institute
    Inventors: Hiroto Watanabe, Hiroaki Imai, Yuya Oaki
  • Patent number: 8840803
    Abstract: A nanocomposite fluid includes a fluid medium; and a nanoparticle composition comprising nanoparticles which are electrically insulating and thermally conductive. A method of making the nanocomposite fluid includes forming boron nitride nanoparticles; dispersing the boron nitride nanoparticles in a solvent; combining the boron nitride nanoparticles and a fluid medium; and removing the solvent.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 23, 2014
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Ashley Leonard, Joshua C. Falkner
  • Patent number: 8834618
    Abstract: Presently described are methods of inhibiting water vapor adsorption of a powder and methods of storing a powder at increased humidity level. The methods comprise providing adding discrete hydrophobic nanoparticles to a plurality of particles.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Jimmie R. Baran, Jr., Roxanne A. Boehmer
  • Patent number: 8821786
    Abstract: A method of forming an oxide-dispersion strengthened alloy and a method for forming an oxide-alloy powder where the oxide-nanoparticles are evenly distributed throughout the powder. The method is comprised of the steps of forming an oxide-nanoparticles colloid, mixing the oxide-nanoparticles colloid with alloy-microparticles forming an oxide-alloy colloid, drying the oxide-alloy colloid solution to form an oxide-alloy powder, applying pressure to the oxide-alloy powder, and heating the oxide-alloy powder to a sintering temperature. The oxide-nanoparticles are sized to be between 1-10 nanometers in diameter. The ratio of oxide-nanoparticles to alloy-microparticles should be 1-5% by weight. Heating of the oxide-alloy powder can use a spark plasma sintering process.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: September 2, 2014
    Assignee: SDCmaterials, Inc.
    Inventor: Maximilian A. Biberger
  • Patent number: 8778226
    Abstract: A photoluminescent or electroluminescent system and method of making a non-luminescent nanostructured material into such a luminescent system is presented. The method of preparing the luminescent system, generally, comprises the steps of modifying the surface of a nanostructured material to create isolated regions to act as luminescent centers and to create a charge imbalance on the surface; applying more than one polar molecule to the charged surface of the nanostructured material; and orienting the polar molecules to compensate for the charge imbalance on the surface of the nanostructured material. The compensation of the surface charge imbalance by the polar molecules allows the isolated regions to exhibit luminescence.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 15, 2014
    Inventors: Ilia N. Ivanov, Alexander A. Puretzky, Bin Zhao, David B. Geohegan, David J. Styers-Barnett, Hui Hu
  • Patent number: 8668770
    Abstract: Disclosed is a dental cement composition made up of ingredients comprising the nanoparticles of dicalcium and tricalcium silicate, bismuth oxide, gypsum, zeolite and strontium carbonate. The dental cement can also be used as bone cement, pulpotomy agent, pulp capping material, dental implant material, perforation repair material, and root-end filling material.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: March 11, 2014
    Inventors: Mohammad Ali Saghiri, Mehrdad Lotfi, Houtan Aghili
  • Patent number: 8646612
    Abstract: Monodisperse metal oxide nanopowders are prepared by treating a dispersion of crude metal oxide nanopowder with ultrasonication, allowing the dispersion to settle, and subjecting the remaining suspended portion to centrifugation to obtain a supernatant comprising metal oxide nanopowder.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: February 11, 2014
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Woohong Kim, Guillermo R. Villalobos, Jasbinder S. Sanghera, Ishwar D. Aggarwal
  • Patent number: 8642496
    Abstract: The present invention relates to a method for forming a catalyst comprising catalytic nanoparticles and a catalyst support, wherein the catalytic nanoparticles are embedded in the catalyst support, comprising forming the catalytic nanoparticles on carbon particle, dispersing the carbon particle in a solution comprising precursors of the catalyst support to form a suspension, heating the suspension to form a gel, subjecting the gel to incineration to form a powder, and sintering the powder to form the catalyst.
    Type: Grant
    Filed: July 13, 2011
    Date of Patent: February 4, 2014
    Assignee: Agency for Science, Technology and Research
    Inventors: Zetao Xia, Liang Hong, Wei Wang, Zhao Lin Liu
  • Patent number: 8603400
    Abstract: A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 10, 2013
    Assignee: California Institute of Technology
    Inventors: Charles C. Hays, Sri R. Narayan
  • Publication number: 20130288881
    Abstract: A method of making ceramic articles includes compounding ceramic precursor batch components that include hydrous clay. The hydrous clay includes particle components having a platy geometry. The crystallite size of the platy hydrous clay particle components is less than a predetermined amount. Controlling such crystallite size can result in fired ceramic articles with a lower coefficient of thermal expansion and improved thermal shock resistance.
    Type: Application
    Filed: April 30, 2012
    Publication date: October 31, 2013
    Inventors: Martin Joseph Murtagh, Bryan Ray Wheaton
  • Patent number: 8563462
    Abstract: Catalyst compositions include finely divided nanoscale particles of at least one supported oxide, based on a zirconium oxide, a titanium oxide or a mixed zirconium/titanium oxide deposited onto a silica based support, wherein, after calcination for 4 hours at 900° C., the supported oxide is in the form of nanoscale particles deposited onto the support, the size of the particles being at most 5 nm when the at least one supported oxide is based on a zirconium oxide, being at most 10 nm when the at least one supported oxide is based on a titanium oxide and being at most 8 nm when the at least one supported oxide is based on a mixed zirconium/titanium oxide; such catalyst compositions are especially useful for the selective reduction of NOx.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 22, 2013
    Assignee: Rhodia Operations
    Inventors: Stephan Verdier, Guillaume Criniere, Simon Ifrah, Rui Jorge Coelho Marques
  • Patent number: 8557215
    Abstract: The disclosed subject concerns nanometric-sized ceramic materials in the form of multiple crystalline structures, composites, or solid solutions, the process for their synthesis, and uses thereof. These materials are mainly obtained by detonation of two water-in-oil (W/O) emulsions, one of which is prepared with precursors in order to present a detonation regime with temperature lower than 2000° C., and they present a high chemical and crystalline phase homogeneity, individually for each particle, as well as a set of complementary properties adjustable according to the final applications, such as a homogeneous distribution of the primary particles, very high chemical purity level, crystallite size below 50 nm, surface areas by mass unit between 25 and 500 m2/g, and true particle densities higher than 98% of the theoretical density.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: October 15, 2013
    Assignee: Innovnano—Materiais Avançados, S.A.
    Inventors: João Manuel Calado Da Silva, Elsa Marisa Dos Santos Antunes
  • Patent number: 8546285
    Abstract: The present invention provides a nanostructured composite material of ?-alumina-doped zirconia stabilised with cerium oxide and zirconia-doped ?-alumina, the process for obtaining it and the applications thereof, such as knee prostheses, hip prostheses, dental implants, mechanical components for pumps, alkaline batteries, ceramic components for stereotactic neurology, cutting tools, etc.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: October 1, 2013
    Assignee: Consejo Superior De Investigaciones Cientificas (CSIC)
    Inventors: Ramón Torrecillas San Millan, Luis Antonio Díaz Rodríguez
  • Patent number: 8535554
    Abstract: A process for forming thermoelectric nanoparticles includes the steps of providing a core material and a bismuth containing compound in a reverse micelle; providing a tellurium containing compound either in or not in a reverse micelle; reacting the bismuth containing compound with the tellurium containing compound in the presence of a base, forming a composite thermoelectric nanoparticle having a core and shell structure.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: September 17, 2013
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Michael Paul Rowe, Minjuan Zhang, Paul Jantzen
  • Patent number: 8513157
    Abstract: The present disclosure relates to a fluid purification device that has a deactivation resistant photocatalyst having nanocrystallites of less than 14 nanometers (nm) in diameter with at least 200 m2 surface area/cm3 of skeletal volume in cylindrical pores of 5 nm in diameter or larger, with the mode of the pore size distribution 10 nm or more.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 20, 2013
    Assignee: Carrier Corporation
    Inventors: Thomas Henry Vanderspurt, Treese Hugener-Campbell, Norberto O. Lemcoff, Stephen O. Hay, Wayde R. Schmidt, Joseph J. Sangiovanni, Zissis A. Dardas, Di Wei
  • Patent number: 8512760
    Abstract: A process for the production of an aqueous dispersion of metal nano particles comprising palladium is provided. The process comprises the admixture of a water soluble organic polymer, a palladium salt and a first reducing agent to an aqueous liquid. The first reducing agent is a metal-containing polymer which has reducing properties or a saccharide which has reducing properties. The nano particles can include a second metal. The dispersions can be used as catalysts for electroless plating, to produce heterogeneous catalysts and in the production of anti-microbial devices and compositions.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: August 20, 2013
    Assignee: The University Court of the University of Dundee
    Inventors: James Anthony Cairns, Roderick Allan George Gibson, Graham James Berry
  • Patent number: 8497199
    Abstract: The present invention relates to a method for fabricating a thin film formed with a uniform single-size monolayer of spherical AZO nanoparticles. Because of its own advantages in cost and transparency, Al-doped ZnO (AZO) transparent conductive film is becoming the most commonly used transparent conducting oxide (TCO) replacement for solar cells. In this invention, a colloidal chemical means is adopted for enabling a chemical reaction between metal salts, water, and polyhydric alcohols at a room-temperature environment, and thereby, a process for fabricating spherical AZO nanoparticles in a diameter ranged between 100 nm to 400 nm according to different parameter configurations can be achieved while controlling the actual Al/Zn ratio to be ranged between 0.1% to 3%. In addition, a dip coating means is adopted for densely distributing the spherical AZO nanoparticles on a substrate into a monolayer close-packed structure.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: July 30, 2013
    Assignee: Institute of Nuclear Energy Research Atomic Energy Council, Executive Yuan
    Inventors: Der-Jun Jan, Shih-Shou Lo, Chen-Yu Lin
  • Patent number: 8480928
    Abstract: The present invention relates to a composite luminophore comprising an inorganic matrix and an organic fluorescent dye, wherein the inorganic matrix is formed from an inorganic compound, and wherein the organic fluorescent dye has one or more functional groups by means of which the fluorescent dye is incorporated into the inorganic matrix, or is bound chemically thereto. The present invention further relates to a process for preparing such a composite luminophore and to the use thereof.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: July 9, 2013
    Assignee: Karlsruher Institut fur Technologie (KIT)
    Inventors: Claus Feldmann, Marcus Roming
  • Patent number: 8455392
    Abstract: A new type of solid acid catalyst, which promises better catalytic performance than conventionally prepared supported metal oxides due to its precisely synthesized nanostructure has been described. The catalyst is nanoparticulate in form and is comprised of monolayers of tungstated zirconia of the formula, WOxZryO4-2y made by impregnating a support with zirconium and tungsten. The support catalyst is further characterized in having a tugsten monolayer between greater than 0001 W/nm2 to about 30 W/nm2.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: June 4, 2013
    Assignees: William Marsh Rice University, Lehigh University
    Inventors: Israel E. Wachs, Elizabeth I. Ross-Medgaarden, Michael Sha-nang Wong
  • Patent number: 8445587
    Abstract: Improved mechanical properties of either clay or carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by pre-treating nanoparticles and polymer pellets prior to a melt compounding process. The clay or CNTs are coated onto the surfaces of the polymer pellets by a milling process. The introduction of moisture into the mixture of the nanoparticles and the polymer pellets results in the nanoparticles more easily, firmly, and thoroughly coating onto the surfaces of the polymer pellets.
    Type: Grant
    Filed: July 18, 2010
    Date of Patent: May 21, 2013
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Dongsheng Mao, Zvi Yaniv
  • Publication number: 20130116110
    Abstract: A method of making ceramic articles includes compounding ceramic precursor batch components that include hydrous clay. The hydrous clay includes particle components having a platy geometry. The crystallite size of the platy hydrous clay particle components is greater than a predetermined amount. Controlling such crystallite size can result in reduced shrinkage of green ware during the clay dehydroxylation stage of firing.
    Type: Application
    Filed: April 30, 2012
    Publication date: May 9, 2013
    Inventors: David J. Bronfenbrenner, Chris Maxwell, Martin Joseph Murtagh, Bryan Ray Wheaton
  • Patent number: 8405063
    Abstract: A component including a substrate, at least one layer including a color conversion material including quantum dots disposed over the substrate, and a layer including a conductive material (e.g., indium-tin-oxide) disposed over the at least one layer. (Embodiments of such component are also referred to herein as a QD light-enhancement substrate (QD-LES).) In certain preferred embodiments, the substrate is transparent to light, for example, visible light, ultraviolet light, and/or infrared radiation. In certain embodiments, the substrate is flexible. In certain embodiments, the substrate includes an outcoupling element (e.g., a microlens array). A film including a color conversion material including quantum dots and a conductive material is also provided. In certain embodiments, a component includes a film described herein. Lighting devices are also provided. In certain embodiments, a lighting device includes a film described herein.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: March 26, 2013
    Assignee: QD Vision, Inc.
    Inventors: Peter T. Kazlas, Seth Coe-Sullivan
  • Patent number: 8398953
    Abstract: A method of preparing lithium titanate nanoparticles, the method including: feeding reactants including lithium and titanium into a reactor, followed by mixing the reactants in the reactor at a molecular level; and generating a crystal nucleus by chemically reacting the reactants in the reactor.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: March 19, 2013
    Assignee: Samsung Fine Chemicals Co., Ltd.
    Inventors: Yun Jung Park, Dong Gyu Chang, Chun Joong Kim, Ji Ho Park, Woo Young Yang
  • Patent number: 8383716
    Abstract: Polyester nanocomposite compositions contain silica nanoparticles that have been subjected to surface treatment with novel trialkoxysilane compositions. The novel silane compositions are prepared by reacting a 3-isocyanatopropyl trialkoxysilane with 1,3-propanediol or certain polyether diols. The silica nanoparticles exhibit improved dispersion in the polyester. This leads to haze reduction and improvements in mechanical properties.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: February 26, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Changzai Chi, Gordon Mark Cohen, Surbhi Mahajan, Anilkumar Raghavanpillai
  • Patent number: 8361931
    Abstract: A method for preparing yttrium barium copper oxide (“YBCO”; “Y-123”; YBa2Cu3O7-x) superconducting nanoparticles is disclosed. The YBCO superconducting nanoparticles are prepared via a solid-state reaction by a solid-state reaction of an yttrium precursor, a barium precursor, and a copper precursor. One or more of the precursors are metal chelate compounds having acetylacetone ligands, which are highly stable and have a high compatibility with the other precursors.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: January 29, 2013
    Inventors: Masoud Salavati-Niasari, Sima Alikhanzadeh-Arani
  • Publication number: 20120322645
    Abstract: Nanocomposites of multi-phase metal oxide ceramics have been produced from water soluble salts of the resulting metal oxides by a foaming esterification sol-gel method. The evolution of volatile gases at elevated temperature during the esterification reaction causes the formation of a foam product. Nanocomposites of multi-phase metal oxide ceramics have also been produced by a cation polymer precursor method. In this second method, the metal cations are chelated by the polymer and the resulting product is gelled and foamed. Calcination of the resulting foams gives nanocomposite powders with extremely fine, uniform grains and phase domains. These microstructures are remarkably stable both under post-calcination heat treatment and during consolidation by hot-pressing.
    Type: Application
    Filed: December 16, 2011
    Publication date: December 20, 2012
    Inventors: Eric H. Jordan, Steven L. Suib, Aparna Iyer, Jacquelynn Garofano, Chun-Hu Chen
  • Patent number: 8333945
    Abstract: A method for making a self-dispersing cerium oxide nanoparticles additive for lubricants, a lubricant composition containing the nanoparticles and a method for reducing boundary friction using the nanoparticles. The nanoparticles are made by an improved process of reacting a mixture of organo-cerium salt, fatty acid, and amine in the substantial absence of water and organic solvent at a temperature ranging from about 150° to about 250° C., the improvement comprising reacting the organo-cerium salt, fatty acid and amine in a molar ratio ranging from about 1:1:1 to about 1:2:2 in the reaction mixture to provide the reaction product comprising from about 20 to about 40% by weight of the nanoparticles in a substantially organic medium.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: December 18, 2012
    Assignee: Afton Chemical Corporation
    Inventors: Michael Jeffrey McLaughlin, Naresh Mathur
  • Publication number: 20120279924
    Abstract: A method for mitigating eutrophication in a water body includes: adding a treating agent that contains nanosilicate platelets to an eutrophic water body, such that algae and suspended substances in the eutrophic water body are adsorbed by the nanosilicate platelets.
    Type: Application
    Filed: November 10, 2011
    Publication date: November 8, 2012
    Applicant: NATIONAL CHUNG-HSING UNIVERSITY
    Inventors: Jiang-Jin LIN, Shu-Chi Chang, Chen-Hao Li, Yu-Han Yu
  • Patent number: 8282906
    Abstract: A method of synthesizing nanoparticles, comprising providing a precursor comprising a titanium alkoxide compound; forming a plasma from oxygen gas at a first location, wherein the plasma comprises plasma products that contain oxygen atoms; causing the plasma products to flow to a second location remote from the first location; contacting the precursor with the plasma products at the second location so as to oxidize the precursor and form nanoparticles; and collecting the nanoparticles with a collector.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 9, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Rajesh K. Katare, Moses M. David
  • Patent number: 8277878
    Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. Ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: October 2, 2012
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Guillermo R. Villalobos, Woohong Kim, Shyam S. Bayya, Bryan Sadowski, Ishwar D. Aggarwal
  • Publication number: 20120225292
    Abstract: There are provided a method of manufacturing a ceramic powder having a perovskite structure and a ceramic powder having a perovskite structure manufactured by the same. The method includes: mixing a compound of an element corresponding to site A in an ABO3 perovskite structure as well as a compound of an element corresponding to site B in the same structure, with supercritical water in a continuous mode to form seed crystals; and mixing the seed crystals in a batch mode to conduct grain growth thereof.
    Type: Application
    Filed: March 2, 2012
    Publication date: September 6, 2012
    Inventors: Chang Hak Choi, Kum Jin Park, Kang Heon Hur, Hye Young Baeg, Jung Hwan Kim, Hyung Joon Jeon, Sang Hoon Kwon
  • Publication number: 20120219831
    Abstract: The present invention is directed to a hybrid device comprising: an energy converting unit comprising a first electrode, a second electrode and an energy converting medium arranged between the first electrode and the second electrode, wherein the energy conversion takes place between the first electrode and the second electrode; an energy charge storing unit comprising a first electrode, a second electrode and an electrolyte medium; wherein the energy charge is stored between the first and the second electrode; the second electrode of the energy converting unit and the second electrode of the energy charge storing unit being a shared electrode electrically connecting the energy converting unit and the energy charge storing unit; and wherein the shared electrode comprises a metal and a nanostructured material. The present invention is also directed to a method of manufacturing such a hybrid device.
    Type: Application
    Filed: August 20, 2009
    Publication date: August 30, 2012
    Applicant: NANYANG TECHNOLOGICAL UNIVERSITY
    Inventors: Wai Fatt Mak, Tsyh Ying Grace Wee, Teddy Salim, Madhavi Srinivasan, Subodh Mhaisalkar, Yin Chiang Freddy Boey
  • Patent number: 8252436
    Abstract: A touch screen includes a substrate, and a coating attached to the substrate. The coating includes titanium dioxide and cadmium selenide in a relative weight ratio of about 3:1. The particle size of the titanium dioxide is about 2 nanometers. The particle size of the cadmium selenide ranges from about 2.3 to about 3.7 nanometers.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: August 28, 2012
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventor: Chao-Jui Huang
  • Patent number: 8236196
    Abstract: Some or all of the needs above can be addressed by embodiments of the invention. According to embodiments of the invention, systems and methods for facilitating hydrogen storage using naturally occurring nanostructure assemblies can be implemented. In one embodiment, a method for storing hydrogen can be provided. The method can include providing diatoms comprising diatomaceous earth or diatoms from a predefined culture. In addition, the method can include heating the diatoms in a sealed environment in the presence of at least one of titanium, a transition metal, or a noble metal to provide a porous hydrogen storage medium. Furthermore, the method can include exposing the porous hydrogen storage medium to hydrogen. In addition, the method can include storing at least a portion of the hydrogen in the porous hydrogen storage medium.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: August 7, 2012
    Assignee: Microbes Unlimited, LLC
    Inventor: Carl B. Fliermans
  • Publication number: 20120162856
    Abstract: There are provided a conductive paste composition for a termination electrode, and a multilayer ceramic capacitor including the same and a manufacturing method thereof. The conductive paste composition includes 100 parts by weight of conductive metal powder and 0.1 to 10 parts by weight of ceramic powder having an average particle size of 50 to 500 nm. The conductive paste composition described above may achieve a high firing density even in the case that it is used in the manufacturing of a thin film, and inhibit the occurrence of blisters, a delamination failure of the termination electrode during calcination of the electrode, thereby producing a compact and thin film.
    Type: Application
    Filed: December 21, 2011
    Publication date: June 28, 2012
    Inventors: Kyu Ha LEE, Byung Jun JEON, Myung Jun PARK, Ji Sook KIM, Hyun Hee GU, Gun Jung YOON, Chang Hoon KIM, Eun Joo CHOI
  • Patent number: 8206505
    Abstract: The inventive method for forming nano-dimensional clusters consists in introducing a solution containing a cluster-forming material into nano-pores of natural or artificial origin contained in a substrate material and in subsequently exposing said solution to a laser radiation pulse in such a way that a low-temperature plasma producing a gaseous medium in the domain of the existence thereof, wherein a cluster material is returned to a pure material by the crystallization thereof on a liquid substrate while the plasma is cooling, occurs, thereby forming mono-crystal quantum dots spliced with the substrate material. Said method makes it possible to form two- or three-dimensional cluster lattices and clusters spliced with each other from different materials. The invention also makes it possible to produce wires from different materials in the substrate nano-cavities and the quantum dots from the solution micro-drops distributed through an organic material applied to a glass.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: June 26, 2012
    Inventors: Sergei Nikolaevich Maximovsky, Grigory Avramovich Radutsky
  • Patent number: 8178071
    Abstract: Metal oxide nanoparticles, production method thereof, light-emitting element assembly, and an optical material are provided. A method of producing metal oxide nanoparticles includes the steps of (A) mixing a first metal alkoxide containing a first metal, a second metal alkoxide containing a second metal different from the first metal, and a surfactant under an inert atmosphere to prepare a reaction solution; and (B) mixing a reaction initiator prepared by mixing a catalyst with a solvent and the reaction solution, and then heating the mixture of the reaction initiator and the reaction solution under an inert atmosphere to produce metal oxide nanoparticles which have a rutile-type crystal structure based on an atom of the first metal, an atom of the second metal, and an oxygen atom, and the surfaces of which are coated with the surfactant.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: May 15, 2012
    Assignee: Sony Corporation
    Inventors: Mikihisa Mizuno, Yuichi Sasaki, Sung-kil Lee, Hitoshi Katakura
  • Patent number: 8178074
    Abstract: Titanium oxide particles having a particle having a decahedral box-shape and a particle size in a range of from 1 nm to 100 nm can be selectively and efficiently produced by carrying out a method in which in a case of oxidizing titanium tetrachloride in vapor at high temperatures, it is rapidly heated and cooled, and a method, in which water vapor is used as an oxidizing gas, in combination under certain conditions.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: May 15, 2012
    Assignees: Showa Denko K.K., National University Corporation Hokkaido University
    Inventors: Yasushi Kuroda, Noriyuki Sugishita, Bunsho Ohtani
  • Patent number: 8148139
    Abstract: A micro bead having a digitally coded structure that is partially transmissive and opaque to light. The pattern of transmitted light is determined by to decode the bead. The coded bead may be structured a series of alternating light transmissive and opaque sections, with relative positions, widths and spacing resembling a 1D or 2D bar code image. To decode the image, the alternating transmissive and opaque sections of the body are scanned in analogous fashion to bar code scanning. The coded bead may be coated or immobilized with a capture or probe to effect a desired bioassay. The coded bead may include a paramagnetic material. A bioanalysis system conducts high throughput bioanalysis using the coded bead, including a reaction detection zone and a decoding zone.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: April 3, 2012
    Assignee: Maxwell Sensors, Inc.
    Inventor: Winston Z. Ho
  • Publication number: 20120057271
    Abstract: Disclosed are a glass composition and a dielectric composition enabling low temperature sintering, and a high capacitance multilayer ceramic capacitor using the same. In the glass composition used for sintering, the glass composition may be formed of a formula, aR2O-bCaO-cZnO-dBaO-eB2O3-fAl2O3-gSiO2, and the formula may satisfy a+b+c+d+e+f+g=100, 0?a?7, 1?b?3, 1?c?15, 10?d?20, 3?e?10, 0?f?3, and 55?g?72. Through this, when manufacturing the high capacity multilayer ceramic capacitor, the dielectric substance may enable the lower temperature sintering, thereby enhancing a capacitance and a reliability of the high capacitance multilayer ceramic capacitor.
    Type: Application
    Filed: August 30, 2011
    Publication date: March 8, 2012
    Applicant: SAMHWA CAPACITOR CO., LTD.
    Inventors: Young Joo OH, Jung Rag YOON
  • Patent number: 8105509
    Abstract: A transparent polycrystalline ceramic having scattering and absorption loss less than 0.2/cm over a region comprising more than 95% of the originally densified shape and further provides a process for fabricating the same by hot pressing. The ceramic can be any suitable ceramic such as yttria (Y2O3) or scandia (Sc2O3) and can have a doping level of from 0 to 20% and a grain size of greater than 30 ?m, although the grains can also be smaller than 30 ?m. In a process for making a transparent polycrystalline ceramic in accordance with the present invention, ceramic nanoparticles can be coated with a sintering aid to minimize direct contact of adjacent ceramic powder particles and then baked at high temperatures to remove impurities from the coated particles. The thus-coated particles can then be densified by hot pressing into the final ceramic product. The invention further provides a transparent polycrystalline ceramic solid-state laser material and a laser using the hot pressed polycrystalline ceramic.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 31, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jasbinder S. Sanghera, Guillermo R Villalobos, Woohong Kim, Shyam S Bayya, Ishwar D. Aggarwal, Bryan Sadowski
  • Patent number: 8066969
    Abstract: This invention relates, in general, to a method of producing magnetic oxide nanoparticles or metal oxide nanoparticles and, more particularly, to a method of producing magnetic or metal oxide nanoparticles, which comprises (1) adding a magnetic or metal precursor to a surfactant or a solvent containing the surfactant to produce a mixed solution, (2) heating the mixed solution to 50-6001 C to decompose the magnetic or metal precursor by heating so as to form the magnetic or metal oxide nanoparticles, and (3) separating the magnetic or metal oxide nanoparticles. Since the method is achieved through a simple process without using an oxidizing agent or a reducing agent, it is possible to simply mass-produce uniform magnetic or metal oxide nanoparticles having desired sizes compared to the conventional method.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: November 29, 2011
    Assignee: Industry-Academic Cooperation Foundation, Yonsei University
    Inventors: Jin-Woo Cheon, Jung-Wook Seo, Jae-Hyun Lee
  • Publication number: 20110278168
    Abstract: A composite material for use in a sensing electrode. The composite material comprises a first phase and a second phase. The first phase consists essentially of Bi2Ru2O7+x wherein x is a value between 0 and 1 and the second phase consists essentially of RuO2.
    Type: Application
    Filed: May 8, 2009
    Publication date: November 17, 2011
    Applicant: COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATION
    Inventor: Serge Zhuiykov
  • Patent number: 8053069
    Abstract: A composite material being excellent in heat conductivity is provided. In order to realize this, a fibrous carbon material made of fine tube form structures constituted with single-layer or multiple-layer graphene is present to form a plurality of layers within a substrate made from a spark plasma sintered body of a metal powder, a mixed powder of a metal and ceramics, or a ceramic powder. The fibrous carbon material constituting each layer is made of a mixture obtained by mixing a small amount of a small diameter fiber 2 having an average diameter of 100 nm or less with a large diameter fiber 1 having an average diameter of 500 nm to 100 ?m.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: November 8, 2011
    Assignees: Sumitomo Precision Products Co., Ltd., Osaka Prefectural Government
    Inventors: Kazuaki Katagiri, Akiyuki Shimizu, Terumitsu Imanishi, Toyohiro Sato, Nobuhito Nakama, Atsushi Kakitsuji, Katsuhiko Sasaki
  • Patent number: 8048394
    Abstract: The present invention relates to (1) hollow silica particles including an outer shell portion having a mesoporous structure with an average pore size of from 1 to 10 nm, wherein the silica particles have an average particle diameter of from 0.05 to 10 ?m, and 80% or more of the whole silica particles have a particle diameter falling within the range of ±30% of the average particle diameter; (2) composite silica particles including silica particles which include an outer shell portion having a mesoporous structure with an average pore size of from 1 to 10 nm, and have a BET specific surface area of 100 m2/g or more, and a hydrophobic organic compound or a polymeric organic compound incorporated inside of the silica particles; and a process for producing the hollow silica particles.
    Type: Grant
    Filed: October 15, 2007
    Date of Patent: November 1, 2011
    Assignee: Kao Corporation
    Inventors: Toshihiro Yano, Takuya Sawada
  • Publication number: 20110236713
    Abstract: The invention relates to a functionally graded material shape (1) where a first material (M1) is fused with a second material (M2) through sintering and a method of production of said functionally graded material shape (1). Said first material (M1) has a first coefficient of thermal expansion (?1) and said second material (M2) has a second coefficient of thermal expansion (?2), differing from the first coefficient of thermal expansion (?1). The invention is characterized in that the shape (1) further comprises a third material (M3) adapted to, together with M1 and M2, create an intermediate composite material phase intermixed between the first and the second materials (M1, M2). Said third material (M3) has a coefficient of thermal expansion (?3) intermediate between the first coefficient of thermal expansion (?1) of the first material (M1) and the second coefficient of thermal expansion (?2) of the second material (M2).
    Type: Application
    Filed: February 14, 2011
    Publication date: September 29, 2011
    Applicant: Diamorph AB
    Inventors: Mohamed Radwan, Katarina Flodstrom, Saeid Esmaeilzadeh