High-indium-content Ingan Pooling Or Clusters Patents (Class 977/817)
  • Patent number: 8263990
    Abstract: A compound semiconductor light-emitting element includes: a substrate; a first electrode provided on one face of the substrate; a plurality of nanoscale columnar crystalline structures in which an n-type semiconductor layer, a light-emitting layer and a p-type semiconductor layer are stacked in order on the other face of the substrate; a second electrode connected to top portions of the plurality of columnar crystalline structures; and a foundation layer, provided on the side of the other face, in a first region being a partial region of the substrate; wherein a level difference is provided, on the other face, between the first region and a second region being at least part of a remaining region of the substrate excluding the first region.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: September 11, 2012
    Assignee: Panasonic Corporation
    Inventor: Robert David Armitage
  • Patent number: 8043409
    Abstract: A production method of an indium-based nanowire product comprising indium-based nanowires according to the present invention is characterized in that the method comprises the step of: disproportionation-reacting particles including indium subhalide as main components in a nonaqueous solvent, to obtain nanowires including metal indium as main components. The electroconductive oxide nanowire product comprising electroconductive oxide nanowires of the present invention can be obtained by: subjecting, the indium nanowires additionally doped with doping metals, to a heating oxidation treatment; or doping oxides of doping metals into indium oxide nanowires obtained from the indium-based nanowires.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: October 25, 2011
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventor: Masaya Yukinobu
  • Patent number: 8003010
    Abstract: A water-stable semiconductor nanocrystal complex that is stable and has high luminescent quantum yield. The water-stable semiconductor nanocrystal complex has a semiconductor nanocrystal core of a III-V semiconductor nanocrystal material and a water-stabilizing layer. A method of making a water-stable semiconductor nanocrystal complex is also provided.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: August 23, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Daniel Landry, Wei Lui, Adam Peng
  • Patent number: 7897417
    Abstract: Hybrid semiconductor materials have an inorganic semiconductor incorporated into a hole-conductive fluorene copolymer film. Nanometer-sized particles of the inorganic semiconductor may be prepared by mixing inorganic semiconductor precursors with a steric-hindering coordinating solvent and heating the mixture with microwaves to a temperature below the boiling point of the solvent.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: March 1, 2011
    Assignee: National Research Council of Canada
    Inventors: Farid Bensebaa, Pascal L'Ecuyer, Jianfu Ding, Andrea Firth
  • Patent number: 7892452
    Abstract: Provided is a nanocrystalline phosphor having a core/shell structure formed by a core of a group 13 nitride semiconductor and a shell layer, covering the core, including a shell film of a group 13 nitride mixed crystal semiconductor. This nanocrystalline phosphor has high luminous efficiency, and is excellent in reliability. Also provided is a coated nanocrystalline phosphor prepared by bonding modified organic molecules to the nanocrystalline phosphor and/or coating the nanocrystalline phosphor with the modified organic molecules. This coated nanocrystalline phosphor has high dispersibility. Further provided is a method of preparing a coated nanocrystalline phosphor by heating a mixed solution containing a core of a group 13 nitride semiconductor, a nitrogen-containing compound, a group 13 element-containing compound and modified organic molecules.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: February 22, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tatsuya Ryowa, Hajime Saito
  • Patent number: 7811470
    Abstract: A water based colorant that includes a polymer emulsion and semiconductor crystals capable of emitting light. The colorants include paints, inks and/or dyes can be applied to various substrates.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: October 12, 2010
    Assignee: Evident Technologies
    Inventors: James Hayes, Luis Sanchez
  • Patent number: 7670933
    Abstract: A method for growing high quality, nonpolar Group III nitrides using lateral growth from Group III nitride nanowires. The method of nanowire-templated lateral epitaxial growth (NTLEG) employs crystallographically aligned, substantially vertical Group III nitride nanowire arrays grown by metal-catalyzed metal-organic chemical vapor deposition (MOCVD) as templates for the lateral growth and coalescence of virtually crack-free Group III nitride films. This method requires no patterning or separate nitride growth step.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: March 2, 2010
    Assignee: Sandia Corporation
    Inventors: George T. Wang, Qiming Li, J. Randall Creighton
  • Patent number: 7554109
    Abstract: Optoelectronic devices are provided that incorporate quantum dots as the electroluminescent layer in an inorganic wide-bandgap heterostructure. The quantum dots serve as the optically active component of the device and, in multilayer quantum dot embodiments, facilitate nanoscale epitaxial lateral overgrowth (NELOG) in heterostructures having non-lattice matched substrates. The quantum dots in such devices will be electrically pumped and exhibit electroluminescence, as opposed to being optically pumped and exhibiting photoluminescence. There is no inherent “Stokes loss” in electroluminescence thus the devices of the present invention have potentially higher efficiency than optically pumped quantum dot devices. Devices resulting from the present invention are capable of providing deep green visible light, as well as, any other color in the visible spectrum, including white light by blending different sizes and compositions of the dots and controlling manufacturing processes.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: June 30, 2009
    Assignee: Dot Metrics Technology, Inc.
    Inventors: Edward B. Stokes, Mohamed-Ali Hasan, Kamal Sunderasan, Jennifer G. Pagan
  • Patent number: 7399429
    Abstract: A semiconductor nanocrystal complex that is stable and has high luminescent quantum yield. The semiconductor nanocrystal complex has a semiconductor nanocrystal core of a III-V semiconductor nanocrystal material. A method of making a semiconductor nanocrystal complex is also provided. The method includes synthesizing a semiconductor nanocrystal core of a III-V semiconductor nanocrystal material, and forming a metal layer on the semiconductor nanocrystal core after synthesis of the semiconductor nanocrystal core.
    Type: Grant
    Filed: May 10, 2005
    Date of Patent: July 15, 2008
    Assignee: Evident Technologies, Inc.
    Inventors: Wei Liu, Adam Peng, Daniel Landry