Of Specified Inorganic Semiconductor Composition (e.g., Periodic Table Group Iv-vi Compositions, Etc.) Patents (Class 977/813)
  • Patent number: 8956637
    Abstract: This invention provides novel nanofiber enhanced surface area substrates and structures comprising such substrates for use in various medical devices, as well as methods and uses for such substrates and medical devices. In one particular embodiment, methods for enhancing cellular functions on a surface of a medical device implant are disclosed which generally comprise providing a medical device implant comprising a plurality of nanofibers (e.g., nanowires) thereon and exposing the medical device implant to cells such as osteoblasts.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: February 17, 2015
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Lawrence A. Bock, R. Hugh Daniels, Veeral D. Hardev, Chunming Niu, Vijendra Sahi
  • Patent number: 8951439
    Abstract: A population of light-emissive nitride nanoparticles has a photoluminescence quantum yield of at least 10% and an emission spectrum having a full width at half maximum intensity (FWHM) of less than 100 nm. One suitable method of producing light-emissive nitride nanoparticles comprises a first stage of heating a reaction mixture consisting essentially of nanoparticle precursors in a solvent, the nanoparticle precursors including at least one metal-containing precursor and at least one first nitrogen-containing precursor, and maintaining the reaction mixture at a temperature to seed nanoparticle growth. It further comprises a second stage of adding at least one second nitrogen-containing precursor to the reaction mixture thereby to promote nanoparticle growth.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: February 10, 2015
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Michael Alan Schreuder, Peter Neil Taylor
  • Patent number: 8932940
    Abstract: Embodiments of the invention provide a method for direct heteroepitaxial growth of vertical III-V semiconductor nanowires on a silicon substrate. The silicon substrate is etched to substantially completely remove native oxide. It is promptly placed in a reaction chamber. The substrate is heated and maintained at a growth temperature. Group III-V precursors are flowed for a growth time. Preferred embodiment vertical Group III-V nanowires on silicon have a core-shell structure, which provides a radial homojunction or heterojunction. A doped nanowire core is surrounded by a shell with complementary doping. Such can provide high optical absorption due to the long optical path in the axial direction of the vertical nanowires, while reducing considerably the distance over which carriers must diffuse before being collected in the radial direction. Alloy composition can also be varied. Radial and axial homojunctions and heterojunctions can be realized. Embodiments provide for flexible Group III-V nanowire structures.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: January 13, 2015
    Assignee: The Regents of the University of California
    Inventors: Deli Wang, Cesare Soci, Xinyu Bao, Wei Wei, Yi Jing, Ke Sun
  • Patent number: 8920688
    Abstract: A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: December 30, 2014
    Assignee: Board of Trustees of the University of Arkansas
    Inventor: Tito Viswanathan
  • Patent number: 8920766
    Abstract: Provided are methods for making quantum nanostructures based on use of a combination of nucleation and growth precursors. The methods can be used to provide quantum nanostructures of a selected size. Also provided are quantum nanostructures, compositions comprising the quantum nanostructures, and uses of the quantum nanostructures. The quantum nanostructures can be used, for example, in imaging applications.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: December 30, 2014
    Assignee: University of Rochester
    Inventors: Todd D. Krauss, Christopher M. Evans
  • Publication number: 20140238480
    Abstract: Embodiments of the present disclosure provide for electrodes, devices including electrodes, methods of making electrodes, and the like. In an embodiment, the electrode includes MoS2, in particular, MoS2 nanostructures (e.g., MoS2 nano-petals). Embodiments of the present disclosure can be used in lithium ion batteries, quantum dot sensitized solar cells, dye sensitized solar cells, thin film photovoltaics, and the like.
    Type: Application
    Filed: February 24, 2014
    Publication date: August 28, 2014
    Inventors: Janet Macdonald, Shane Thomas Finn
  • Patent number: 8809672
    Abstract: The present disclosure provides a catalyst-free growth mode of defect-free Gallium Arsenide (GaAs)-based nanoneedles on silicon (Si) substrates with a complementary metal-oxide-semiconductor (CMOS)-compatible growth temperature of around 400° C. Each nanoneedle has a sharp 2 to 5 nanometer (nm) tip, a 600 nm wide base and a 4 micrometer (?m) length. Thus, the disclosed nanoneedles are substantially hexagonal needle-like crystal structures that assume a 6° to 9° tapered shape. The 600 nm wide base allows the typical micro-fabrication processes, such as optical lithography, to be applied. Therefore, nanoneedles are an ideal platform for the integration of optoelectronic devices on Si substrates. A nanoneedle avalanche photodiode (APD) grown on silicon is presented in this disclosure as a device application example. The APD attains a high current gain of 265 with only 8V bias.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 19, 2014
    Assignee: The Regents of the University of California
    Inventors: Chih-Wei Chuang, Connie Chang-Hasnain, Forrest Grant Sedgwick, Wai Son Ko
  • Patent number: 8772626
    Abstract: A solar cell may include an electrically conducting substrate, a plurality of nanowhiskers extending from the substrate and a transparent electrode extending over free ends of the nanowhiskers and making electrical contact with them. Each nanowhisker may have a column with a diameter of nanometer dimension. The column may include a first p-doped semiconductor lengthwise segment and a second n-doped semiconductor lengthwise segment. The first and second semiconductor segments may have an interface between them, which forms a p-n junction. The nanowhiskers may be encapsulated in a transparent material.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: July 8, 2014
    Assignee: QuNano AB
    Inventors: Lars Ivar Samuelson, Bjorn Jonas Ohlsson
  • Patent number: 8741177
    Abstract: A method for producing aqueous compatible semiconductor nanoparticles includes binding pre-modified ligands to nanoparticles without the need for further post-binding modification to render the nanoparticles aqueous compatible. Nanoparticles modified in this way may exhibit enhanced fluorescence and stability compared to aqueous compatible nanoparticles produced by methods requiring post-binding modification processes.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: June 3, 2014
    Assignee: Nanoco Technologies Ltd.
    Inventors: Nigel Pickett, Mark C. McCairn
  • Patent number: 8721926
    Abstract: A single-source solid precursor matrix for semiconductor nanocrystals includes 45-55% by weight of zinc, 28-35% by weight of oxygen, 0.70-1.2% by weight of carbon, 1.5-2.5% by weight of hydrogen, 4-6% by weight of nitrogen, 5-7% by weight of sulphur and 1-5% by weight of dopant ions with respect to the weight of zinc atoms. Doped semiconductor nanocrystals for multicolor displays and bio markers include 60-65% by weight of zinc, 30-32% by weight of sulphur, 1.2-1.3% by weight of copper and 1.2-1.3% by weight of dopant ions.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 13, 2014
    Assignee: The Director General Defence Research & Development Organisation
    Inventors: Manzoor Koyakutty, Aditya Verma, Sampat Raj Vedera, Narendra Kumar, Thundyil Raman Narayana Kutty
  • Patent number: 8673260
    Abstract: This invention relates to a process for the phase-controlled synthesis of ternary and quaternary mixed-metal sulfide nanoparticles by reacting soft metal ions with hard metal ions in a high-boiling organic solvent in the presence of a complexing and activating ligands to control the reactivity of the metal ions. Ternary and quaternary mixed metal sulfides nanoparticles of copper, sulfur, and iron, aluminum, tin, and silicon are preferred. This invention also relates to the phase controlled preparation of polymorphs of bornite nanoparticles and the phase controlled preparation of stabilized ?- and ?-chalconite nanoparticles.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: March 18, 2014
    Assignee: Franklin and Marshall College
    Inventor: Katherine Plass
  • Patent number: 8664094
    Abstract: The present invention relates to the growing of nitride semiconductors, applicable for a multitude of semiconductor devices such as diodes, LEDs and transistors. According to the method of the invention nitride semiconductor nanowires are grown utilizing a CVD based selective area growth technique. A nitrogen source and a metal-organic source are present during the nanowire growth step and at least the nitrogen source flow rate is continuous during the nanowire growth step. The V/III-ratio utilized in the inventive method is significantly lower than the V/III-ratios commonly associated with the growth of nitride based semiconductor.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: March 4, 2014
    Assignee: QuNano AB
    Inventors: Werner Seifert, Damir Asoli, Zhaoxia Bi
  • Patent number: 8633040
    Abstract: The invention can be used for producing different luminescent materials and as a basis for producing subminiature light-emitting diodes, white light sources, single-electron transistors, nonlinear optical devices and photosensitive and photovoltaic devices. The inventive method for producing semiconductor quantum dots involves synthesizing nanocrystal nuclei from a chalcogen-containing precursor and a precursor containing a group II or IV metal using an organic solvent and a surface modifier. The method is characterized in that (aminoalkyl)trialkoxysilanes are used as the surface modifier, core synthesis is carried out at a permanent temperature ranging from 150 to 250 C for 15 seconds to 1 hour and in that the reaction mixture containing the nanocrystal is additionally treated by UV-light for 1-10 minutes and by ultrasound for 5-15 minutes.
    Type: Grant
    Filed: August 18, 2009
    Date of Patent: January 21, 2014
    Assignee: The “Nanotech-Dubna” Trial Center for Science and Technology
    Inventors: Roman Vladimirovich Novichkov, Maxim Sergeevich Wakstein, Ekaterina Leonidovna Nodova, Aleksey Olegovich Maniashin, Irina Ivanovna Taraskina
  • Patent number: 8623237
    Abstract: The present invention describes a composition and a method for producing mesoporous silica materials with a chiral organization. In the method, a polymerizable inorganic monomer is reacted in the presence of nanocrystalline cellulose (NCC) to give a material of inorganic solid with cellulose nanocrystallites embedded in a chiral nematic organization. The NCC can be removed to give a stable porous structure that retains the chiral organization of the NCC template. The new materials may be obtained as iridescent free-standing films with high surface area. Through control of the reaction conditions, the color of the films can be varied across the entire visible spectrum. These are the first materials to combine mesoporosity with long-range chiral ordering that leads to photonic properties.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: January 7, 2014
    Assignees: University of British Columbia, FPInnovations
    Inventors: Mark John MacLachlan, Kevin Eric Shopsowitz, Wadood Yasser Hamad, Hao Qi
  • Patent number: 8608983
    Abstract: A composite anode active material including metal core particles and carbon nanotubes that are covalently bound to the metal core particles, an anode including the composite anode active material, a lithium battery employing the anode, and a method of preparing the composite anode active material.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: December 17, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-hee Lee, Jeong-na Heo, Ho-suk Kang, Sang-kook Mah, In-taek Han
  • Patent number: 8563348
    Abstract: A continuous film of desired electrical characteristics is obtained by successively printing and annealing two or more dispersions of prefabricated nanoparticles.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: October 22, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: James Harris, Nigel Pickett
  • Patent number: 8558311
    Abstract: A dielectric material is disclosed comprising a plurality of substantially longitudinally oriented wires which are coupled together, wherein each of the wires includes a conductive core comprising a first material and one or more insulating shell layers comprising a compositionally different second material disposed about the core. In one embodiment, a dielectric layer is disclosed comprising a substrate comprising an insulating material having a plurality of nanoscale pores defined therein having a pore diameter less than about 100 nm, and a conductive material disposed within the nanoscale pores.
    Type: Grant
    Filed: June 12, 2007
    Date of Patent: October 15, 2013
    Assignee: Nanosys, Inc.
    Inventors: Robert S. Dubrow, Jeffrey Miller, David P. Stumbo
  • Patent number: 8545736
    Abstract: Disclosed herein is a method for the preparation of metal phosphide nanocrystals using a phosphite compound as a phosphorous precursor. More specifically, disclosed herein is a method for preparing metal phosphide nanocrystals by reacting a metal precursor with a phosphite compound in a solvent. A method is also provided for passivating a metal phosphide layer on the surface of a nanocrystal core by reacting a metal precursor with a phosphite compound in a solvent. The metal phosphide nanocrystals have uniform particle sizes and various shapes.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shin Ae Jun, Eun Joo Jang, Jung Eun Lim
  • Patent number: 8524365
    Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 3, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: Paul O'Brien, Nigel Pickett
  • Patent number: 8492231
    Abstract: A nanoscale variable resistor including a metal nanowire as an active element, a dielectric, and a gate. By selective application of a gate voltage, stochastic transitions between different conducting states, and even length, of the nanowire can be induced and with a switching time as fast as picoseconds. With an appropriate choice of dielectric, the transconductance of the device, which may also be considered an “electromechanical transistor,” is shown to significantly exceed the conductance quantum G0=2e2/h.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: July 23, 2013
    Assignees: Arizona Board of Regents on behalf of the University of Arizona, New York University
    Inventors: Jerome Alexandre Bürki, Charles Allen Stafford, Daniel L. Stein
  • Publication number: 20130181234
    Abstract: Optical conversion layers based on semiconductor nanoparticles for use in lighting devices, and lighting devices including same. In various embodiments, spherical core/shell seeded nanoparticles (SNPs) or nanorod seeded nanoparticles (RSNPs) are used to form conversion layers with superior combinations of high optical density (OD), low re-absorbance and small FRET. In some embodiments, the SNPs or RSNPs form conversion layers without a host matrix. In some embodiments, the SNPs or RSNPs are embedded in a host matrix such as polymers or silicone. The conversion layers can be made extremely thin, while exhibiting the superior combinations of optical properties.
    Type: Application
    Filed: January 27, 2011
    Publication date: July 18, 2013
    Applicant: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventors: Hagai ARBELL, Uri BANIN
  • Patent number: 8481162
    Abstract: A semiconductor nanocrystal associated with a polydentate ligand. The polydentate ligand stabilizes the nanocrystal.
    Type: Grant
    Filed: September 10, 2009
    Date of Patent: July 9, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi G. Bawendi, Sungjee Kim, Nathan E. Stott
  • Publication number: 20130169904
    Abstract: A backlight unit for a liquid crystal display device including an light emitting diode light source; a light conversion layer disposed apart from the light emitting diode light source, wherein the light conversion layer is configured to convert light emitted from the light emitting diode light source to white light and provide the white light to a liquid crystal panel; and a light guide panel disposed between the light emitting diode light source and the light conversion layer, wherein the light conversion layer includes a semiconductor nanocrystal and a polymer matrix, wherein the semiconductor nanocrystal is coated with a first polymer, and wherein the polymer matrix comprises a thermoplastic second polymer.
    Type: Application
    Filed: December 27, 2012
    Publication date: July 4, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8470636
    Abstract: The present invention relates to aqueous processes to make metal chalcogenide nanoparticles that are useful precursors to copper zinc tin sulfide/selenide and copper tin sulfide/selenide. In addition, this invention provides processes for preparing crystalline particles from the metal chalcogenide nanoparticles, as well as processes for preparing inks from both the metal chalcogenide nanoparticles and the crystalline particles.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: June 25, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Daniela Rodica Radu, Lynda Kaye Johnson, Cheng-Yu Lai, Meijun Lu, Irina Malajovich
  • Patent number: 8460632
    Abstract: A method of manufacturing a quantum dot, the method including: mixing of a Group II precursor and a Group III precursor in a solvent to prepare a first mixture; heating the first mixture at a temperature of about 200° C. to about 350° C.; adding a Group V precursor and a Group VI precursor to the first mixture while maintaining the first mixture at the temperature of about 200° C. to about 350° C. to prepare a second mixture; and maintaining the second mixture at the temperature of about 200° C. to about 350° C. to form a quantum dot.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: June 11, 2013
    Assignees: Samsung Display Co., Ltd., SNU R&DB Foundation
    Inventors: Jong Hyuk Kang, Junghan Shin, Jae Byung Park, Dong-Hoon Lee, Minki Nam, Kookheon Char, Seonghoon Lee, WanKi Bae, Jaehoon Lim, Joohyun Jung
  • Patent number: 8445388
    Abstract: Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: May 21, 2013
    Assignee: Battelle Energy Alliance, LLC
    Inventors: Robert V. Fox, Rene G. Rodriguez, Joshua Pak
  • Publication number: 20130101999
    Abstract: Multi-leg luminescent nanoparticles (“MLN's”) that can be paired to other MLN's as well s biological molecules to film branched multi-leg luminescent nanoparticles (“BMLN's) that can be used in biological multiplexing applications, imaging applications, biological detection applications and other biological applications.
    Type: Application
    Filed: September 25, 2012
    Publication date: April 25, 2013
    Applicant: NANOAXIS, LLC
    Inventors: Krishnan Chakravarthy, Siddhartha Kamisetti, Himanshu Subhash Amin
  • Patent number: 8425803
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: J. Wallace Parce, Paul Bernatis, Robert Dubrow, William P. Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery A. Whiteford, Jonathan Ziebarth
  • Patent number: 8404570
    Abstract: Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: March 26, 2013
    Assignee: The Regents of the University of California
    Inventors: A. Paul Alivisatos, Erik C. Scher, Liberato Manna
  • Publication number: 20130032767
    Abstract: This invention relates to the controlled growth of uniform octapod-shaped colloidal nanocrystals and use thereof. These octapod-shaped nanocrystals can be applied in many fields of technology. This represents the first approach reported so far for the predictable and controlled fabrication of octapod-shaped nanocrystals. The synthesis approach is applicable to a broad range of materials, such as group II-VI semiconductor nanocrystals but is not limited to these materials. Using several cation exchange and oxidation procedures, we also demonstrate in this application that extremely uniform octapod-shaped nanocrystals of other materials can be synthesized, including various semiconductors, metals and insulators.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Applicant: FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA
    Inventors: Liberato Manna, Dirk Dorfs, Karol Miszta, Sasanka Deka, Alessandro Genovese, Giovanni Bertoni, Rosaria Brescia, Sergio Marras, Yang Zhang, Roman Krahne, Roberto Cingolani
  • Publication number: 20130026506
    Abstract: Optical conversion layers based on semiconductor nanoparticles for use in lighting devices, and lighting devices including same. In various embodiments, spherical core/shell seeded nanoparticles (SNPs) or nanorod seeded nanoparticles (RSNPs) are used to form conversion layers with superior combinations of high optical density (OD), low re-absorbance and small FRET. In some embodiments, the SNPs or RSNPs form conversion layers without a host matrix. In some embodiments, the SNPs or RSNPs are embedded in a host matrix such as polymers or silicone. The conversion layers can be made extremely thin, while exhibiting the superior combinations of optical properties.
    Type: Application
    Filed: January 27, 2011
    Publication date: January 31, 2013
    Inventor: Hagai Arbell
  • Publication number: 20120329686
    Abstract: A lubricating and shock absorbing materials are described, which are based on nanoparticles having the formula A1-x-Bx-chalcogenide. Processes for their manufacture are also described.
    Type: Application
    Filed: March 10, 2011
    Publication date: December 27, 2012
    Inventors: Reshef Tenne, Francis Leonard Deepak, Hagai Cohen, Sidney R. Cohen, Rita Rosentsveig, Lena Yadgarov
  • Patent number: 8337720
    Abstract: Embodiments of the invention involve semiconductor nanoparticle capping ligands, their production and use. Ligands may have the formula with m ranging from approximately 8 to approximately 45. An embodiment provides a method of forming a compound of the formula including the steps of providing a first starting material comprising poly(ethyleneglycol) and reacting the first starting material with a second starting material comprising a functional group for chelating to the surface of a nanoparticle to thereby form the compound.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: December 25, 2012
    Assignee: Nanoco Technologies, Ltd.
    Inventors: Mark C. McCairn, Steven M. Daniels, Siobhan Cummins, Nigel Pickett
  • Patent number: 8338276
    Abstract: The present invention relates to methods of manufacturing a structure having semi-conductor material nanocrystals on a dielectric material substrate by chemical vapour deposition (CVD), the method including at least: i) contacting a surface of a dielectric layer present on a substrate with a first gaseous precursor, by CVD, to form nanocrystal nuclei on the surface of a the dielectric layer; ii) contacting the nanocrystal nuclei with a second gaseous precursor, by CVD, to selectively deposit nanocrystal semi-conductor material only on the nuclei and to grow nanocrystals on the nuclei, each nanocrystal having an exposed surface; and iii) forming a nitride layer only on the exposed surface of each nanocrystal by contacting the nanocrystals with a mixture including at least the second gaseous precursor and a third gaseous precursor to terminate the growth of said nanocrystals and to selectively and stoichiometrically deposit the nitride layer on the exposed surface, wherein a material of said nanocrystal nuclei
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 25, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventor: Jean-Philippe Colonna
  • Patent number: 8329516
    Abstract: A plurality of nanowires is grown on a first substrate in a first direction perpendicular to the first substrate. An insulation layer covering the nanowires is formed on the first substrate to define a nanowire block including the nanowires and the insulation layer. The nanowire block is moved so that each of the nanowires is arranged in a second direction parallel to the first substrate. The insulation layer is partially removed to partially expose the nanowires. A gate line covering the exposed nanowires is formed. Impurities are implanted into portions of the nanowires adjacent to the gate line.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: December 11, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Moon-Sook Lee
  • Patent number: 8323755
    Abstract: Nematic liquid crystal cells with positive dielectric anisotropy that include colloidal suspensions having nanoclusters (e.g., CdTe nanoclusters, CdSe nanoclusters) that include a pure monolayer of ligands are provided as well as methods of inducing Freedericksz transitions in the nematic liquid crystal cells and methods of controlling the alignment of a liquid crystal.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: December 4, 2012
    Assignee: University of Manitoba
    Inventors: Torsten Hegmann, Brandy Melissa Kinkead
  • Patent number: 8309439
    Abstract: The present invention relates to the growing of nitride semiconductors, applicable for a multitude of semiconductor devices such as diodes, LEDs and transistors. According to the method of the invention nitride semiconductor nanowires are grown utilizing a CVD based selective area growth technique. A nitrogen source and a metal-organic source are present during the nanowire growth step and at least the nitrogen source flow rate is continuous during the nanowire growth step. The V/III-ratio utilized in the inventive method is significantly lower than the V/III-ratios commonly associated with the growth of nitride based semiconductor.
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: November 13, 2012
    Assignee: QuNano AB
    Inventors: Werner Seifert, Damir Asoli, Zhaoxia Bi
  • Publication number: 20120282327
    Abstract: A phosphate-containing nanoparticle delivery vehicle includes nanoparticle, an active ingredient, and a phosphodiester moiety connecting the nanoparticle and the active ingredient and forms a prodrug. The nanoparticle delivery vehicle achieves the function of increasing hydrophilicity of the active ingredient and specificity against tumor cells. Advantages of the nanoparticle material include biocompatibility, magnetism and/or controllable drug release.
    Type: Application
    Filed: July 13, 2012
    Publication date: November 8, 2012
    Inventors: Jih Ru Hwu, Yu-Sern Lin, Chen-Sheng Yeh, Dar-Bin Shieh, Wu-Chou Su
  • Patent number: 8274138
    Abstract: A high quality II-VI semiconductor nanowire is disclosed. A plurality of II-VI semiconductor nanowires is provided, with each being fixed to a support. Each nanowire terminates in a free end and a metal alloy nanoparticle is fixed to each nanowire at its free end.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: September 25, 2012
    Assignee: Eastman Kodak Company
    Inventor: Keith B. Kahen
  • Publication number: 20120235098
    Abstract: Chalcogen compound powder containing Cu—In—Ga—Se and having an average particle diameter (DSEM) of 80 nm or less and a low content of carbon is obtained by forming a mixed solvent by mixing together at least any one of a mixture of copper salt and indium salt, a composite hydroxide of copper and indium, and a composite oxide of copper and indium, any one of selenium and a selenium compound, and a solvent having a boiling point of 250° C. or less, and heating the mixed solvent to a temperature of 220° C. to 500° C. A thin film containing Cu—In—Ga—Se and having low resistance is obtained by using paste of the chalcogen compound powder.
    Type: Application
    Filed: December 7, 2010
    Publication date: September 20, 2012
    Inventors: Yuichi Ishikawa, Koji Tanoue, Takatoshi Fujino
  • Patent number: 8268282
    Abstract: The present invention relates generally to thermally-conductive pastes for use with integrated circuits, and particularly, but not by way of limitation, to self-orienting microplates of graphite.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: September 18, 2012
    Assignee: International Business Machines Corporation
    Inventors: Gareth Hougham, Paul A. Lauro, Brian R. Sundlof, Jeffrey D. Gelorme
  • Patent number: 8252416
    Abstract: Disclosed herein is a nanocrystal-metal oxide complex. The nanocrystal of the nanocrystal-metal oxide complex is substituted with two or more different types of surfactants which are miscible with a metal oxide precursor and enable maintenance of luminescent and electrical properties of the nanocrystal. The nanocrystal-metal oxide complex exhibits superior optical and chemical stability and secures high luminescent efficiency of the nanocrystal. Accordingly, when the nanocrystal-metal oxide complex is used as a luminescent material of an electroluminescent device, it can improve luminescent efficiency and reliability of products. Further disclosed herein is a method for preparing the nanocrystal-metal oxide complex.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shin Ae Jun, Eun Joo Jang, Hye Ran Choi, Jung Eun Lim
  • Patent number: 8252205
    Abstract: Disclosed herein is a method for the preparation of metal phosphide nanocrystals using a phosphite compound as a phosphorous precursor. More specifically, disclosed herein is a method for preparing metal phosphide nanocrystals by reacting a metal precursor with a phosphite compound in a solvent. A method is also provided for passivating a metal phosphide layer on the surface of a nanocrystal core by reacting a metal precursor with a phosphite compound in a solvent. The metal phosphide nanocrystals have uniform particle sizes and various shapes.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Shin Ae Jun, Eun Joo Jang, Jung Eun Lim
  • Patent number: 8247073
    Abstract: Disclosed herein are a nanocrystal, a method for preparing the nanocrystal, and an electronic device comprising the nanocrystal. The nanocrystal comprises a semiconductor nanocrystal core, a non-semiconductor buffer layer surrounding the semiconductor nanocrystal core, and a shell surrounding the buffer layer.
    Type: Grant
    Filed: January 8, 2008
    Date of Patent: August 21, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun Joo Jang, Shin Ae Jun, Jung Eun Lim, Yong Nam Ham
  • Patent number: 8216364
    Abstract: Direct resistive heating is used to grow nanotubes out of carbon and other materials. A growth-initiated array of nanotubes is provided using a CVD or ion implantation process. These processes use indirect heating to heat the catalysts to initiate growth. Once growth is initiated, an electrical source is connected between the substrate and a plate above the nanotubes to source electrical current through and resistively heat the nanotubes and their catalysts. A material source supplies the heated catalysts with carbon or another material to continue growth of the array of nanotubes. Once direct heating has commenced, the source of indirect heating can be removed or at least reduced. Because direct resistive heating is more efficient than indirect heating the total power consumption is reduced significantly.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: July 10, 2012
    Assignee: Raytheon Company
    Inventors: Delmar L. Barker, Mead M. Jordan, William R. Owens
  • Patent number: 8211735
    Abstract: Techniques for fabricating nanowire/microwire-based solar cells are provided. In one, a method for fabricating a solar cell is provided. The method includes the following steps. A doped substrate is provided. A monolayer of spheres is deposited onto the substrate. The spheres include nanospheres, microspheres or a combination thereof The spheres are trimmed to introduce space between individual spheres in the monolayer. The trimmed spheres are used as a mask to pattern wires in the substrate. The wires include nanowires, microwires or a combination thereof A doped emitter layer is formed on the patterned wires. A top contact electrode is deposited over the emitter layer. A bottom contact electrode is deposited on a side of the substrate opposite the wires.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: William Graham, Supratik Guha, Oki Gunawan, George S. Tulevski, Kejia Wang, Ying Zhang
  • Patent number: 8207013
    Abstract: A simplified method for fabricating a solar cell device is provided. The solar cell device has silicon nanowires (SiNW) grown on an upgraded metallurgical grade (UMG) silicon (Si) substrate. Processes of textured surface process and anti-reflection thin film process can be left out for further saving costs on equipment and manufacture investment. Thus, a low-cost Si-based solar cell device can be easily fabricated for wide application.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: June 26, 2012
    Assignee: Atomic Energy Council Institute of Nuclear Energy Research
    Inventor: Tsun-Neng Yang
  • Patent number: 8198706
    Abstract: A method for making a multi-level nanowire structure includes establishing a first plurality of nanowires on a substrate surface, wherein at least some of the nanowires are i) aligned at a predetermined crystallographically defined angle with respect to the substrate surface, ii) aligned substantially perpendicular with respect to the substrate surface, or iii) combinations of i and ii. An insulating layer is established between the nanowires of the first plurality such that one of two opposed ends of at least some of the nanowires positioned i) at the predetermined crystallographically defined angle, ii) substantially perpendicular with respect to the substrate surface, or iii) combinations of i and ii is exposed. Regions are grown from each of the exposed ends, and such regions coalesce to form a substantially continuous layer on the insulating layer. A second plurality of nanowires is established on the substantially continuous layer.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: June 12, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Theodore I. Kamins, Nathaniel Quitoriano
  • Publication number: 20120133029
    Abstract: A method for nanostructuring a film (2) of material includes a step of immersing the film (2) of material in an aqueous solution (3), during which an interference FIG. 6) including illuminated areas (6b) and dark areas (6a) is applied to at least one of the faces of the film (2). The material is a semiconductor inorganic material or oxide, which is able to be solubilised in aqueous solution under the effect of the absorption of light. The nanostructuring of the film (2) is effected, at its surface in contact with the aqueous solution (3), by photodissolution in the illuminated areas (6a) and/or by growth in the dark areas (6b) of the interference FIG. 6). Also described is a nanostructured coating film (5) obtained according to such a preparation method, as well as a nanostructured 3D film.
    Type: Application
    Filed: May 12, 2010
    Publication date: May 31, 2012
    Applicant: UNIVERSITE DE TECHNOLOGIE DE TROYES
    Inventors: Gilles Lerondel, Laurent Divay
  • Patent number: 8148212
    Abstract: A plurality of nanowires is grown on a first substrate in a first direction perpendicular to the first substrate. An insulation layer covering the nanowires is formed on the first substrate to define a nanowire block including the nanowires and the insulation layer. The nanowire block is moved so that each of the nanowires is arranged in a second direction parallel to the first substrate. The insulation layer is partially removed to partially expose the nanowires. A gate line covering the exposed nanowires is formed. Impurities are implanted into portions of the nanowires adjacent to the gate line.
    Type: Grant
    Filed: November 25, 2008
    Date of Patent: April 3, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Moon-Sook Lee