Electrically Conducting, Semi-conducting, Or Semi-insulating Host Material Patents (Class 977/784)
-
Patent number: 9013784Abstract: A nanoparticle waveguide apparatus, a nanoparticle waveguide photonic system and a method of photonic transmission employ a nearfield-coupled nanoparticle (NCN) waveguide to cooperatively propagate an optical signal. The nanoparticle waveguide apparatus includes a first optical waveguide adjacent to a second optical waveguide, the first optical waveguide comprising an NCN waveguide having a plurality of nanoparticles. The nanoparticle waveguide photonic system further includes a nearfield coupling (NC) modulator. The method includes providing the NCN waveguides and modulating a coupling between one or both of first and second NCN waveguides and adjacent nanoparticles within one or both of the first and second NCN waveguides.Type: GrantFiled: October 29, 2010Date of Patent: April 21, 2015Assignee: Hewlett-Packard Development Company, L.P.Inventors: Lars H. Thylen, Alexandre M. Bratkovski, Petter Holmstrom
-
Patent number: 9005814Abstract: Highly dispersed lithium titanate crystal structures having a thickness of few atomic layers level and the two-dimensional surface in a plate form are supported on carbon nanofiber (CNF). The lithium titanate crystal structure precursors and CNF that supports these are prepared by a mechanochemical reaction that applies sheer stress and centrifugal force to a reactant in a rotating reactor. The mass ratio between the lithium titanate crystal structure and carbon nanofiber is preferably between 75:25 and 85:15. The carbon nanofiber preferably has an external diameter of 10-30 nm and an external specific surface area of 150-350 cm2/g. This composite is mixed with a binder and then molded to obtain an electrode, and this electrode is employed for an electrochemical element.Type: GrantFiled: May 2, 2011Date of Patent: April 14, 2015Assignee: Nippon Chemi-Con CorporationInventors: Katsuhiko Naoi, Wako Naoi, Shuichi Ishimoto, Kenji Tamamitsu
-
Patent number: 8969850Abstract: An electro-magnetic radiation detector is described. The electro-magnetic radiation detector includes a detector material and a voltage biasing element. The detector material includes a substantially regular array of nano-particles embedded in a matrix material. The voltage biasing element is configured to apply a bias voltage to the matrix material such that electrical current is directly generated based on a cooperative plasmon effect in the detector material when electro-magnetic radiation in a predetermined wavelength range is incident upon the detector material, where the dominant mechanism for decay in the cooperative plasmon effect is non-radiative.Type: GrantFiled: September 23, 2011Date of Patent: March 3, 2015Assignee: Rockwell Collins, Inc.Inventors: Robert G. Brown, James H. Stanley
-
Patent number: 8968589Abstract: A composite material comprises a filled skutterudite matrix of formula (I) IyCo4Sb12 in which (I) represents at least one of Yb, Eu, Ce, La, Nd, Ba and Sr, 0.05?y<1; and GaSb particles within the filled skutterudite matrix, wherein the composite material comprises 0.05-5 mol % GaSb particles. Compared with conventional materials, the composite material exhibits a substantially increased Seebeck coefficient, a slightly decreased overall thermal conductivity, and a substantially increased thermoelectric performance index across the whole temperature zone from the low temperature end to the high temperature end, as well as a greatly enhanced thermoelectric efficiency.Type: GrantFiled: September 23, 2010Date of Patent: March 3, 2015Assignee: Shanghai Institute of Ceramics, Chinese Academy of SciencesInventors: Lidong Chen, Xihong Chen, Lin He, Xiangyang Huang, Zhen Xiong, Wenqing Zhang
-
Patent number: 8962131Abstract: Transparent conductive films comprising silver nanowires dispersed in polyvinyl alcohol or gelatin can be prepared by coating from aqueous solvent using common aqueous solvent coating techniques. These films have good transparency, conductivity, and stability. Coating on a flexible support allows the manufacture of flexible conductive materials.Type: GrantFiled: March 19, 2010Date of Patent: February 24, 2015Assignee: Carestream Health Inc.Inventors: Choufeng Zou, Karissa Eckert
-
Patent number: 8961810Abstract: Nanocomposite materials comprising a SiGe matrix with silicide and/or germanide nanoinclusions dispersed therein, said nanocomposite materials having improved thermoelectric energy conversion capacity.Type: GrantFiled: July 11, 2008Date of Patent: February 24, 2015Inventors: Natalio Mingo Bisquert, Nobuhiko Kobayashi, Marc Plissonnier, Ali Shakouri
-
Publication number: 20150044428Abstract: A method for fabricating articles for use in optics, electronics, and plasmonics includes large scale lithography or other patterning and conformal deposition such as by atomic layer deposition.Type: ApplicationFiled: August 7, 2014Publication date: February 12, 2015Inventors: Sang-Hyun Oh, Xiaoshu Chen
-
Patent number: 8920681Abstract: An electrically conductive polymer linked to conductive nanoparticle is provided. The conductive polymer can include conductive monomers and one or more monomers in the conductive polymer can be linked to a conductive nanoparticle and can include a polymerizable moiety so that it can be incorporated into a polymer chain. The electrically conductive monomer can include a 3,4-ethylenedioxythiophene as a conductive monomer. The electrically conductive polymer having the conductive nanoparticle can be prepared into an electrically conductive layer or film for use in electronic devices.Type: GrantFiled: December 30, 2009Date of Patent: December 30, 2014Assignee: Korea University Research and Business FoundationInventor: Dong Hoon Choi
-
Patent number: 8894887Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.Type: GrantFiled: April 10, 2013Date of Patent: November 25, 2014Assignees: Solvay USA, Inc., Nano-C, Inc.Inventors: Darin W. Laird, Reza Stegamat, Henning Richter, Victor Vejins, Lawrence T. Scott, Thomas A. Lada, II
-
Patent number: 8865604Abstract: In one embodiment, a bulk carbon nanotube and metallic composite is provided. The bulk carbon nanotube and metallic composite includes a bulk carbon nanotube material layer including a plurality of carbon nanotubes, and a metal film applied across the bulk carbon nanotube material layer. The metal film penetrates into the interstices between individual carbon nanotubes to reduce an electrical resistance between the plurality of carbon nanotubes.Type: GrantFiled: September 17, 2012Date of Patent: October 21, 2014Assignee: The Boeing CompanyInventor: James Antoni Wasynczuk
-
Patent number: 8853540Abstract: A conductor for a communications cable includes an elongated metal wire and a metal sheet that includes a plurality of carbon nanotubes that at least partially surrounds the elongated metal wire. The metal wire may include copper, and the metal sheet may likewise include copper and may be welded to an outside surface of the metal wire to surround the metal wire. This conductor may be used in a variety of communications cables that carry high frequency signals.Type: GrantFiled: April 13, 2012Date of Patent: October 7, 2014Assignee: CommScope, Inc. of North CarolinaInventor: Luc Walter Adriaenssens
-
Patent number: 8840803Abstract: A nanocomposite fluid includes a fluid medium; and a nanoparticle composition comprising nanoparticles which are electrically insulating and thermally conductive. A method of making the nanocomposite fluid includes forming boron nitride nanoparticles; dispersing the boron nitride nanoparticles in a solvent; combining the boron nitride nanoparticles and a fluid medium; and removing the solvent.Type: GrantFiled: February 2, 2012Date of Patent: September 23, 2014Assignee: Baker Hughes IncorporatedInventors: Oleg A. Mazyar, Ashley Leonard, Joshua C. Falkner
-
Publication number: 20140268332Abstract: Optical spectrum filtering devices displaying minimal angle dependence or angle insensitivity are provided. The filter comprises a localized plasmonic nanoresonator assembly having a metal material layer defining at least one nanogroove and a dielectric material disposed adjacent to the metal material layer. The dielectric material is disposed within the nanogroove(s). The localized plasmonic nanoresonator assembly is configured to funnel and absorb a portion of an electromagnetic spectrum in the at least one nanogroove via localized plasmonic resonance to generate a filtered output having a predetermined range of wavelengths that displays angle insensitivity. Thus, flexible, high efficiency angle independent color filters having very small diffraction limits are provided that are particularly suitable for use as pixels for various display devices or for use in anti-counterfeiting and cryptography applications.Type: ApplicationFiled: March 14, 2014Publication date: September 18, 2014Applicants: SANDIA CORPORATION, THE REGENTS OF THE UNIVERSITY OF MICHIGANInventors: Lingjie Jay GUO, Andrew E. HOLLOWELL, Yi-Kuei WU
-
Patent number: 8815124Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.Type: GrantFiled: February 29, 2008Date of Patent: August 26, 2014Assignees: Solvay USA, Inc., Nano-C, Inc.Inventors: Darin W. Laird, Reza Stegamat, Henning Richter, Viktor Vejins, Larry Scott, Thomas A. Lada, Malika Daadi
-
Patent number: 8778215Abstract: An embodiment of the present disclosure provides a thermoelectric composite material including: a thermoelectric matrix including a thermoelectric material; and a plurality of nano-carbon material units located in the thermoelectric matrix and spaced apart from each other, wherein a spacing between two neighboring nano-carbon material unit is about 50 nm to 2 ?m.Type: GrantFiled: May 3, 2012Date of Patent: July 15, 2014Assignee: Industrial Technology Research InstituteInventors: Shih-Chun Tseng, Wen-Hsuan Chao, Hsu-Shen Chu
-
Publication number: 20140174905Abstract: A system and method for splitting water to produce hydrogen and oxygen employing sunlight energy are disclosed. Hydrogen and oxygen may then be stored for later use as fuels. The system and method use inorganic capping agents that cap the surface of semiconductor nanocrystals to form photocatalytic capped colloidal nanocrystals, which may be deposited on a substrate and treated to form a photoactive material. The photoactive material may be employed in the system to harvest sunlight and produce energy necessary for water splitting. The system may also include elements necessary to collect, transfer and store hydrogen and oxygen, for subsequent transformation into electrical energy.Type: ApplicationFiled: December 20, 2012Publication date: June 26, 2014Applicant: SUNPOWER TECHNOLOGIES LLCInventor: DANIEL LANDRY
-
Publication number: 20140158946Abstract: A semiconductor composition includes a semiconducting polymer containing a diketopyrrolopyrrole (DKPP) moiety and carbon nanotubes dispersed into the semiconducting polymer. An electronic device contains a semiconductor layer including a semiconductor composition having a semiconducting polymer including a diketopyrrolopyrrole (DKPP) moiety and carbon nanotubes dispersed into the semiconducting polymer. A semiconductor composition contains a semiconducting polymer including a diketopyrrolopyrrole (DKPP) moiety, a solvent selected from the group consisting of tetrachloroethane, dichlorobenzene, chlorobenzene, chlorotoluene, and a mixture thereof, and a carbon nanotube.Type: ApplicationFiled: December 6, 2012Publication date: June 12, 2014Applicant: XEROX CORPORATIONInventors: Yiliang WU, Anthony James WIGGLESWORTH, Ping LIU
-
Publication number: 20140158551Abstract: Sensors, processes for manufacturing the sensors, and processes of detecting a target molecule with the sensor generally includes a substrate including a channel and first and second electrodes electrically connected to the channel, wherein the channel includes a monolayer of surface functionalized graphene or surface functionalized carbon nanotubes, wherein the surface functionalized graphene or surface functionalized carbon nanotubes include an imidazolidone compound.Type: ApplicationFiled: December 6, 2012Publication date: June 12, 2014Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Ali Afzali-Ardakani, Shu-Jen Han
-
Patent number: 8697988Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.Type: GrantFiled: June 18, 2012Date of Patent: April 15, 2014Assignees: Plextronics, Inc., Nano-C, Inc.Inventors: Darin W. Laird, Henning Richter, Viktor Vejins, Larry Scott, Thomas A. Lada, Malika Daadi
-
Patent number: 8680574Abstract: A hybrid nanostructure array having a substrate and two types of nanostructures, including a set of first nanostructures extending from the substrate and a set of second nanostructures interspersed among the first nanostructures. The first and second nanostructures comprise structures having nanoscale proportions in two dimensions and being elongate in the third dimension. For example, the nanostructures can be nanotubes, nanowires, nanorods, nanocolumns, and/or nanofibers. Also disclosed is a hybrid nanoparticle array using two different types of nanoparticles that have all three dimensions in the nanoscale. The two types of nanostructures or nanoparticles can vary in composition, shape, or size.Type: GrantFiled: July 22, 2009Date of Patent: March 25, 2014Assignee: The Regents of The University of MichiganInventor: Anastasios John Hart
-
Patent number: 8633040Abstract: The invention can be used for producing different luminescent materials and as a basis for producing subminiature light-emitting diodes, white light sources, single-electron transistors, nonlinear optical devices and photosensitive and photovoltaic devices. The inventive method for producing semiconductor quantum dots involves synthesizing nanocrystal nuclei from a chalcogen-containing precursor and a precursor containing a group II or IV metal using an organic solvent and a surface modifier. The method is characterized in that (aminoalkyl)trialkoxysilanes are used as the surface modifier, core synthesis is carried out at a permanent temperature ranging from 150 to 250 C for 15 seconds to 1 hour and in that the reaction mixture containing the nanocrystal is additionally treated by UV-light for 1-10 minutes and by ultrasound for 5-15 minutes.Type: GrantFiled: August 18, 2009Date of Patent: January 21, 2014Assignee: The “Nanotech-Dubna” Trial Center for Science and TechnologyInventors: Roman Vladimirovich Novichkov, Maxim Sergeevich Wakstein, Ekaterina Leonidovna Nodova, Aleksey Olegovich Maniashin, Irina Ivanovna Taraskina
-
Patent number: 8632702Abstract: Highly uniform silicon/germanium nanoparticles can be formed into stable dispersions with a desirable small secondary particle size. The silicon/germanium particles can be surface modified to form the dispersions. The silicon/germanium nanoparticles can be doped to change the particle properties. The dispersions can be printed as an ink for appropriate applications. The dispersions can be used to form selectively doped deposits of semiconductor materials such as for the formation of photovoltaic cells or for the formation of printed electronic circuits.Type: GrantFiled: January 2, 2008Date of Patent: January 21, 2014Assignee: NanoGram CorporationInventors: Henry Hieslmair, Vladimir K. Dioumaev, Shivkumar Chiruvolu, Hui Du
-
Publication number: 20130337335Abstract: The present invention relates to a negative electrode material for a secondary battery and to a method for manufacturing same. The negative electrode material includes a graphite matrix and a plurality of tin-oxide nanorods disposed on the graphite matrix. Thus, when the negative electrode material is used as the negative electrode for a secondary battery, the negative electrode material may provide high initial capacity (1010 mAhg?1) and coulombic efficiency, superior rate capability, and improved electrochemical properties. Further, the method for manufacturing the negative electrode material for a secondary battery includes: a step of activating a surface of graphite; coating tin-oxide nanoparticles onto the activated surface of the graphite so as to form tin-oxide seed-type graphite; and heating the tin-oxide seed-type graphite using heated water in order to grow a plurality of tin-oxide nanorods.Type: ApplicationFiled: December 15, 2011Publication date: December 19, 2013Inventors: Won-Bae Kim, Jong-Guk Kim
-
Patent number: 8608983Abstract: A composite anode active material including metal core particles and carbon nanotubes that are covalently bound to the metal core particles, an anode including the composite anode active material, a lithium battery employing the anode, and a method of preparing the composite anode active material.Type: GrantFiled: January 29, 2010Date of Patent: December 17, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Jeong-hee Lee, Jeong-na Heo, Ho-suk Kang, Sang-kook Mah, In-taek Han
-
Publication number: 20130302611Abstract: Disclosed are ordered mesoporous carbon-carbon nanotube nanocomposites and a method for manufacturing the same. The method for manufacturing ordered carbon-carbon nanotube nanocomposites according to the present invention includes: forming a mixture of a carbon precursor and ordered mesoporous silica; carbonizing the mixture to form a ordered mesoporous silica-carbon composite; and removing the mesoporous silica from the ordered mesoporous silica-carbon composite.Type: ApplicationFiled: June 22, 2012Publication date: November 14, 2013Applicants: DH Holdings Co., Ltd., UNIST Academy-Industry Research CorporationInventors: Sang-Hoon Joo, Jae-Yeong Cheon, Jae-Deuk Kim, Jung-Hyun Park
-
Publication number: 20130215495Abstract: A nanoparticle waveguide apparatus, a nanoparticle waveguide photonic system and a method of photonic transmission employ a nearfield-coupled nanoparticle (NCN) waveguide to cooperatively propagate an optical signal. The nanoparticle waveguide apparatus includes a first optical waveguide adjacent to a second optical waveguide, the first optical waveguide comprising an NCN waveguide having a plurality of nanoparticles. The nanoparticle waveguide photonic system further includes a nearfield coupling (NC) modulator. The method includes providing the NCN waveguides and modulating a coupling between one or both of first and second NCN waveguides and adjacent nanoparticles within one or both of the first and second NCN waveguides.Type: ApplicationFiled: October 29, 2010Publication date: August 22, 2013Inventors: Lars H. Thylen, Alexandre M. Bratkovski, Petter Holmstrom
-
Patent number: 8512846Abstract: Methods for fabricating sublithographic, nanoscale microstructures in two-dimensional square and rectangular arrays utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.Type: GrantFiled: May 14, 2012Date of Patent: August 20, 2013Assignee: Micron Technology, Inc.Inventor: Dan B. Millward
-
Publication number: 20130209807Abstract: Electrodes and methods for making electrodes including modified carbon nanotube sheets are provided. The carbon nanotube sheets can be modified with metal particles or at least one mediator titrant. The electrodes can be disposed on a glassy carbon electrode to modify the glassy carbon electrode. Methods are provided that include forming a suspension of carbon nanotubes and metal particles or at least one mediator titrant, and filtering the suspension to form a modified carbon nanotube sheet.Type: ApplicationFiled: February 13, 2013Publication date: August 15, 2013Applicant: FLORIDA STATE UNIVERSITY RESEARCH FOUNDATION, INC.Inventor: Florida State University Research Foundation, Inc.
-
Patent number: 8481616Abstract: A two step method for preparing a filler composition, the filler composition useful to prepare a nanocomposite polymer and an epoxy nanocomposite coating. First, disperse a water dispersible filler material in a liquid comprising water, but without any added intercalation agent, to form a dispersion. Second, replace at least a portion of the water of the liquid with an organic solvent so that the water concentration of the liquid is less than six percent by weight to form the filler composition, the average size of at least one dimension of the filler material being less than two hundred nanometers upon examination by transmission electron microscopy of a representative freeze dried sample of the dispersion of the first step. A nanocomposite polymer can be prepared by mixing the filler composition with one or more polymer, polymer component, monomer or prepolymer to produce a polymer containing the filler composition.Type: GrantFiled: January 16, 2012Date of Patent: July 9, 2013Assignees: Dow Global Technologies LLC, The Texas A & M UniversityInventors: Luyi Sun, Jae Woong Boo, Hung-jue Sue, Maurice J. Marks, Richard F. Fibiger, Michael S. Paquette
-
Publication number: 20130118906Abstract: A system for solar energy conversion includes a photoelectric cell. The photoelectric cell includes a cathode and an anode comprising a nanostructure array. The nanostructure array includes a semiconductor photocatalyst; and a plasmon resonant metal nanostructure film arranged on the semiconductor photocatalyst. The system is used in a method to produce methane by placing a photocatalytic cell in an environment containing CO2; and exposing the photocatalytic cell to visible light thereby allowing the CO2 to be converted to methane.Type: ApplicationFiled: November 16, 2012Publication date: May 16, 2013Applicant: UNIVERSITY OF SOUTHERN CALIFORNIAInventor: UNIVERSITY OF SOUTHERN CALIFORNIA
-
Publication number: 20130115516Abstract: Highly dispersed lithium titanate crystal structures having a thickness of few atomic layers level and the two-dimensional surface in a plate form are supported on carbon nanofiber (CNF). The lithium titanate crystal structure precursors and CNF that supports these are prepared by a mechanochemical reaction that applies sheer stress and centrifugal force to a reactant in a rotating reactor. The mass ratio between the lithium titanate crystal structure and carbon nanofiber is preferably between 75:25 and 85:15. The carbon nanofiber preferably has an external diameter of 10-30 nm and an external specific surface area of 150-350 cm2/g. This composite is mixed with a binder and then molded to obtain an electrode, and this electrode is employed for an electrochemical element.Type: ApplicationFiled: May 2, 2011Publication date: May 9, 2013Inventors: Katsuhiko Naoi, Wako Naoi, Shuichi Ishimoto, Kenji Tamamitsu
-
Patent number: 8409476Abstract: There is provided a transparent conductor including conductive nanoparticles and at least one of (a) a fluorinated acid polymer and (b) a semiconductive polymer doped with a fluorinated acid polymer. The nanoparticles are carbon nanoparticles, metal nanoparticles, or combinations thereof. The carbon and metal nanoparticles are selected from nanotubes, fullerenes, and nanofibers. The acid polymers are fluorinated or highly fluorinated and have acidic groups including carboxylic acid groups, sulfonic acid groups, sulfonimide groups, phosphoric acid groups, phosphonic acid groups, and combinations thereof. The semiconductive polymers comprise homopolymers and copolymers derived from monomers selected from substituted and unsubstituted thiophenes, pyrroles, anilines, and cyclic heteroaromatics, and combinations of those. The compositions may be used in organic electronic devices (OLEDs).Type: GrantFiled: March 30, 2011Date of Patent: April 2, 2013Assignee: E I du Pont de Nemours and CompanyInventors: Che-Hsiung Hsu, Hjalti Skulason
-
Patent number: 8394657Abstract: A biosensor using a nanodot and a method of manufacturing the same are provided. A silicon nanowire can be formed by a CMOS process to reduce manufacturing costs. In addition, an electrically charged nanodot is coupled to a target molecule to be detected, in order to readily change conductivity of the silicon nanowire, thereby making it possible to implement a biosensor capable of providing good sensitivity and being manufactured at a low cost.Type: GrantFiled: September 22, 2011Date of Patent: March 12, 2013Assignee: Electronics and Telecommunications Research InstituteInventors: Tae Youb Kim, Chil Seong Ah, Chang Geun Ahn, Han Young Yu, Jong Heon Yang, Moon Gyu Jang
-
Patent number: 8394483Abstract: Methods for fabricating sublithographic, nanoscale microstructures in two-dimensional square and rectangular arrays utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.Type: GrantFiled: January 24, 2007Date of Patent: March 12, 2013Assignee: Micron Technology, Inc.Inventor: Dan B. Millward
-
Publication number: 20130048078Abstract: The present invention relates to a carbon nanotube-invaded metal oxide composite film used as an N-type metal oxide conductive film of an organic solar cell, a manufacturing method thereof, and the organic solar cell with an improved photoelectric conversion efficiency and improved durability using the same, and more specifically, to a metal oxide-carbon nanotube composite film, a manufacturing method thereof, and an organic solar cell with an improved photoelectric conversion efficiency and improved durability using the same, characterized in that a single-wall carbon nanotube which has been surface-treated by a metal oxide is uniformly dispersed and is combined with the metal oxide.Type: ApplicationFiled: December 22, 2010Publication date: February 28, 2013Applicant: KOREA INSTITUTE OF MACHINERY AND MATERIALSInventors: Dong Chan Lim, Kyu Hwan Lee, Yong Soo Jeong, Won Hyun Shim, Sun Young Park, Sung-Woo Cho
-
Patent number: 8344295Abstract: Techniques for providing heat to a small area and apparatus capable of providing heat to a small area are provided.Type: GrantFiled: October 14, 2009Date of Patent: January 1, 2013Assignee: Korea University Research and Business FoundationInventors: Kwangyeol Lee, Donghoon Choi
-
Publication number: 20120312467Abstract: The invention relates to a process for producing electrically conductive bonds between solar cells, in which an adhesive comprising electrically conductive particles is first transferred from a carrier to the substrate by irradiating the carrier with a laser, the adhesive transferred to the substrate is partly dried and/or cured to form an adhesive layer, in a further step the adhesive is bonded to an electrical connection, and finally the adhesive layer is cured. The invention further relates to an adhesive for performing the process, comprising 20 to 98% by weight of electrically conductive particles, 0.01 to 60% by weight of an organic binder component used as a matrix material, based in each case on the solids content of the adhesive, 0.005 to 20% by weight of absorbent based on the weight of the conductive particles in the adhesive, and 0 to 50% by weight of a dispersant and 1 to 20% by weight of solvent, based in each case on the total mass of the undried and uncured adhesive.Type: ApplicationFiled: February 16, 2011Publication date: December 13, 2012Applicant: BASF SEInventors: Frank Kleine Jaeger, Juergen Kaczun, Stephan Hermes
-
Publication number: 20120273735Abstract: A thermoelectric material that comprises a ternary main group matrix material and nano-particles and/or nano-inclusions of a Group 2 or Group 12 metal oxide dispersed therein. A process for making the thermoelectric material that includes reacting a reduced metal precursor with an oxidized metal precursor in the presence of nanoparticles.Type: ApplicationFiled: April 26, 2011Publication date: November 1, 2012Applicant: Toyota Motor Engin. & Manufact. N.A.(TEMA)Inventors: Michael Paul Rowe, Li Qin Zhou
-
Publication number: 20120267223Abstract: A non-volatile bistable nano-electromechanical switch is provided for use in memory devices and microprocessors. The switch employs carbon nanotubes as the actuation element. A method has been developed for fabricating nanoswitches having one single-walled carbon nanotube as the actuator. The actuation of two different states can be achieved using the same low voltage for each state.Type: ApplicationFiled: June 27, 2012Publication date: October 25, 2012Applicant: NORTHEASTERN UNIVERSITYInventors: Sivasubramanian Somu, Ahmed Busnaina, Nicol McGruer, Peter Ryan, George G. Adams, Xugang Xiong, Taehoon Kim
-
Patent number: 8268282Abstract: The present invention relates generally to thermally-conductive pastes for use with integrated circuits, and particularly, but not by way of limitation, to self-orienting microplates of graphite.Type: GrantFiled: June 5, 2007Date of Patent: September 18, 2012Assignee: International Business Machines CorporationInventors: Gareth Hougham, Paul A. Lauro, Brian R. Sundlof, Jeffrey D. Gelorme
-
Patent number: 8232475Abstract: A nano-hole array for improving contact conductance of a conductor element that consists of a first layer and a second layer is provided. The nano-hole array formed between the first and second layers comprises a plurality of holes. The contact conductance of the conductor element is enhanced by reducing the hole size of the hole array, increasing the occupation rate of the hole array, and performing thermal annealing.Type: GrantFiled: February 10, 2009Date of Patent: July 31, 2012Assignee: National Taiwan UniversityInventors: Jong-Lih Li, Chieh-Hsiung Kuan
-
Patent number: 8217260Abstract: Photovoltaic cells comprising an active layer comprising, as p-type material, conjugated polymers such as polythiophene and regioregular polythiophene, and as n-type material at least one fullerene derivative. The fullerene derivative can be C60, C70, or C84. The fullerene also can be functionalized with indene groups. Improved efficiency can be achieved.Type: GrantFiled: May 2, 2007Date of Patent: July 10, 2012Assignees: Plextronics, Inc., Nano-C, Inc.Inventors: Darin W. Laird, Reza Stegamat, Malika Daadi, legal representative, Henning Richter, Viktor Vejins, Larry Scott, Thomas A. Lada
-
Patent number: 8192643Abstract: Fluids comprising graphite particles and related methods are generally described. In some embodiments, “microfluids” are described. Generally, the microfluids can comprise a fluid and a plurality of graphite particles with microscale dimensions.Type: GrantFiled: December 15, 2009Date of Patent: June 5, 2012Assignee: Massachusetts Institute of TechnologyInventors: Ruiting Zheng, Jinwei Gao, Gang Chen
-
Patent number: 8163589Abstract: A method for manufacturing an active layer of a solar cell is disclosed, the active layer manufactured including multiple micro cavities in sub-micrometer scale, which can increase the photoelectric conversion rate of a solar cell. The method comprises following steps: providing a substrate having multiple layers of nanospheres which are formed by the aggregated nanospheres; forming at least one silicon active layer to fill the inter-gap between the nanospheres and part of the surface of the substrate; and removing the nanospheres to form an active layer having plural micro cavities on the surface of the substrate. The present invention also provides a solar cell comprising: a substrate, an active layer, a transparent top-passivation, at least one front contact pad, and at least one back contact pad. The active layer locates on a surface of the substrate and has plural micro cavities whose diameter is less than one micrometer.Type: GrantFiled: October 16, 2009Date of Patent: April 24, 2012Assignee: Aurotek CorporationInventors: Chung-Hua Li, Jian-Ging Chen
-
Publication number: 20120090825Abstract: A device including a micro component having an external surface and a permeable nanofiber covering on at least a portion of the external surface of the micro component. A cooled micro component system further includes a droplet spray system for spraying liquid droplets onto the nanofiber covering to cool the micro component. In an example method for cooling a micro component, droplet spray is directed onto a nanofiber covering that covers at least a portion of the micro component. The directing is controlled to permit efficient spreading and evaporation of liquid permeating the nanofiber covering. In example embodiments nanofibers of the permeable nanofiber covering are metalized to provide a rougher surface (e.g., a nano-textured metal layer).Type: ApplicationFiled: October 14, 2011Publication date: April 19, 2012Applicant: THE BOARD OF TRUSTEES OF THE UNIVERSITY OF ILLINOISInventors: Alexander L. Yarin, Srikar Raman, Tatiana Gambaryan-Roisman, Suman Sinha Ray, Yiyun Zhang
-
Methods for Infusing One or More Materials into Nano-Voids of Nanoporous or Nanostructured Materials
Publication number: 20120045886Abstract: A method of forming composite nanostructures using one or more nanomaterials. The method provides a nanostructure material having a surface region and one or more nano void regions within a first thickness in the surface region. The method subjects the surface region of the nanostructure material with a fluid. An external energy is applied to the fluid and/or the nanostructure material to drive in a portion of the fluid into one or more of the void regions and cause the one or more nano void regions to be substantially filled with the fluid and free from air gaps.Type: ApplicationFiled: November 1, 2011Publication date: February 23, 2012Applicant: Stion CorporationInventor: Howard W.H. Lee -
Patent number: 8115232Abstract: The present invention provides of a three-dimensional bicontinuous heterostructure, a method of producing same, and the application of this structure towards the realization of photodetecting and photovoltaic devices working in the visible and the near-infrared. The three-dimensional bicontinuous heterostructure includes two interpenetrating layers which are spatially continuous, they are include only protrusions or peninsulas, and no islands. The method of producing the three-dimensional bicontinuous heterostructure relies on forming an essentially planar continuous bottom layer of a first material; forming a layer of this first material on top of the bottom layer which is textured to produce protrusions for subsequent interpenetration with a second material, coating this second material onto this structure; and forming a final coating with the second material that ensures that only the second material is contacted by subsequent layer.Type: GrantFiled: January 9, 2006Date of Patent: February 14, 2012Assignee: InVisage Technologies, Inc.Inventors: Edward Sargent, Steve McDonald, Shiguo Zhang, Larissa Levina, Gerasimos Konstantatos, Paul Cyr
-
Publication number: 20120018301Abstract: Nanoelectronic devices for the detection and quantification of biomolecules are provided. In certain embodiments, the devices are configured to detect and measure blood glucose levels. Also provided are methods of fabricating nanoelectronic devices for the detection of biomolecules.Type: ApplicationFiled: April 22, 2011Publication date: January 26, 2012Applicant: NANOMIX, INC.Inventors: Kanchan A. Joshi, Ray Radtkey, Christian Valcke
-
Patent number: 8101261Abstract: Methods for fabricating sublithographic, nanoscale microstructures in one-dimensional arrays utilizing self-assembling block copolymers, and films and devices formed from these methods are provided.Type: GrantFiled: February 13, 2008Date of Patent: January 24, 2012Assignee: Micron Technology, Inc.Inventors: Dan B. Millward, Karl Stuen
-
Publication number: 20110318905Abstract: Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.Type: ApplicationFiled: March 23, 2011Publication date: December 29, 2011Inventors: Shivkumar Chiruvolu, Igor Altman, Bernard M. Frey, Weidong Li, Guojun Liu, Robert B. Lynch, Gina Elizabeth Pengra-Leung, Uma Srinivasan