Abstract: An electrical device comprising (A) a substrate having a surface and (B) a nanohole superlattice superimposed on a portion of the surface is provided. The nanohole superlattice comprises a plurality of sheets having an array of holes defined therein. The array of holes is characterized by a band gap or band gap range. The plurality of sheets forms a first edge and a second edge. A first lead comprising a first electrically conductive material forms a first junction with the first edge. A second lead comprising a second electrically conductive material forms a second junction with the second edge. The first junction is a Schottky barrier with respect to a carrier. In some instances a metal protective coating covers all or a portion of a surface of the first lead. In some instances, the first lead comprises titanium, the second lead comprises palladium, and the metal protective coating comprises gold.
Abstract: This invention involves the nano-structured support used for separation or/and analysis, especially the chip substrate, ELISA plate substrate, planar chromatography strip and chromatography gel. Besides, it involves the functionalized nano-structured support of high sensibility for separation or/and analysis, especially the analysis-chip, ELISA plate, planar chromatography reagent strip and chromatography gel. In addition, this invention also involves the nano-structured marking system for analysis. Moreover, it concerns the test kit; especially the chip kit, ELISA kit, and planar chromatography kit. What's more, this invention involves the preparing methods and the applications of all those mentioned above, especially the chip analysis, analyses with ELISA plate, planar chromatography strip and chromatography separation.
Abstract: A method by which silicon nanostructures may be selectively coated with molecules or biomolecules using an electrochemical process. This chemical process may be employed as a method for coating many different nanostructures within a circuit, each with a different molecular or biomolecular material. The density of devices within a circuit of devices that can be coated with different molecules is limited only by the ability to electronically address each device separately. This invention has applications toward the fabrication of molecular electronic circuitry and toward the fabrication of nanoelectronic molecular sensor arrays.
Type:
Grant
Filed:
June 23, 2004
Date of Patent:
August 26, 2008
Assignee:
California Institute of Technology
Inventors:
James R. Heath, Yuri Bunimovich, Guanglu Ge, Kristen Beverly, John Nagarah, Michael Roukes, Peter Willis