Of Specified Metal Or Metal Alloy Composition Patents (Class 977/810)
  • Publication number: 20100056363
    Abstract: Disclosed is a method of processing a polycrystalline nanoparticle. The method includes exposing a polycrystalline nanoparticle that includes at least two metal oxide crystallites bonded to each other to a chemical composition that includes a catalyst in order to at least partially separate the at least two metal oxide crystallites of the polycrystalline nanoparticle at an interface thereof.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 4, 2010
    Inventor: Kwangyeol Lee
  • Publication number: 20100041544
    Abstract: Electrode catalyst of carbon nitride nanotubes supported by platinum and ruthenium nanoparticles have been produced by a simple, rapid, effective and green process: taking use of the affinity of carbon nitride nanotubes to platinum and ruthenium atoms, Pt and Ru nanoparticles could be directly deposited on carbon nitride nanotubes by the reduction reaction, hereby avoiding the pre-activation or modification process needed by carbon nanotubes. The electrode catalysts produced in this way are suitable for proton exchange membrane fuel cells or direct methanol fuel cells, as well as other chemical reactions catalyzed by Pt and Ru.
    Type: Application
    Filed: May 12, 2008
    Publication date: February 18, 2010
    Applicant: NANJING UNIVERSITY
    Inventors: Zheng Hu, Yanwen Ma, Bing Yue, Leshu Yu
  • Publication number: 20100033059
    Abstract: An apparatus for generating electrical energy including a first electrode, a second electrode and one or more nanowires, and a method for manufacturing the apparatus for generating electrical energy. The second electrode may have a concave portion and a convex portion. The first electrode and the nanowire are formed of different materials. The nanowire is formed on the first electrode and is positioned between the first electrode and the second electrode. Because the nanowire is formed on the first electrode, the nanowire may be grown vertically and the uniformity and conductivity of the nanowires may be improved. When a stress is applied to the first electrode or the second electrode, the nanowire is deformed and an electric current is generated from the nanowire due to a piezoelectric effect of the nanowire and a Schottky contact between the nanowire and the electrode which makes contact with the nanowire.
    Type: Application
    Filed: January 8, 2009
    Publication date: February 11, 2010
    Applicants: SAMSUNG ELECTRONICS CO., LTD., KUMOH NATIONAL INSTITUTE OF TECHNOLOGY
    Inventors: Jaeyoung CHOI, Sang-Woo KIM, Dukhyun CHOI
  • Publication number: 20100032615
    Abstract: Provided is a metal nanoparticle dispersion capable of suppressing spreadability at a room temperature and drying phenomenon at heating temperature. The metal nanoparticle dispersion includes metal particles; and an organic solvent having a viscosity of 10 mPa·s or more at a room temperature and a flash point of 100° C. or above.
    Type: Application
    Filed: March 17, 2009
    Publication date: February 11, 2010
    Inventors: Young Il LEE, Dong Hoon KIM, Kwi Jong LEE
  • Patent number: 7659224
    Abstract: Although nanoparticles capable of providing an extremely large active surface area have highly marked advantages, when a PEFC electrode utilizing nanoparticles is used for a prolonged period of time, the catalyst nanoparticles on carrier of the PEFC electrode because of the nano-size thereof migrate and aggregate together to result in a rapid loss of activity. Thus, there is a demand for inhibition of the above aggregation so as to prevent any drop of catalytic activity. According to the present invention the aggregation of nanoparticles can be inhibited by catalyst nanoparticles containing Pt wherein a porous matter containing an inorganic oxide is disposed on the surface of the catalyst nanoparticles. When use is made of nanoparticles whose surface has undergone specific modification, excellent activity can be realized. Therefore, there are provided surface-modified nanoparticles and catalyst and further a PEFC electrode utilizing these nanoparticles.
    Type: Grant
    Filed: September 13, 2006
    Date of Patent: February 9, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Yuzuru Shimazaki, Yoshio Kobayashi, Mikio Konno
  • Publication number: 20100028674
    Abstract: Nanofibers and methods for making the nanofibers are described. Porous metal oxide nanofibers and porous metal oxide nanofibers comprising metal nanoparticles made via electrospinning methods are also described.
    Type: Application
    Filed: July 31, 2008
    Publication date: February 4, 2010
    Inventor: Fredrick O Ochanda
  • Patent number: 7655148
    Abstract: A water treatment composition includes an oxidizing component and an adsorbing component, wherein one or both of the oxidizing component and adsorbing component comprise nanostructured materials. The water treatment compositions are useful in at least partially removing contaminants such as metallic or cationic arsenic, lead, chromium, and/or mercury from water.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: February 2, 2010
    Assignees: Inframat Corporation, The University of Houston
    Inventors: Huimin Chen, Meidong Wang, T. Danny Xiao, Dennis A. Clifford
  • Patent number: 7655272
    Abstract: Nanostructures are implemented in a manner that facilitates controlled, nano-scale dimensional manufacture and implementation. According to an example embodiment of the present invention, a nanostructure is formed from a layer of deposited metallic material, sized using a mask and, in some applications, metal deposition angle. The deposited metallic material is heated to form a metallic nanocluster having a cross-section (e.g., diameter-type or width-type dimensional characteristics) that is less than a width of the layer of deposited metal material. In one application, the metallic material is deposited on a substrate and in wells defined by a mask formed on the substrate. The metallic material is annealed to form metallic nanoclusters having a diameter that is on an order of magnitude less than a width and/or diameter of the wells.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: February 2, 2010
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Ali Javey, Hongjie Dai
  • Publication number: 20100022384
    Abstract: Disclosed are partially deactivated metal catalysts useful for modifying structures of nanomaterials. The present invention is also directed to a method for preparing the partially deactivated metal catalysts, which comprises patterning a substrate with micelles containing iron nanoparticles, removing the micelles from the patterned substrate to deposit the iron nanoparticles thereon, nitriding the iron nanoparticles using a nitrogen plasma, and exposing the nitrided iron nanoparticles to a mixture of ethanol and nitric acid to remove iron from the surface of the nitrided nanoparticles. The iron nitride metal catalyst with a nano-size according to the present invention comprises a core that includes deactivated iron nitride and an active shell surrounding the core. Thus, when preparing a carbon nanotube, the metal catalyst can be effectively used to control the number of walls formed in the carbon nanotube.
    Type: Application
    Filed: November 26, 2008
    Publication date: January 28, 2010
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Jeung Ku Kang, Kyung Min Choi, Jung Hoon Choi, Saji Augustine, Weon HO Shin, Seong Ho Yang
  • Patent number: 7649192
    Abstract: Provided are nano wires and a method of manufacturing the same. The method includes forming microgrooves having a plurality of microcavities, the microgrooves forming a regular pattern on a surface of a silicon substrate; forming a metal layer on the silicon substrate by depositing a material which acts as a catalyst to form nano wires on the silicon substrate; agglomerating the metal layer within the microgrooves on the surface of the silicon substrate by heating the metal layer to form catalysts; and growing the nano wires between the catalysts and the silicon substrate using a thermal process.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: January 19, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byoung-lyong Choi, Eun-kyung Lee
  • Patent number: 7648595
    Abstract: The invention is a novel photo-induced method for converting large quantities of silver nanospheres into nanoprisms, the nanoprisms formed by this method and applications in which the nanoprisms are useful. Significantly, this light driven process results in a colloid with a unique set of optical properties that directly relate to the nanoprism shape of the particles. Theoretical calculations coupled with experimental observations allow for the assignment of the nanoprism plasmon bands and the first identification of two distinct quadrupole plasmon resonances for a nanoparticle. Finally, unlike the spherical particles from which they derive and which Rayleigh light scatter in the blue, these nanoprisms exhibit scattering in the red, permitting multicolor diagnostic labels based not only on nanoparticle composition and size but also on shape.
    Type: Grant
    Filed: August 4, 2006
    Date of Patent: January 19, 2010
    Assignee: Northwestern University
    Inventors: Rongchao Jin, Yunwei Cao, Chad A. Mirkin
  • Patent number: 7649166
    Abstract: An imaging device. In one embodiment, the imaging device includes a plurality of first electrode strips in parallel to each other along a first direction x, wherein each first electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n1. The imaging device also includes a plurality of second electrode strips in parallel to each other along a second direction y that is substantially perpendicular to the first direction x, wherein each second electrode strip has an elongated body with a first surface and an opposite, second surface and a thickness n2. The plurality of second electrode strips are positioned apart from the plurality of first electrode strips along a third direction z that is substantially perpendicular to the first direction x and the second direction y such that the plurality of first electrode strips and the plurality of second electrode strips are crossing each other accordingly to form a corresponding number of crossing points.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: January 19, 2010
    Assignee: Northwestern University
    Inventors: Boyang Liu, Seng-Tiong Ho
  • Patent number: 7641886
    Abstract: The present invention provides a process for obtaining fullerene-like metal chalcogenide nanoparticles, comprising feeding a metal precursor (INi) selected from metal halide, metal carbonyl, organo-metallic compound and metal oxyhalide vapor into a reaction chamber (12) towards a reaction zone to interact with a flow of at least one chalcogen material (IN2) in gas phase, the temperature conditions in said reaction zone being such to enable the formation of the fullerene-like metal chalcogenide nanoparticles product. The present invention further provides novel IF metal chalcogenides nanoparticles with spherical shape and optionally having a very small or no hollow core and also exhibiting excellent tribological behavior. The present invention further provides an apparatus for preparing various IF nanostructures.
    Type: Grant
    Filed: April 6, 2006
    Date of Patent: January 5, 2010
    Assignees: Yeda Research & Development Company Ltd., A.Y.Y.T. - Technological Application and Data Update Ltd.
    Inventors: Reshef Tenne, Alexander Margolin, Ronit Popovitz-Biro, Lev Rapoport
  • Publication number: 20090325795
    Abstract: A producing method includes a preparing step of preparing a chemical compound having at least one of elements of alkali metals and alkali earth metals along with platinum, and a reducing step of reducing the prepared chemical compound with a reducing agent to form platinum nanoparticles.
    Type: Application
    Filed: June 25, 2009
    Publication date: December 31, 2009
    Applicants: AISIN SEIKI KABUSHIKI KAISHA, Toyota Jidosha Kabushiki Kaisha, THE DOSHISHA
    Inventors: Takeshi Kamizono, Gang Xie, Minoru Inaba
  • Publication number: 20090323508
    Abstract: A photosensitized composite material and a material, an element, a device, and the like, which employ the photosensitized composite material, are provided. In the photosensitized composite material, multiphoton absorption compounds are highly sensitized for practical use by utilizing an enhanced plasmon field. The photosensitized composite material has a structure where the multiphoton absorption compounds are linked to the surface of a fine metal particle through linking groups. The fine metal particle generates an enhanced surface plasmon field in resonance with a multiphoton excitation wavelength. The multiphoton absorption compounds have a molecular structure enabling multiphoton absorption.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 31, 2009
    Inventors: Tatsuya Tomura, Tsutomu Sato, Takeshi Miki, Mikiko Takada, Masaomi Sasaki
  • Publication number: 20090318641
    Abstract: An improved method is provided to prepare reinforced resin nanocomposites without the need of surfactants or coupling agents. The present invention comprises the use of monomers for improving the dispersion of nano-sized materials and enhancing the particle/matrix interaction. One comprises mixing a plurality of nanoparticles with a monomer resin to form a mixture, blending a catalyst and a promoter with the mixture, and curing the blended mixture to form a polymerized nanocomposite. The monomers, which serve to stabilize the nanoparticles, are covalently bound onto the nanoparticle surface and copolymerize with non-bound monomers after introduction of a catalyst and a promoter that initiate polymerization. Without any additional surfactant or coupling agent, the resin is chemically bound onto the nanoparticle surface and protects the iron nanoparticles from agglomeration and oxidation.
    Type: Application
    Filed: May 15, 2009
    Publication date: December 24, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Zhanhu Guo, H. Thomas Hahn
  • Publication number: 20090317335
    Abstract: The presently disclosed subject matter provides hybrid nanomaterials for use as magnetic resonance imaging (MRI), optical and/or multimodal contrast imaging agents. The hybrid nanomaterials comprise a polymeric matrix material and a plurality of coordination complexes, each coordination complex comprising a functionalized chelating group and a paramagnetic metal ion. The nanoparticle can further comprise a luminophore. Methods of synthesizing and using the nanoparticles are provided. The nanoparticles can be used to diagnose diseases, including cancer, cardiovascular disease, and diseases related to inflammation.
    Type: Application
    Filed: April 20, 2007
    Publication date: December 24, 2009
    Inventors: Wenbin Lin, William Rieter, Kathryn Taylor, Jason Kim
  • Publication number: 20090311530
    Abstract: To provide a method for producing a silver nanowire, including heating a silver complex in an aqueous solvent at a temperature equal to or below the boiling point of the aqueous solvent in the presence of at least one of a hydroxyketone compound and a hydroxylamine compound, and a silver nanowire obtained by the method.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 17, 2009
    Applicant: FUJIFILM Corporation
    Inventors: Hiroyuki HIRAI, Yoshiko NIINO, Nori MIYAGISIMA
  • Patent number: 7632775
    Abstract: Disclosed are nanoparticles formed from a plurality of two or more different components. The two or more components are dispersed using a dispersing agent such that the nanoparticles have a substantially uniform distribution of the two or more components. The dispersing agents can be poly functional small organic molecules, polymers, or oligomers, or salts of these. The molecules of the dispersing agent bind to the particle atoms to overcome like-component attractions, thereby allowing different and/or dissimilar components to form heterogeneous nanoparticles. In one embodiment, dissimilar components such as iron and platinum are complexed using the dispersing agent to form substantially uniform heterogeneous nanoparticles. Methods are also disclosed for making the multicomponent nanoparticles. The methods include forming suspensions of two or more components complexed with the dispersing agent molecules. The suspensions can also be deposited on a support material and/or anchored to the support.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: December 15, 2009
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Bing Zhou, Sukesh Parasher, Michael Rueter
  • Patent number: 7632425
    Abstract: A composition includes a metal precursor. The metal precursor may include an inorganic ligand and a metal cation. The inorganic ligand may include a carbamate group. An associated method is provided.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: December 15, 2009
    Assignee: General Electric Company
    Inventors: Davide Louis Simone, Thomas Martin Angeliu, Jian Zhang, Christopher Michael Carter, David Alexander Gibson, III, Larry Neil Lewis
  • Patent number: 7626192
    Abstract: A method for forming arrays of metal, alloy, semiconductor or magnetic nanoparticles is described. An embodiment of the method comprises placing a scaffold on a substrate, the scaffold comprising, for example, polynucleotides and/or polypeptides, and coupling the nanoparticles to the scaffold. Methods of producing arrays in predetermined patterns and electronic devices that incorporate such patterned arrays are also described.
    Type: Grant
    Filed: May 2, 2005
    Date of Patent: December 1, 2009
    Assignee: State of Oregon Acting by the Through the State Board of Higher Education on Behalf of the University of Oregon
    Inventors: James E. Hutchison, Martin N. Wybourne, Scott M. Reed
  • Publication number: 20090274833
    Abstract: A metallic ink including a vehicle, a multiplicity of copper nanoparticles, and an alcohol. The conductive metallic ink may be deposited on a substrate by methods including inkjet printing and draw-down printing. The ink may be pre-cured and cured to form a conductor on the substrate.
    Type: Application
    Filed: March 31, 2009
    Publication date: November 5, 2009
    Applicants: Ishihara Chemical Co., Ltd., Applied Nanotech Holdings, Inc.
    Inventors: Yunjun Li, David Max Roundhill, Xueping Li, Peter B. Laxton, Hidetoshi Arimura, Zvi Yaniv
  • Publication number: 20090266766
    Abstract: Nanoparticle-treated particle packs, such as sand beds, may effectively filter and purify liquids such as waste water. When tiny contaminant particles in waste water flow through the particle pack, the nanoparticles will capture and hold the tiny contaminant particles within the pack due to the nanoparticles' surface forces, including, but not necessarily limited to van der Waals and electrostatic forces. Coating agents such as alcohols, glycols, polyols, vegetable oil, and mineral oils may help apply the nanoparticles to the particle surfaces in the filter beds or packs.
    Type: Application
    Filed: April 29, 2008
    Publication date: October 29, 2009
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Tianping Huang, James B. Crews
  • Publication number: 20090267054
    Abstract: The present invention relates to reconfigurable circuitry, and more particularly to the reconfiguration of the characteristics of materials used in the formation of electronic circuitry as the result of applied external influences. Exemplary embodiments of the present invention provide an apparatuses, methods, electronic devices and computer program products that include a nanoscale material layer, and a programmable element in close proximity to at least a first section of the nanoscale material layer. The programmable element is configured to produce interference with an electron wave in at least the first section of the nanoscale material layer.
    Type: Application
    Filed: April 25, 2008
    Publication date: October 29, 2009
    Inventors: Asta Karkkainen, Leo Karkkainen
  • Publication number: 20090263656
    Abstract: The invention disclosed herein provides an organic-inorganic hybrid structure having nanoparticles attached to the surface thereof, wherein the structure comprises a self-assembled structure of a coordination polymer, which includes a metal-organic ligand complex, as well as a preparation method thereof. According to the invention, through the use of the self-assembly phenomenon of coordination polymer and the use of nanoparticles having a surface component, which is the same as or similar to that of the surface of the coordination polymer, an organic-inorganic hybrid structure, which has nanoparticles attached to the surface of a self-assembled structure of coordination polymer, can be prepared in a relatively simple process without needing several steps.
    Type: Application
    Filed: October 10, 2007
    Publication date: October 22, 2009
    Inventors: Byung-Joon Chae, Sung-Ho Yoon
  • Publication number: 20090261305
    Abstract: A composition for use, for example, in an electrode in a Nickel-Metal-Hydride battery is provided that consists of metal hydrides together with a certain percentage of nano-sized reactive metal particles, preferably either nickel, manganese, aluminum, cobalt, copper, tin, palladium, silver, gold, lanthanum, and/or alloys thereof. The addition of nano-metals enhances the hydrogen charging characteristics of the battery.
    Type: Application
    Filed: April 21, 2009
    Publication date: October 22, 2009
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Daniel F. CARROLL, Kimberly McGRATH, Keith KEPLER
  • Patent number: 7604843
    Abstract: A compound film may be formed by formulating a mixture of elemental nanoparticles composed of the Ib, the IIIa, and, optionally, the VIa group of elements having a controlled overall composition. The nanoparticle mixture is combined with a suspension of nanoglobules of gallium to form a dispersion. The dispersion may be deposited onto a substrate to form a layer on the substrate. The layer may then be reacted in a suitable atmosphere to form the compound film. The compound film may be used as a light-absorbing layer in a photovoltaic device.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: October 20, 2009
    Assignee: Nanosolar, Inc.
    Inventors: Matthew R. Robinson, Martin R. Roscheisen
  • Publication number: 20090255579
    Abstract: The invention relates to converters of the energy of electromagnetic radiation to electrical energy and may be used in the production of solar photocells. The converter according to the invention contains at least one photosensitive layer that achieves the generation of a photocurrent through the absorption of electromagnetic radiation, as well as collector electrodes. At the same time, the converter also contains metallic nanoparticles, the size of which is on the order of, or less than, the wavelength in the maximum of the spectrum of the incident radiation, that achieve the concentration of the incident radiation in the near-field around the nanoparticles and the generation of a photocurrent through the absorption of said radiation. Intensification of the photocurrent and enhancement of the efficiency of the converter are achieved as a result.
    Type: Application
    Filed: January 6, 2009
    Publication date: October 15, 2009
    Applicant: OOO "NOVYE ENERGETICHESKIE TEHNOLOGII"
    Inventors: Oleg Antonovich Zaimidoroga, Igor Evgen'evich Protzenko, Viktor Moiseevich Rudoi
  • Patent number: 7602069
    Abstract: A micro electronic component, preferably in the form of an electronic memory, includes the use of clusters as an electronic memory. Also disclosed as part of the present invention is a method for fabricating a micro electronic component. The present invention contemplates fabrication of an especially compact electronic memory that works especially with single-electron transistors or single-electronic transfers. According to the present invention, clusters with a metallic cluster nucleus are arranged in parallel grooves essentially in lines or rows and are connected individually to first and second connecting electrodes, such that individually the clusters can be electrically modified or polled independently of each other.
    Type: Grant
    Filed: July 25, 2006
    Date of Patent: October 13, 2009
    Assignee: Universität Duisburg-Essen
    Inventors: Günter Schmid, Ulrich Simon, Dieter Jäger, Venugopal Santhanam, Torsten Reuter
  • Publication number: 20090253580
    Abstract: A process for growth of boron-based nanostructures, such as nanotubes and nanowires, with a controlled diameter and with controlled chemical (such as composition, doping) as well as physical (such as electrical and superconducting) properties is described. The boron nanostructures are grown on a metal-substituted MCM-41 template with pores having a uniform pore diameter of less than approximately 4 nm, and can be doped with a Group Ia or Group IIa electron donor element during or after growth of the nanostructure. Preliminary data based on magnetic susceptibility measurements suggest that Mg-doped boron nanotubes have a superconducting transition temperature on the order of 100 K.
    Type: Application
    Filed: March 27, 2009
    Publication date: October 8, 2009
    Applicant: Yale University
    Inventors: Lisa Pfefferle, Dragos Ciuparu
  • Publication number: 20090246519
    Abstract: Isolated tellurite-resistant or selenite-resistant marine organisms capable of precipitating tellurium or selenium when grown aerobically are described. A method for using these isolated organisms to produce an aqueous suspension of purified nanoparticles comprising tellurium or selenium and the nanoparticles comprising tellurium or selenium produced by this method are also described. The nanoparticles may further comprise cadmium or zinc. A method of remediation utilizing the described organisms is also presented.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 1, 2009
    Applicant: University of Delaware
    Inventor: Thomas E. Hanson
  • Publication number: 20090246143
    Abstract: Composition of non-radioactive traceable metal isotope-enriched nanoparticles, and methods of their use for determining in-vivo biodistribution are provided. The methods comprise the steps of: (a) introducing the nanoparticles into the biological material, wherein the nanoparticles comprise at least one inorganic core, and the inorganic core comprises at least two metal isotopes in a predetermined ratio; wherein at least one metal isotope is enriched non-radioactive traceable metal isotope and (b) determining the distribution of the nanoparticles in the biological material based on the predetermined ratio of the metal isotopes.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 1, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Peter John Bonitatibus, JR., Amit Mohan Kulkarni, Andrew Soliz Torres, Ying Zhou, Chiaki Treynor, Daniel Eugene Meyer
  • Patent number: 7595108
    Abstract: The invention relates to novel nanoparticles comprising a metal core containing at least one platinoid or an alloy of a platinoid, a first organic coating formed from molecules attached to the surface of the metal core, and a second organic coating formed from molecules different from the molecules forming the first organic coating, and which are grafted onto molecules of the first organic coating. The invention also relates to the use of the nanoparticles as catalysts. The fields of application include devices for producing electrical energy, in particular in fuel cells, devices for detecting or assaying one or more chemical or biological species, in particular in sensors or multisensors, etc.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: September 29, 2009
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Henri Perez, Frédéric Raynal, Michel Herlem, Arnaud Etcheberry
  • Publication number: 20090236079
    Abstract: Improved functionality of phase change materials (PCM) through dispersion of nanoparticles is described. The resulting nanoparticle-enhanced phase change materials (NEPCM) exhibit enhanced thermal conductivity in comparison to the base material. Starting with steady state natural convection within a differentially-heated square cavity that contains a nanofluid (water plus copper nanoparticles), the nanofluid is allowed to undergo solidification. Partly due to increase of thermal conductivity and also lowering of the latent heat of fusion, higher heat release rate of the NEPCM in relation to the conventional PCM is observed. The predicted increase of the heat release rate of the NEPCM is a clear indicator of its great potential for diverse thermal energy storage applications.
    Type: Application
    Filed: March 24, 2009
    Publication date: September 24, 2009
    Applicant: AUBURN UNIVERSITY
    Inventor: Jeyhoon M. Khodadadi
  • Publication number: 20090239073
    Abstract: The present invention relates to a porous copper sulfide nano/micro hollow sphere and a method for preparing the same. The porous copper sulfide nano/micro hollow sphere of the present invention has plural through holes and a hollow structure so as to increase the reactive area thereof. In particular, the porous copper sulfide nano/micro hollow sphere can be applied in a solar cell to enhance a photoelectric effect.
    Type: Application
    Filed: December 4, 2008
    Publication date: September 24, 2009
    Applicants: Tatung Company, Tatung University
    Inventors: Chi-Yuan Huang, Yen-Hung Chen, Chen-Jing Yu
  • Publication number: 20090233398
    Abstract: Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Applicant: Battelle Energy Alliance, LLC
    Inventors: Robert V. Fox, Rene Rodriguez, Joshua Pak
  • Publication number: 20090229342
    Abstract: A system and method for measuring an agent in an environment is disclosed. The method includes providing a substrate, coating the substrate with noble metallic nanoparticles, exposing the coated substrate to the environment, and determining the existence of the agent from variation in the hybrid plasmon extinction peak of the metallic nanoparticles.
    Type: Application
    Filed: December 31, 2008
    Publication date: September 17, 2009
    Inventor: ALI KAAN KALKAN
  • Publication number: 20090229865
    Abstract: A conductor for a flexible substrate, used for a flexible flat cable or disposed inside a flexible printed-circuit board, according to the present invention comprises: a base conductor made of Cu or Cu-alloy; a plating film made of Sn or Sn-alloy formed on a surface of the base conductor; and a surface oxide film formed on a surface of the plating film, in which the surface oxide film includes oxide of an element other than Sn or a mixture of Sn oxide and oxide of an element other than Sn.
    Type: Application
    Filed: March 11, 2008
    Publication date: September 17, 2009
    Inventors: Takayuki Tsuji, Toshiyuki Horikoshi, Masato Ito
  • Publication number: 20090233790
    Abstract: Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes.
    Type: Application
    Filed: March 12, 2009
    Publication date: September 17, 2009
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Stefan Vajda, Michael J. Pellin, Jeffrey W. Elam, Christopher L. Marshall, Randall A. Winans, Karl-Heinz Meiwes-Broer
  • Publication number: 20090220698
    Abstract: Rare earth compositions comprising nanoparticles are described along with various nanotechnology applications of such nanoparticles. The compositions of the nanomaterials discussed may include scandium (Sc), yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium Er), thulium (Tm), ytterbium (Yb), and lutetium (Lu).
    Type: Application
    Filed: February 2, 2009
    Publication date: September 3, 2009
    Applicant: PPG Industries Ohio, Inc.
    Inventor: Tapesh Yadav
  • Patent number: 7578997
    Abstract: This invention relates to high surface area materials, such as nanoparticles, that are coated with metal ions. These modified nanoparticles have active sites that bind various gases and/or odorous compounds, thereby removing these compounds from a medium such as air or water. Metal ions are adsorbed onto the surface of the nanoparticle and bound strongly to the surface. By selection of the metal ion, specific gaseous compounds and/or odorous compounds can be targeted and removed efficiently and effectively from both aqueous phase and from the air. The modified nanoparticles are useful in numerous article of manufacture for industrial and consumer use.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: August 25, 2009
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventor: John Gavin MacDonald
  • Patent number: 7576027
    Abstract: Methods for forming compositions including carbide-containing nanorods and/or oxycarbide-containing nanorods and/or carbon nanotubes bearing carbides and oxycarbides. Rigid porous structures including oxycarbide-containing nanorods and/or carbide containing nanorods and/or carbon nanotubes bearing modified carbides and oxycarbides and methods of making the same are also provided. The compositions and rigid porous structures of the invention can be used either as catalyst and/or catalyst supports in fluid phase catalytic chemical reactions. Processes for making supported catalyst for selected fluid phase catalytic reactions are also provided.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: August 18, 2009
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy
  • Publication number: 20090191247
    Abstract: This invention generally relates to use of novel nanomaterials comprised of metals in anti-viral applications. Such nanomaterials, for example, can be produced using a high power, pulsed plasma process, which plasma process, optionally, can be performed on the metal with a precursor (i.e., a gaseous precursor, such as acetylene or methane) when forming the unagglomerated nanomaterials. In embodiments of the invention, the metal is nanosilver. Optionally, the nanomaterials may also comprise carbon, including in the form of carbyne.
    Type: Application
    Filed: December 5, 2005
    Publication date: July 30, 2009
    Applicant: Nanotechnologies, INC
    Inventors: Miguel Jose-Yacaman, Kurt A Schroder, Karl M. Martin, Darrin L. Willauer
  • Patent number: 7566436
    Abstract: A mixing reactor for mixing efficiently streams of fluids of differing densities. In a preferred embodiment, one of the fluids is supercritical water, and the other is an aqueous salt solution. Thus, the reactor enables the production of metal oxide nanoparticles as a continuous process, without any risk of the reactor blocking due to the inefficient mixing inherent in existing reactor designs.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: July 28, 2009
    Assignee: The University of Nottingham
    Inventors: Edward Henry Lester, Barry James Azzopardi
  • Patent number: 7563507
    Abstract: Nanoparticulate composites and dispersion thereof using novel polymeric ligand compounds, in certain embodiments in conjunction with pyridinyl moieties coupling the nanoparticulate and ligand.
    Type: Grant
    Filed: August 18, 2003
    Date of Patent: July 21, 2009
    Assignee: University of Massachusetts
    Inventors: Todd S. Emrick, Habib Skaff
  • Patent number: 7554111
    Abstract: A bistable electrical device employing a bistable polymer body made from an electrically insulating polymer material in which doped nanofibers are dispersed. The doped nanofibers are composed of an electrically conductive nanofiber material and electrically conductive nanoparticles. The doped nanofibers impart bistable electrical characteristics to the polymer body, such that the polymer body is reversibly convertible between a low resistance state and a high resistance state by application of an electrical voltage.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: June 30, 2009
    Assignee: The Regents of the University of California
    Inventors: Yang Yang, Richard Kaner
  • Publication number: 20090162658
    Abstract: The present invention relates to a process for the preparation of nanocrystalline hydrotalcite compounds comprising the steps: introduction of one or more starting compounds into a reaction chamber by means of a carrier fluid, subjecting the starting compound(s) in a treatment zone to a pulsating thermal treatment at a temperature of 250 to 400° C., formation of nanocrystalline metal-oxide particles, discharging of the nanocrystalline hydrotalcite particles from the reactor, wherein the starting compound(s) are introduced into the reaction chamber in the form of a solution, slurry, suspension or in solid aggregate state, and a nanocrystalline hydrotalcite material obtainable by the process according to the invention and its use as an adsorption and catalyst material.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 25, 2009
    Applicant: SUD CHEMIE AG
    Inventors: Hans-Jorg Wolk, Stephan Muller
  • Publication number: 20090142522
    Abstract: Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.
    Type: Application
    Filed: October 12, 2004
    Publication date: June 4, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: A. Paul Alivisatos, Yadong Yin, Can Kerem Erdonmez
  • Publication number: 20090117020
    Abstract: The present invention includes methods, coatings, and a nanostructured phospho-olivine composition LixMyPO4, capable of being formed hydrothermally or solvothermally in aqueous solutions and non-aqueous solutions M is one or more elements selected from the group consisting of Fe, Mn, Co, Ti, Ni, Cu, V, Mo, Zn, Mg, Cr, Al, Ga, B, Zr, Nb or combination thereof and x is between 0 and 1 and y is between 0.8 and 1.2. The phospho-olivine may also have the compositions like LixFe1-yMyPO4, wherein x is between 0 and 1, and y is between 0 and 1.
    Type: Application
    Filed: June 13, 2008
    Publication date: May 7, 2009
    Applicant: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Arumugam Manthiram, Arumugam Vadivel Murugan, Muraliganth Theivanayagam
  • Publication number: 20090107667
    Abstract: Methods and related apparatuses and mixtures are described for detecting hydrogen sulfide in a formation fluid downhole. A detection mixture is combined with the formation fluid downhole. The detection mixture includes metal ions for reacting with hydrogen sulfide forming a metal sulfide, and charged nanoparticles sized so as to inhibit significant aggregation of the metal sulfide so as to enable spectroscopic detection of the metal sulfide downhole. The combined mixture and formation fluid is then spectroscopically interrogated so as to detect the presence of the metal sulfide thereby indicating the presence of hydrogen sulfide in the formation fluid. The mixture also includes chelating ligands for sustaining thermal endurance of the mixture under downhole conditions.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Applicant: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Oliver C. Mullins, Gale H. Gustavson, Christopher Harrison, Bhavani Raghuraman, Ronald E.G. Van Hal, Jimmy Lawrence, Kosta Ladavac, A. Ballard Andrews, Timothy Gareth John Jones, Rogerio Tadeu Ramos