Of Specified Metal Or Metal Alloy Composition Patents (Class 977/810)
  • Publication number: 20090098405
    Abstract: To provide bent rod-shaped metal particles having at least one bend point, wherein an average bend angle at the bend point is 5° to 175°.
    Type: Application
    Filed: October 6, 2008
    Publication date: April 16, 2009
    Applicant: FUJIFILM Corporation
    Inventor: Yuki MATSUNAMI
  • Publication number: 20090092836
    Abstract: A gold nanoparticle-halloysite nanotube, on a surface of which a gold nanoparticle is formed, and a method for forming the same are disclosed. In order to form the gold nanoparticle on a surface of the halloysite nanotube, a gold salt is added to an agitated suspension solution. By the gold salt, a gold ion is formed on the surface of the halloysite nanotube. If the reducing agent is added to the halloysite nanotube on which the gold ion is formed, the gold ion is reduced into the gold nanoparticles. The formed gold nanoparticle has the very small size, and distributed on the surface of the halloysite nanotube. Accordingly, without the separate protective agent or the surface reformation, the gold nanoparticle may be easily formed.
    Type: Application
    Filed: October 2, 2008
    Publication date: April 9, 2009
    Applicant: Gwamgju Institute of Science and Technology
    Inventors: Kurt E. Geckeler, Mohtashim Hassa Shamsi
  • Publication number: 20090092531
    Abstract: Nano-scale yttrium-zirconium mixed oxide powder in the form of aggregated primary particles having the following physico-chemical parameters:—BET surface area: from 40 to 100 m2/g,—da=from 3 to 30 nm, d,=mean, number-related primary particle diameter,—yttrium content, calculated as yttrium oxide Y2O3, determined by chemical analysis, from 5 to 15 wt. %, based on the mixed oxide powder,—yttrium contents of individual primary particles, calculated as yttrium oxide Y2O3 determined by TEM EDX, corresponding to the content in the powder+?10%,—content at room temperature, determined by X-ray diffraction and based on the mixed oxide powder—monoclinic zirconium oxide from <1 to 10 wt. %—tetragonal zirconium oxide from 10 to 95 wt. %—the content of monoclinic zirconium oxide after 2 hours' heating at 1300° C. being less than 1 wt. %,—carbon content less than 0.2 wt. %.
    Type: Application
    Filed: July 19, 2005
    Publication date: April 9, 2009
    Applicant: DEGUSSA GMBH
    Inventors: Stipan Katusic, Michael Kraemer, Horst Miess, Thomas Hennig, Peter Kress
  • Publication number: 20090087381
    Abstract: Provided herein are chelator-functionalized nanoparticles comprising a passive core; and an active coating that demonstrate T1 magnetic resonance pattern upon exposure to a magnetic field. Also provided are methods of making such chelator-functionalized nanoparticles as well as imaging methods using the nanoparticles.
    Type: Application
    Filed: September 28, 2007
    Publication date: April 2, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Zhebo Ding, Brian James Grimmond, Michael Luttrell, Slawomir Rubinsztajn, David Cheney deMoulpied, Margaret L. Blohm
  • Publication number: 20090082508
    Abstract: Process for the production of precipitated calcium carbonate particles, structured at the nanoscale, by carbonation of milk of lime in the presence of a crystallization controller selected from the following list: polyaspartic acid, dioctyl sodium sulphosuccinate, polyacrylic acid, the molecular weight of which is between 500 and 15 000, and citric acid. When the crystallization controller is citric acid, its concentration in the milk of lime is between 5 and 15%.
    Type: Application
    Filed: September 26, 2008
    Publication date: March 26, 2009
    Applicant: SOLVAY (SOCIETE ANONYME)
    Inventors: Claude Vogels, Karine Cavalier, Didier Sy, Roberto Rosa
  • Publication number: 20090075083
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: May 13, 2008
    Publication date: March 19, 2009
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William E. McGovern, Pierre J. DeMascarel, Robert B. Lynch
  • Patent number: 7494608
    Abstract: A composition comprising a liquid and a plurality of silver-containing nanoparticles with a stabilizer, wherein the silver-containing nanoparticles are a product of a reaction of a silver compound with a reducing agent comprising a hydrazine compound in the presence of a thermally removable stabilizer in a reaction mixture comprising the silver compound, the reducing agent, the stabilizer, and an organic solvent wherein the hydrazine compound is a hydrocarbyl hydrazine, a hydrocarbyl hydrazine salt, a hydrazide, a carbazate, a sulfonohydrazide, or a mixture thereof and wherein the stabilizer includes an organoamine.
    Type: Grant
    Filed: August 10, 2007
    Date of Patent: February 24, 2009
    Assignee: Xerox Corporation
    Inventors: Yuning Li, Yiliang Wu, Beng S Ong
  • Publication number: 20090013824
    Abstract: Disclosed are a method of fabricating a binary alloy nanostructure by using metal oxides, metal substances or metal halides of metal elements used to form a binary alloy and/or binary alloy substances as a precursor through a vapor phase synthesis method and a binary alloy nanostructure fabricated by the same. More particularly, the present invention provides a method of fabricating a binary alloy nanowire or nanobelt which comprises placing a precursor on the front part of a reaction furnace and a substrate on the rear part of the furnace, and heat treating both of them under inert gas atmosphere to produce the nanowire or nanobelt and, in addition, a binary alloy nanowire or nanobelt fabricated by the method according to the present invention.
    Type: Application
    Filed: July 7, 2008
    Publication date: January 15, 2009
    Inventors: Bong Soo Kim, June Ho In, Krishna Kumar, Hyo Tcheri Lhee, Yeong Dong Yoo
  • Patent number: 7476981
    Abstract: The present invention relates to an electronic module having a layer of adhesive between metallic surfaces of components of the module. The metallic surfaces are arranged facing one another. The adhesive of the layer of adhesive includes agglomerates of nanoparticles, which form paths, surrounded by an adhesive base composition, in the adhesive base composition. Furthermore, the invention relates to a process for producing the module.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: January 13, 2009
    Assignee: Infineon Technologies AG
    Inventors: Robert Bergmann, Joachim Mahler
  • Publication number: 20090008611
    Abstract: [Problems to be Solved] The invention provides inexpensive carbon fiber filler material, which has a low content of metal impurity and enables the resin composite material to exhibit conductivity when added thereto in a small amount. [Means to Solve the Problem] (1) carbon nanofiber containing iron (Fe) of 6 mass % or less and vanadium (V) of 3 mass % or less as a metal impurity other than carbon, which does not substantially contain metal elements other than Fe and V, (2) a method for producing carbon nanofiber characterized in contacting a catalyst in which Fe and V are supported on a carbon support and a carbon-containing compound at a high temperature, (3) a resin composite material in which the carbon nanofiber is blended and (4) use thereof.
    Type: Application
    Filed: May 30, 2008
    Publication date: January 8, 2009
    Applicant: SHOWA DENKO K.K.
    Inventors: Gaku ORIJI, Eiji Kambara
  • Patent number: 7471863
    Abstract: A near-field interaction control element includes a near-field optical waveguide containing particles formed of a metal, a metal anion or a metal cation with a diameter of 0.5 nm or more and 3 nm or less and a dielectric constant of ?2.5 or more and ?1.5 or less, an electron injector/discharger injecting or discharging an electron into or from the particles contained in the near-field optical waveguide to vary a dielectric constant of the near-field optical waveguide, a near-field light introducing part introducing near-field light into the near-field optical waveguide, and a near-field light emitting part emitting the near-field light having guided through the near-field optical waveguide.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: December 30, 2008
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Kenji Todori, Miho Maruyama, Reiko Yoshimura, Fumihiko Aiga, Tsukasa Tada, Ko Yamada
  • Publication number: 20080311488
    Abstract: A color photoresist with gold nanoparticles and color filters made therefrom are provided. The color photoresist with gold nanoparticles includes substituted acrylate monomers, gold nanoparticles (or clusters), surfactants and a photo-polymerization initiator. The color filter includes a polyacrylate, gold nanoparticles (or clusters) and surfactants. The gold nanoparticles (or clusters) can be dispersed in the color photoresist or the color filter by the surfactants.
    Type: Application
    Filed: June 12, 2008
    Publication date: December 18, 2008
    Applicant: CHI MEI OPTOELECTRONICS CORP.
    Inventors: Wei-Fang Su, Chien-Chih Lin, I-Shuo Liu
  • Publication number: 20080287215
    Abstract: A golf club component, such as a golf club head and/or a golf club shaft, can comprise a golf club component substrate having an outer layer of titanium carbide, typically comprising at least forty percent (40%) carbon content. Alternatively, a golf club component can comprise a golf club component substrate, at least a portion of which is enveloped by a first coating layer of, for example, electroplated nickel, a second coating layer of, for example, electroplated chromium or palladium, and a third coating layer of titanium carbide applied by physical vapor deposition. The titanium carbide layer is durable and can provide the golf club component with a desired aesthetic appearance, such as a black color. Additionally, the golf club component can be coated with a fourth coating layer, such as a layer comprising a sealant or clear coat material.
    Type: Application
    Filed: May 16, 2007
    Publication date: November 20, 2008
    Inventors: Xinhui Deng, Abram Stanley Harris
  • Publication number: 20080259455
    Abstract: A zero order diffractive filter for polarised or unpolarised polychromatic light, comprises a grating line (10) microstructure (1) formed by a surrounding medium (12) with low index of refraction nlow and a waveguiding layer (11) with high index of refraction nhigh, the grating lines (10) having a period length ? that is smaller than the wavelength of light for which the filter is designed. A plurality of single nanostructures (2) with dimensions in the nanometre range is superposed on a first interface (13) between the surrounding medium (12) and the waveguiding layer (11).
    Type: Application
    Filed: May 30, 2007
    Publication date: October 23, 2008
    Inventors: Alexander Stuck, Harald Walter
  • Publication number: 20080254362
    Abstract: The present invention relates to a nano-composite structure containing nanostructured carbon and nanoparticles. Also disclosed are methods of making the nano-composite structures. The present invention also relates to a lithium ion battery, a capacitor, a supercapacitor, a battery/capacitor, or a fuel cell containing the nano-composite structures of the present invention.
    Type: Application
    Filed: April 14, 2008
    Publication date: October 16, 2008
    Applicant: ROCHESTER INSTITUTE OF TECHNOLOGY
    Inventors: Ryne P. Raffaelle, Brian J. Landi, Cory D. Cress
  • Publication number: 20080241569
    Abstract: Embodiments of the present invention provide methods for coating nanoparticles with polymeric coatings and nanoparticles that are coated with polymeric coatings. The polymeric coatings typically comprise two or more layers wherein the first layer has a charge that is opposite to that of the second layer. In further embodiments, the nanoparticles that can act as labels or reporters are coated with polymeric coatings. Optionally, these reporter or label nanoparticles may be Raman-active, such that they provide a distinctive Raman signature upon excitation with electromagnetic radiation.
    Type: Application
    Filed: March 30, 2007
    Publication date: October 2, 2008
    Inventors: Haoyu Qin, Jingwu Zhang, Claire E. Dentinger, Lei Sun, Xing Su
  • Publication number: 20080242446
    Abstract: The iron golf club head (20) of the present invention is preferably composed of three main components: a periphery member 22, a central member 24 and a nanocrystalline plated face plate 26. The periphery member (22) is preferably composed of a high density material such as a nickel-tungsten alloy. The central member (24) is preferably composed of a lightweight, non-metal material. The face plate (26) is preferably composed of a non-metal material plated with a nanocrystalline material. The iron golf club head (20) preferably has high moments of inertia Izz and Ixx.
    Type: Application
    Filed: June 5, 2008
    Publication date: October 2, 2008
    Applicant: CALLAWAY GOLF COMPANY
    Inventors: Alan HOCKNELL, CHRIS J. WIELAND
  • Patent number: 7429339
    Abstract: A magnetic nanoparticle (22), a magnetic nanomaterial (30), assembly (30), and a method for synthsising a magnetic nanoparticle, relating to thermodynamically stable and air stable ferromagnetic nanoparticles of adjustable aspect ratio made upon decomposition of organometallic precursors in solution in the presence of a reaction gas and a mixture of organic ligands. The magnetic nanomaterial comprises magnetic nanoparticles of homogeneous size, shape, and magnetic orientation that comprises a magnetic core (24, 34) ferromagnetic at room temperature and/or operating temperatures, and a non-magnetic matrix (26, 36) encapsulating the magnetic core. This magnetic nanomaterial could be used in high frequency integrated circuit applications, such as used in wireless portable electronic devices, to enchance magnetic field confinement and improve passive component performance at MHz and GHz frequency in a variety of passive and active devices, such as transformers, on-chip signal isolation, inductors, and the like.
    Type: Grant
    Filed: February 6, 2003
    Date of Patent: September 30, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Philippe Renaud, Frederic Dumestre, Bruno Chaudret, Marie Claire Fromen, Marie-Jose Casanove, Peter Zurcher, Roland Stumpf, Catherine Amiens
  • Patent number: 7422696
    Abstract: Multicomponent nanorods having segments with differing electronic and/or chemical properties are disclosed. The nanorods can be tailored with high precision to create controlled gaps within the nanorods or to produce diodes or resistors, based upon the identities of the components-making up the segments of the nanorods. Macrostructural composites of these nanorods also are disclosed.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: September 9, 2008
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Lidong Qin, Sungho Park, Ling Huang, Sung-Wook Chung
  • Publication number: 20080193559
    Abstract: The present invention relates to a pain relief composition comprising paramagnetic silver nanoparticles. More specifically, the composition is characterized in that it comprises from 0.03 to 0.05% by weight of paramagnetic silver nanoparticles having specific properties that were not revealed by conventional diamagnetic silver nanoparticles. The pain relief composition according to the present invention shows excellent effect of relieving pain of arthritis due to antibiotic property and anti-toxicity of paramagnetic silver nanoparticles. By using the paramagnetic silver nanoparticles having small particle size, the composition is rapidly absorbed into cells upon being applied to skin. In addition, by virtue of using silver (Ag), no complication such as skin coloration or edema was observed. According to the present invention, pain is relieved by simple application, so that the usage is easy as compared to surgical treatment such as arthroscopic operation to provide high satisfaction to a patient.
    Type: Application
    Filed: June 26, 2007
    Publication date: August 14, 2008
    Applicant: Nano Plasma Center Co., Ltd.
    Inventor: Young-Nam Kim
  • Publication number: 20080190865
    Abstract: A stabilized, chemically reactive, metallic nano-material effective for degradation of chlorinated organic compounds in soils, sediments and groundwater. The nano-material is composed of a magnetic metal nanoparticle and a carbohydrate stabilizer bound to the nanoparticle. The preferred metal nanoparticle is iron and the preferred carbohydrate stabilizer is either a starch or a water soluble cellulose such as sodium carboxymethyl cellulose. The nanoparticle may be either mono-metallic, bi-metallic or multi-metallic in nature, but is preferably bi-metallic wherein it is coated with a secondary catalytic metal coating, preferably palladium. A method of making the metallic nano-material is further disclosed wherein a solution of the metal nanoparticle and carbohydrate stabilizer is prepared, and the nanoparticle is then reduced under inert conditions.
    Type: Application
    Filed: June 30, 2005
    Publication date: August 14, 2008
    Inventors: Dongye Zhao, Feng He
  • Publication number: 20080194902
    Abstract: It is now possible to purify diene-contaminated liquid and gas streams by treating these streams with adsorbents comprising single or multiple transition metal polycation-exchanged faujasites having silicon to aluminum ratio from 0.9 to about 9.0, wherein said transition metal (Tr) polycations have the general formula [Tr?O?]n+, wherein a varies from 2 to 8, ?—from 0 to 4, and n—from 1 to 3 and wherein said transition metals include IB. IIB, VIIB and VIII Group metals preferably selected from the group consisting of copper, cadmium, zinc, manganese, nickel and iron.
    Type: Application
    Filed: February 12, 2007
    Publication date: August 14, 2008
    Inventors: Albert Michael Tsybulevski, Alexander A. Greish, Leonid M. Kustov
  • Patent number: 7402829
    Abstract: A silicon/lithium battery can be fabricated from a silicon substrate. This allows the battery to be produced as an integrated unit on a chip. The battery includes a silicon anode formed from sub-micron diameter pillars of silicon fabricated on an n-type silicon wafer. The battery also includes a cathode including lithium.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: July 22, 2008
    Assignee: Nexeon Ltd.
    Inventor: Mino Green
  • Publication number: 20080164239
    Abstract: The present invention provides nanoprisms etched to generate triangular framework structures. These triangular nanoframes possess no strong surface plasmon bands in the ultraviolet or visible regions of the optical spectrum. By adding a mild reducing agent, metal ions remaining in solution can be reduced, resulting in metal plating and reformation of nanoprisms. The extent of the backfilling process can be controlled, allowing the formation of novel nanoprisms with nanopores. This back-filling process is accompanied by a regeneration of the surface plasmon bands in the UV-visible spectrum.
    Type: Application
    Filed: April 11, 2007
    Publication date: July 10, 2008
    Applicant: NORTHWESTERN UNIVERSITY
    Inventors: Chad A. Mirkin, Gabriella Metraux, YunWei Charles Cao, Rongchao Jin
  • Publication number: 20080157029
    Abstract: The present invention relates to a method of producing copper nanoparticles, in particular to, a method of producing copper nanoparticles, including: preparing a first solution including a polar solvent, a dispersing agent and one or more reducing agents selected from the group consisting of sodium hypophosphates(NaH2PO2), hydrazine(N2H4), hydrochloride and sodium borohydride(NaBH4) and heating the solution; preparing a second solution including a polar solvent and a copper precursor and heating the solution; and injecting the heated second solution into the heated first solution at a time and mixing each other. According to the present invention, copper nanoparticles which are fine and uniform can be produced simply, and thus the method is useful in mass production of copper nanoparticles.
    Type: Application
    Filed: April 13, 2007
    Publication date: July 3, 2008
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Young-II Lee, Young-Soo Oh, Jae-Woo Joung
  • Publication number: 20080119375
    Abstract: The invention deals with the microorganism protection of liquid media, mainly, in the petroleum industry; and it can be applied for the microorganism protection of liquid media used, particularly, when simulating hydrocarbon production, most preferentially, for liquid medium, used in hydraulic fracturing. Biocide is fine particles consisting of silver, at least partially, their specific surface area being up to 2000 m2/g.
    Type: Application
    Filed: November 20, 2007
    Publication date: May 22, 2008
    Inventors: Evgeny Borisovich Barmatov, Anatoly Vladimirovich Medvedev, Marina Vyacheslavovna Barmatova
  • Patent number: 7344895
    Abstract: A process for synthesizing nanoparticles, in particular metal salt nanoparticles. To the synthesis mixture is added a modifying reagent which binds, by means of a first functional group, to the nanoparticle surface and which carries a second functional group for binding to molecules which are specifically selected in dependence on the subsequent use of the nanoparticles. This dispenses with a postsynthetic, separate, application-specific modification step. A new substance class, the pentaalkyl iminobis(methylenephosphono)carboxylates, are particularly suitable for this purpose.
    Type: Grant
    Filed: December 6, 2003
    Date of Patent: March 18, 2008
    Assignee: Bayer Technology Services GmbH
    Inventors: Burkhard Köhler, Kerstin Bohmann, Werner Hoheisel, Markus Haase, Stefan Haubold, Christiane Meyer, Thorsten Heidelberg
  • Publication number: 20080041270
    Abstract: The present invention relates to a method for manufacturing metal nanoparticles, more particularly, to a method for manufacturing metal nanoparticles, the method comprising: forming a mixture by dissociating a metal precursor in fatty acid; and adding a metallic salt of a metal selected from the group consisting of Sn, Mg and Fe as a metallic catalyst into the mixture and mixing the mixture and the metallic salt. According to the present invention, metal nanoparticles have a uniform particle size distribution and a high yield by performing in a non-aqueous environment without using any organic solvent, and may be environment-friendlily due to no use of a reducing agent.
    Type: Application
    Filed: April 13, 2007
    Publication date: February 21, 2008
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Kwi-Jong Lee, Jae-Woo Joung, Byung-Ho Jun
  • Publication number: 20080011125
    Abstract: The present invention provides a method for producing metallic nanoparticles, which includes reacting a copper compound with a hydrazine reducing agent in an organic solvent in the presence of a precious metal compound, wherein the precious metal compound is a compound containing at least one precious metal selected from the group consisting of platinum, gold, silver, and palladium, and the total number of precious metal atoms in the precious metal compound is in the range of 1 to 10 at. % of the total copper atoms in the copper compound.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 17, 2008
    Applicant: FUJIFILM Corporation
    Inventors: Masashi SHIRATA, Hiroyuki Hirai
  • Patent number: 7312252
    Abstract: A composition of matter comprising anionic clay having the general formula [M2+1-xM3+x(OH)2]x+(x/n)An?·yH2O??(I) or [M1+M3+2(OH)6]1+(1/n)An?·yH2O;??(II) where M1+ is a mono-valent metal; M2+ is a divalent metal; and M3+ is a trivalent metal; A is an inorganic or organic anion, chosen such that the rule of charge neutrality is obeyed; n is an integer; x is any rational number between 0 and 1; and y is any rational number between 0 and 10; where the anionic clay is in the form of particles having a volume weighted mean particle size diameter of less than 500 nm. Stable colloidal dispersions comprise such anionic clay particles having a volume weighted mean particle size diameter of less than 500 nm dispersed in a liquid medium.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: December 25, 2007
    Assignee: Eastman Kodak Company
    Inventors: Joseph F. Bringley, Craig A. Morris
  • Patent number: 7303815
    Abstract: A two-layer nanotape that includes a nanoribbon substrate and an oxide that is epitaxially deposited on a flat surface of the nanoribbon substrate is described. The oxide is deposited on the substrate using a pulsed laser ablation deposition process. The nanoribbons can be made from materials such as SnO2, ZnO, MgO, Al2O3, Si, GaN, or CdS. Also, the sintered oxide target can be made from materials such as TiO2, transition metal doped TiO2 (e.g., CO0.05Ti0.95O2), BaTiO3, ZnO, transition metal doped ZnO (e.g., Mn0.1Zn0.9O and Ni0.1Zn0.9O), LaMnO3, BaTiO3, PbTiO3, YBa2Cu3Oz, or SrCu2O2 and other p-type oxides. Additionally, temperature sensitive nanoribbon/metal bilayers and their method of fabrication by thermal evaporation are described. Metals such as Cu, Au, Ti, Al, Pt, Ni and others can be deposited on top of the nanoribbon surface. Such devices bend significantly as a function of temperature and are suitable as, for example, thermally activated nanoscale actuators.
    Type: Grant
    Filed: August 15, 2003
    Date of Patent: December 4, 2007
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Matthew Law, Rongrui He, Rong Fan, Franklin Kim
  • Patent number: 7297323
    Abstract: A method of manufacturing fine particles of the invention includes introducing a reactive gas flow containing a fine particle source material into a reactor from one side, growing fine particles in a gas phase by heating the fine particle source material in the reactive gas flow, introducing a diluting gas flow into the reactor from another side being almost counter-flow to the reactive gas flow, equalizing flow rates of the reactive gas flow and the diluting gas flow substantially with respect to a cross section of a flow channel, and then stopping growth of the fine particles by merging the reactive gas flow and the diluting gas flow.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: November 20, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Isao Matsui
  • Patent number: 7294875
    Abstract: A programmable structure and device and methods of forming and using the structure and device are disclosed. The structure includes a soluble electrode, an ion conductor, and an inert electrode. Upon application of a sufficient voltage, a conductive region forms within or on the ion conductor and between the electrodes. The presence or absence of the conductive region can be used to store information in memory devices.
    Type: Grant
    Filed: June 14, 2005
    Date of Patent: November 13, 2007
    Assignee: Axon Technologies Corporation
    Inventor: Michael N. Kozicki
  • Patent number: 7263445
    Abstract: The invention relates to a method for the simultaneous dissection in specific positions of filiform organic molecular chains, in particular DNA. The aim of the invention is to provided a method, by which a highly specific dissection can take place on certain sequences that can be freely selected and simultaneously on numerous filiform molecules. To achieve this, nanoparticles (1) are provided with a molecular chain (11) of any predeterminable sequence, which is selected to be complementary to a sequence of a molecule (2) that is to be dissected, said molecular chain(s) (11) is/are hybridised in the usual manner with the molecule, or specifically linked to said molecule in another manner and the nanoparticles (1) are subsequently subjected to a high-energy radiation of at least one wavelength, which can be absorbed by said nanoparticles (1).
    Type: Grant
    Filed: December 12, 2001
    Date of Patent: August 28, 2007
    Inventors: Wolfgang Fritzsche, Karsten Koenig, Johann Michael Koehler
  • Patent number: 7252698
    Abstract: The present invention provides nanoprisms etched to generate triangular framework structures. These triangular nanoframes possess no strong surface plasmon bands in the ultraviolet or visible regions of the optical spectrum. By adding a mild reducing agent, metal ions remaining in solution can be reduced, resulting in metal plating and reformation of nanoprisms. The extent of the backfilling process can be controlled, allowing the formation of novel nanoprisms with nanopores. This back-filling process is accompanied by a regeneration of the surface plasmon bands in the UV-visible spectrum.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: August 7, 2007
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Gabriella Métraux, YunWei Charles Cao, Rongchao Jin
  • Patent number: 7238472
    Abstract: The present invention relates composite core/shell nanoparticles and a two-step method for their preparation. The present invention further relates to biomolecule-core/shell nanoparticle conjugates and methods for their preparation. The invention also relates to methods of detection of biomolecules comprising the biomolecule or specific binding substance-core/shell nanoparticle conjugates.
    Type: Grant
    Filed: December 28, 2001
    Date of Patent: July 3, 2007
    Assignee: Nanosphere, Inc.
    Inventors: Chad A. Mirkin, Yun-Wei Cao, Rongchao Jin
  • Patent number: 7190877
    Abstract: Methods of fabricating nanoclusters, e.g., germanium nanoclusters, and/or a dielectric layer having the same are provided. The method may include forming a first silicon oxide layer on a silicon substrate; forming a germanium (GeO) layer on the silicon oxide layer; altering the germanium oxide (GeO) layer into a germanium dioxide (GeO2) layer and/or a first group of germanium (Ge) nanoclusters; and/or altering germanium dioxide (GeO2) into silicon dioxide (SiO2) such that a second group of germanium (Ge) nanoclusters may be formed. The nanoclusters, e.g., germanium nanoclusters, may have more homogeneous sizes and/or may be more evenly arranged the dielectric layer such that the nanoclusters, e.g., germanium nanoclusters, may be easily used in a semiconductor device.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: March 13, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-ho Khang, Anatoly V. Dvurechenskiy
  • Patent number: 7166786
    Abstract: A method is disclosed for the induction of a suitable band gap and electron emissive properties into a substance, in which the substrate is provided with a surface structure corresponding to the interference of electron waves. Lithographic or similar techniques are used, either directly onto a metal mounted on the substrate, or onto a mold which then is used to impress the metal. In a preferred embodiment, a trench or series of nano-sized trenches are formed in the metal.
    Type: Grant
    Filed: January 19, 2004
    Date of Patent: January 23, 2007
    Assignee: Borealis Technical Limited
    Inventors: Avto Tavkhelidze, Jonathan Sidney Edelson, Isaiah Wates Cox, Stuart Harbron