Group Ii-vi Nonoxide Compounds (e.g., Cdxmnyte, Etc.) Patents (Class 977/824)
-
Patent number: 8920766Abstract: Provided are methods for making quantum nanostructures based on use of a combination of nucleation and growth precursors. The methods can be used to provide quantum nanostructures of a selected size. Also provided are quantum nanostructures, compositions comprising the quantum nanostructures, and uses of the quantum nanostructures. The quantum nanostructures can be used, for example, in imaging applications.Type: GrantFiled: August 21, 2013Date of Patent: December 30, 2014Assignee: University of RochesterInventors: Todd D. Krauss, Christopher M. Evans
-
Publication number: 20140322373Abstract: In certain embodiments, a material comprising one or more semiconductive substances is vaporized to generate a vapor phase condensate. The vapor phase condensate is allowed to form nanoparticles. The nanoparticles are annealed to yield substantially spherical nanoparticles.Type: ApplicationFiled: July 14, 2014Publication date: October 30, 2014Inventor: Kalin Spariosu
-
Patent number: 8790440Abstract: In certain embodiments, a material comprising one or more semiconductive substances is vaporized to generate a vapor phase condensate. The vapor phase condensate is allowed to form nanoparticles. The nanoparticles are annealed to yield substantially spherical nanoparticles.Type: GrantFiled: November 8, 2010Date of Patent: July 29, 2014Assignee: Raytheon CompanyInventor: Kalin Spariosu
-
Patent number: 8747801Abstract: Disclosed herein are methods of preparing inorganic nanoparticles. In one aspect, the methods can comprise heating a reaction mixture comprising a C8 to C20 alkyl- or arylphosphonic acid and a source of cadmium or zinc to a temperature of greater than about 300° C.; adding to the reaction mixture an injection mixture comprising a C2 to C16 trialkyl- or triarylphosphine and a source of selenium, sulfur, or tellurium; and decreasing the temperature of the reaction mixture to less than about 300° C. Also disclosed herein are nanoparticles made from the disclosed methods. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.Type: GrantFiled: November 16, 2012Date of Patent: June 10, 2014Assignee: Vanderbilt UniversityInventors: Michael J. Bowers, James R. McBride, Sandra J. Rosenthal
-
Patent number: 8673260Abstract: This invention relates to a process for the phase-controlled synthesis of ternary and quaternary mixed-metal sulfide nanoparticles by reacting soft metal ions with hard metal ions in a high-boiling organic solvent in the presence of a complexing and activating ligands to control the reactivity of the metal ions. Ternary and quaternary mixed metal sulfides nanoparticles of copper, sulfur, and iron, aluminum, tin, and silicon are preferred. This invention also relates to the phase controlled preparation of polymorphs of bornite nanoparticles and the phase controlled preparation of stabilized ?- and ?-chalconite nanoparticles.Type: GrantFiled: January 4, 2013Date of Patent: March 18, 2014Assignee: Franklin and Marshall CollegeInventor: Katherine Plass
-
Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
Patent number: 8603362Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of these nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A; and can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone. This method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.Type: GrantFiled: September 10, 2012Date of Patent: December 10, 2013Assignee: Life Technologies CorporationInventors: Marc Schrier, Donald Zehnder, Joseph Treadway, Joseph Bartel -
Patent number: 8524365Abstract: A method of producing nanoparticles comprises effecting conversion of a nanoparticle precursor composition to the material of the nanoparticles. The precursor composition comprises a first precursor species containing a first ion to be incorporated into the growing nanoparticles and a separate second precursor species containing a second ion to be incorporated into the growing nanoparticles. The conversion is effected in the presence of a molecular cluster compound under conditions permitting seeding and growth of the nanoparticles.Type: GrantFiled: October 6, 2011Date of Patent: September 3, 2013Assignee: Nanoco Technologies Ltd.Inventors: Paul O'Brien, Nigel Pickett
-
Patent number: 8470636Abstract: The present invention relates to aqueous processes to make metal chalcogenide nanoparticles that are useful precursors to copper zinc tin sulfide/selenide and copper tin sulfide/selenide. In addition, this invention provides processes for preparing crystalline particles from the metal chalcogenide nanoparticles, as well as processes for preparing inks from both the metal chalcogenide nanoparticles and the crystalline particles.Type: GrantFiled: November 22, 2010Date of Patent: June 25, 2013Assignee: E I du Pont de Nemours and CompanyInventors: Daniela Rodica Radu, Lynda Kaye Johnson, Cheng-Yu Lai, Meijun Lu, Irina Malajovich
-
Publication number: 20130134366Abstract: The present invention relates to semiconductor nanocrystals having, simultaneously, an emission center surrounded by at least one absorbing shell and a protective exterior shell.Type: ApplicationFiled: June 30, 2010Publication date: May 30, 2013Inventors: David Battaglia, Haogua Zhu, Qiang Zhang, Suresh Sunderrajan, Tiecheng Qiao
-
Publication number: 20130118585Abstract: Embodiments of the invention are to a copper indium diselenide (CIS) comprising nanoparticle where the nanoparticle includes a CIS phase and a second phase comprising a copper selenide. The CIS comprising nanoparticles are free of surfactants or binding agents, display a narrow size distribution and are 30 to 500 nm in cross section. In an embodiment of the invention, the CIS comprising nanoparticles are combined with a solvent to form an ink. In another embodiment of the invention, the ink can be used for screen or ink-jet printing a precursor layer that can be annealed to a CIS comprising absorber layer for a photovoltaic device.Type: ApplicationFiled: June 22, 2011Publication date: May 16, 2013Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.Inventors: Timothy James Anderson, Chinho Park, Rangarajan Krishnan, Umme Farva
-
Publication number: 20130115713Abstract: The invention generally relates to detection and analysis of biological materials. In particular; the invention relates to quantum dot-based optical, sensors and methods for rapid detection and quantitative analysis of various biomolecules and biological materials, such as nucleic acids, proteins, cells, etc.Type: ApplicationFiled: April 5, 2011Publication date: May 9, 2013Inventors: Triantafillos John Mountziaris, Jun Wang
-
Patent number: 8425803Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.Type: GrantFiled: November 9, 2009Date of Patent: April 23, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: J. Wallace Parce, Paul Bernatis, Robert Dubrow, William P. Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery A. Whiteford, Jonathan Ziebarth
-
Patent number: 8404154Abstract: A semiconductor nanocrystal capable of emitting blue light upon excitation. Also disclosed are devices, populations of semiconductor nanocrystals, and compositions including a semiconductor nanocrystal capable of emitting blue light upon excitation. In one embodiment, a semiconductor nanocrystal capable of emitting blue light including a maximum peak emission at a wavelength not greater than about 470 nm with a photoluminescence quantum efficiency greater than about 65% upon excitation. In another embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting blue light with a photoluminescence quantum efficiency greater than about 65% upon excitation.Type: GrantFiled: May 21, 2009Date of Patent: March 26, 2013Assignee: QD Vision, Inc.Inventors: Craig Breen, Jonathan S. Steckel, Dorai Ramprasad
-
Patent number: 8404570Abstract: Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.Type: GrantFiled: November 3, 2010Date of Patent: March 26, 2013Assignee: The Regents of the University of CaliforniaInventors: A. Paul Alivisatos, Erik C. Scher, Liberato Manna
-
Patent number: 8377333Abstract: A semiconductor nanocrystal including a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light with an improved photoluminescence quantum efficiency. Also disclosed are populations of semiconductor nanocrystals, compositions and devices including a semiconductor nanocrystal capable of emitting light with an improved photoluminescence quantum efficiency. In one embodiment, a semiconductor nanocrystal includes a core comprising a first semiconductor material comprising at least three chemical elements and a shell disposed over at least a portion of the core, the shell comprising a second semiconductor material, wherein the semiconductor nanocrystal is capable of emitting light upon excitation with a photoluminescence quantum efficiency greater than about 65%.Type: GrantFiled: May 21, 2009Date of Patent: February 19, 2013Assignee: QD Vision, Inc.Inventors: Dorai Ramprasad, Craig Breen, Jonathan S. Steckel
-
Publication number: 20130040143Abstract: This invention provides non-spherical nanoparticle compositions that are the reaction product of a source of a Group 12, 13, 14, or 15 metal or metalloid; a source of a Group 15 or 16 element; and a source of a quaternary ammonium compound or phosphonium compound; wherein nanoparticle tetrapods comprise 75-100 number percent of the nanoparticle products.Type: ApplicationFiled: October 17, 2012Publication date: February 14, 2013Applicant: WILLIAM MARSH RICE UNIVERSITYInventors: Subashini ASOKAN, Michael Sha-nang WONG
-
Preparation of Stable, Bright Luminescent Nanoparticles Having Compositionally Engineered Properties
Publication number: 20130037762Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of these nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A; and can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone. This method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.Type: ApplicationFiled: September 10, 2012Publication date: February 14, 2013Applicant: LIFE TECHNOLOGIES CORPORATIONInventors: Marc D. Schrier, Donald A. Zehnder, Joseph A. Treadway, Joseph A. Bartel -
Publication number: 20130032768Abstract: Compositions of matter comprising a seeded semiconductor nanoparticle material and a non-quantum confined phosphor particle material for use in light conversion and light conversion layers comprising such compositions. In various embodiments, spherical core/shell seeded nanoparticles (SNPs) or nanorod seeded nanoparticles (RSNPs) are combined with a phosphor material to provide a composition of matter with small re-absorbance of the phosphor emission in both green and red wavelength regions and small re-absorbance of the SNP emission, In some embodiments, the SNPs or RSNPs are encapsulated in a first host material before being mixed with the phosphor particles. In various embodiments, a SNP/RSNP-phosphor mixture or encapsulated SNP/RSNP-phosphor mixture is incorporated in host matrix.Type: ApplicationFiled: January 27, 2011Publication date: February 7, 2013Applicant: Yissum Research Development Company of the Hebrew University of Jerusalem Ltd.Inventors: Hagai Arbell, Assaf Aharoni, Uri Banin
-
Patent number: 8337721Abstract: In one aspect, the invention relates to an inorganic nanoparticle or nanocrystal, also referred to as a quantum dot, capable of emitting white light. In a further aspect, the invention relates to an inorganic nanoparticle capable of absorbing energy from a first electromagnetic region and capable of emitting light in a second electromagnetic region, wherein the second electromagnetic region comprises an at least about 50 nm wide band of wavelengths and to methods for the preparation thereof. In further aspects, the invention relates to a frequency converter, a light emitting diode device, a modified fluorescent light source, an electroluminescent device, and an energy cascade system comprising the nanoparticle of the invention. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.Type: GrantFiled: October 17, 2006Date of Patent: December 25, 2012Assignee: Vanderbilt UniversityInventors: Michael J. Bowers, James R. McBride, Sandra J. Rosenthal
-
Publication number: 20120318324Abstract: A solar cell assembly can be prepared having one or more laterally-arranged multiple bandgap (LAMB) solar cells and a dispersive concentrator positioned to provide light to a surface of each of the LAMB cells. As described herein, each LAMB cell comprises a plurality of laterally-arranged solar cells each having a different bandgap.Type: ApplicationFiled: June 14, 2012Publication date: December 20, 2012Applicant: Arizona Board of Regents, a body corporate of the State of Arizona, Acting for and on behalf of ArizInventors: Cun-Zheng Ning, Derek Caselli
-
Publication number: 20120270231Abstract: The disclosure relates to lattice-mismatched core-shell quantum dots (QDs). In certain embodiments, the lattice-mismatched core-shell QDs are used in methods for photovoltaic or photoconduction applications. They are also useful for multicolor molecular, cellular, and in vivo imaging.Type: ApplicationFiled: November 15, 2010Publication date: October 25, 2012Inventors: Andrew M. Smith, Shuming Nie
-
Publication number: 20120267585Abstract: Compositions comprising nanosized objects (i.e., nanoparticles) in which at least one observable marker, such as a radioisotope or fluorophore, is incorporated within the nanosized object. The nanosized objects include, for example, metal or semi-metal oxide (e.g., silica), quantum dot, noble metal, magnetic metal oxide, organic polymer, metal salt, and core-shell nanoparticles, wherein the label is incorporated within the nanoparticle or selectively in a metal oxide shell of a core-shell nanoparticle. Methods of preparing the volume-labeled nanoparticles are also described.Type: ApplicationFiled: June 6, 2012Publication date: October 25, 2012Applicant: UT-BATTELLE, LLCInventors: Wei Wang, Baohua Gu, Scott T. Retterer, Mitchel J. Doktycz
-
Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
Patent number: 8287761Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.Type: GrantFiled: June 15, 2009Date of Patent: October 16, 2012Assignee: Life Technologies CorporationInventors: Marc Schrier, Donald Zehnder, Joseph Treadway, Joseph Bartel -
Patent number: 8274138Abstract: A high quality II-VI semiconductor nanowire is disclosed. A plurality of II-VI semiconductor nanowires is provided, with each being fixed to a support. Each nanowire terminates in a free end and a metal alloy nanoparticle is fixed to each nanowire at its free end.Type: GrantFiled: September 30, 2009Date of Patent: September 25, 2012Assignee: Eastman Kodak CompanyInventor: Keith B. Kahen
-
Publication number: 20120175567Abstract: In some embodiments, a nanocrystal described herein comprises a semiconductor material MX, wherein M is a group II or a group III element and X is a group V or a group VI element to provide a II/VI compound or a III/V compound, the nanocrystal having lateral dimensions and a vertical dimension having the shortest axis, wherein surfaces of the nanocrystal normal or substantially normal to the axis of the vertical dimension comprise a layer of M ions passivated by a counter ion chemical species.Type: ApplicationFiled: January 9, 2012Publication date: July 12, 2012Applicant: The Board of Trustees of the University of ArkansasInventors: Xiaogang Peng, Zheng Li
-
Publication number: 20120138866Abstract: Nanoparticle compositions and methods for synthesizing multinary chalcogenide CZTSSe nanoparticles containing Cu, Zn, and Sn in combination with S, Se or both are described. The nanoparticles may be incorporated into one or more ink solutions alone or in combination with other chalcogenide-based particles to make thin films useful for photovoltaic applications, including thin films from multilayer particle films having a composition profile. The composition and stoichiometry of the thin films may be further modified by subjecting the particle films to gas or liquid phase chalcogen exchange reactions.Type: ApplicationFiled: May 26, 2010Publication date: June 7, 2012Applicant: PURDUE RESEARCH FOUNDATIONInventors: Rakesh Agrawal, Hugh W. Hillhouse, Qijie Guo
-
Patent number: 8142890Abstract: Compositions and methods for fabrication or synthesis of high aspect ratio (up to >150) CdS:Mn/ZnS core/shell nanowires (CSNWs) is disclosed for the first time. The CSNW solvothermal synthesis involved two steps—the formation of Mn doped CdS core followed by the growth of a ZnS outer shell. The nanowire growth process is engineered in such a way that the ZnS layer grows radially onto the prematurely grown CdS:Mn core prior to the formation of its well faceted surface. Transmission electron microscopy (TEM) and other characterization techniques confirmed the formation of uniform, thin (5-8 nm in diameter) CSNWs with high aspect ratio up to >150. This solvothermal method is simple, versatile and useful in a large scale production process to synthesize thin ultra-long CSNWs with and without dopants.Type: GrantFiled: December 4, 2008Date of Patent: March 27, 2012Assignee: University of Central Florida Research Foundation, Inc.Inventors: Soumitra Kar, Swadeshmukul Santra
-
Patent number: 8143686Abstract: In one aspect, the present invention provides a method of processing a substrate, e.g., a semiconductor substrate, by irradiating a surface of the substrate (or at least a portion of the surface) with a first set of polarized short laser pulses while exposing the surface to a fluid to generate a plurality of structures on the surface, e.g., within a top layer of the surface. Subsequently, the structured surface can be irradiated with another set of polarized short laser pulses having a different polarization than that of the initial set while exposing the structured surface to a fluid, e.g., the same fluid initially utilized to form the structured surface or a different fluid. In many embodiments, the second set of polarized laser pulses cause the surface structures formed by the first set to break up into smaller-sized structures, e.g., nano-sized features such as nano-sized rods.Type: GrantFiled: October 18, 2010Date of Patent: March 27, 2012Assignee: President and Fellows of Harvard CollegeInventors: Eric Mazur, Mengyan Shen
-
Publication number: 20120061627Abstract: A method for preparing nanocrystals is disclosed. According to one aspect, the noncrystals include a semiconductor ternary compound consisting of the elements A, B and C. According to another aspect, the nanocrystals include a semiconductor of formula ABC2 optionally coated with a shell, the external portion of which includes a semiconductor of formula ZnS1-xFx, with A representing a metal or metalloid in the oxidation state +I, B representing a metal or metalloid in the oxidation state +III, C representing an element in the oxidation state ?II, F representing an element in the oxidation state ?II and x being a decimal number such that 0?x<1. The disclosure also relates to the prepared nanocrystals and their uses.Type: ApplicationFiled: November 3, 2009Publication date: March 15, 2012Inventors: Peter Reiss, Toufic Jean Daou, Isabelle Texier-Nogues, Liang Li
-
Patent number: 8007757Abstract: A method of synthesizing nanostructures. In one embodiment, the method includes the step of heating a reaction mixture at an elevated temperature, T, for a period of time effective to allow the growth of desired nanostructures. The reaction mixture contains an amount, P, of a carboxylate salt and an amount, L, of a fatty acid ligand, defining a molar ratio of the fatty acid ligand to the carboxylate salt, ?=L/P, and a hydrocarbon solvent. The reaction mixture is characterizable with a critical ligand protection, ?, associating with the chemical structure of the carboxylate salt such that when ?<?, the reaction mixture is in a limited ligand protection (LLP) domain, and when ?>?, the reaction mixture is in a sufficient ligand protection (SLP) domain.Type: GrantFiled: May 17, 2007Date of Patent: August 30, 2011Assignee: The Board of Trustees of the University of ArkansasInventors: Xiaogang Peng, Arun Narayanaswamy, Narayan Pradhan
-
Patent number: 8003070Abstract: Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.Type: GrantFiled: March 13, 2008Date of Patent: August 23, 2011Assignee: Battelle Energy Alliance, LLCInventors: Robert V. Fox, Rene G. Rodriguez, Joshua Pak
-
Patent number: 7993541Abstract: The present application is directed to the preparation and use of a class of nanoparticles that contain a single Quantum Confined dopant. A QCA nanocrystal comprises of a plurality of host atoms in a nanocrystal of a size of less than 10 nm with a single atom of a dopant (or activator). This single QCA dopant, when confined, becomes polarized and creates a large magnetic-moment in a nanosize host that contains atoms of unpaired spins. The quantum confined atom (QCA) which is now pinned, triggers the alignment of the host atoms resulting in nanosize magnetic domain. Engineering of nanomagnets based on QCA nanoparticles can be used in different applications such as: sensors, drug delivery, bio-tagging, cell/DNA tagging, magnetic memories and others.Type: GrantFiled: February 12, 2007Date of Patent: August 9, 2011Assignee: Nanocrystals Technology LPInventors: Rameshwar Nath Bhargava, Haranath Divi, Adosh Mehta
-
Patent number: 7972931Abstract: The present invention relates to a method of manufacturing thin-film transistors using nanoparticles and thin film transistors manufactured by the method. A hydrophilic buffer layers are deposited on the substrates to facilitate formation of nanoparticle films. Sintered nanoparticles are used as an active layer and dielectric materials of high dielectric coefficient are also used as a gate dielectric layer to form a top gate electrode on the gate dielectric layer, thereby enabling low-voltage operation and low-temperature fabrication.Type: GrantFiled: January 17, 2007Date of Patent: July 5, 2011Assignee: Korea University Industrial & Academic Collaboration FoundationInventors: Sangsig Kim, Kyoung-Ah Cho, Dong-Won Kim, Jae-Won Jang
-
Patent number: 7968075Abstract: A multi-element metal chalcogenide and a method for preparing the same are provided. The multi-element metal chalcogenide includes multiple metal elements. A multi-element metal chalcogenide powder is prepared, and all of the multiple metal elements of the multi-element metal chalcogenide are derived from at least one of simple substance powders of the metal elements and one or more alloy powders mixed in accordance with a mole ratio. A solution phase synthesis of the powder of the multi-element metal chalcogenide is then conducted under normal pressure to prepare the multi-element metal chalcogenide. The multi-element metal chalcogenide can be coated to obtain a film or used to make a target and then bombard the target for sputtering a film. In such a way, a selenization process which is conventional in fabricating the semiconductor solar cell is eliminated, thus improving production yield and efficiency.Type: GrantFiled: March 2, 2010Date of Patent: June 28, 2011Assignees: Heliohawk Optoelectronics Corp.Inventor: Jun-Wen Chung
-
Publication number: 20110136139Abstract: Semiconductor nanoparticle complexes comprising semiconductor nanoparticles in association with cationic polymers are described. Also described are methods for enhancing the transport of semiconductor nanoparticles across biological membranes to provide encoded cells. The methods are particularly useful in multiplex settings where a plurality of encoded cells are to be assayed. Kits comprising reagents for performing such methods are also provided.Type: ApplicationFiled: October 15, 2010Publication date: June 9, 2011Applicant: LIFE TECHNOLOGIES CORPORATIONInventors: MARCEL P. BRUCHEZ, R. HUGH DANIELS, JENNIFER DIAS, LARRY C. MATTHEAKIS, HONGJIAN LIU, AQUANETTE M. BURT, BERNDT CHRISTOFFER LAGERHOLM, DANITH H. LY
-
Publication number: 20110006286Abstract: An electrical device includes an insulating substrate; an elongated piezoelectric semiconductor structure, a first electrode and a second electrode. A first portion of the elongated piezoelectric semiconductor structure is affixed to the substrate and a second portion of the elongated piezoelectric semiconductor structure extends outwardly from the substrate. The first electrode is electrically coupled to a first end of the first portion of the elongated piezoelectric semiconductor structure. The second electrode is electrically coupled to a second end of the first portion of the elongated piezoelectric semiconductor structure.Type: ApplicationFiled: August 13, 2010Publication date: January 13, 2011Applicant: GEORGIA TECH RESEARCH CORPORATIONInventors: Zhong L. Wang, Peng Fei
-
Patent number: 7851338Abstract: Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.Type: GrantFiled: February 12, 2008Date of Patent: December 14, 2010Assignee: The Regents of the University of CaliforniaInventors: A. Paul Alivisatos, Erik C. Scher, Liberato Manna
-
Patent number: 7833506Abstract: The invention relates to a process for producing morphologically uniform and virtually monodisperse metal-containing nanoparticles, characterized in that the separation both in time and space of the nucleation and growth processes is achieved by regulation of the temperature and volume flows, with the reaction and particle formation preferably being initiated and carried out in a suitable microstructured modular reactor system. Modularization of the microreaction plant (micro heat exchanger, residence reactor, micromixer, etc.) allows optimal setting of the respective chemical and process-engineering process parameters and thus the preparation of virtually monodisperse and morphologically uniform nanoparticles.Type: GrantFiled: November 8, 2007Date of Patent: November 16, 2010Assignee: Bayer Technology Services GmbHInventors: Frank Rauscher, Verena Haverkamp, Björn Henninger, Leslaw Mleczko
-
Patent number: 7829189Abstract: Provided is a chemical wet preparation method for Group 12-16 compound semiconductor nanocrystals. The method includes mixing one or more Group 12 metals or Group 12 precursors with a dispersing agent and a solvent followed by heating to obtain a Group 12 metal precursor solution; dissolving one or more Group 16 elements or Group 16 precursors in a coordinating solvent to obtain a Group 16 element precursor solution; and mixing the Group 12 metal precursors solution and the Group 16 element precursors solution to form a mixture, and then reacting the mixture to grow the semiconductor nanocrystals. The Group 12-16 compound semiconductor nanocrystals are stable and have high quantum efficiency and uniform sizes and shapes.Type: GrantFiled: June 26, 2007Date of Patent: November 9, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Eun-joo Jang, Tae-Kyung Ahn
-
Patent number: 7811543Abstract: A method and apparatus for producing surface stabilized nanometer-sized particles includes the steps of mixing reactants, a surface-stabilizing surfactant, and a high boiling point liquid to form a mixture, continuously passing the mixture through an ultrasonic spray nozzle to form a mist of droplets of the mixture, injecting the mist directly into a furnace to cause a reaction between species of the mixture, and collecting the nanometer-sized products. The ultrasonic nozzle is positioned directly at one end of the heating furnace, preferably the top end, for travel of the droplets through the furnace. The continuous liquid-flow process, along with certain operating parameters, eliminates the need for dilution of the high boiling point liquid with a low boiling point solvent as in the prior art, significantly increases the yield, improves the quality of the product, and makes the process scalable.Type: GrantFiled: October 9, 2008Date of Patent: October 12, 2010Assignee: Irilliant, Inc.Inventors: Yuri T. Didenko, Yuhua Ni
-
Water based colorants comprising semiconductor nanocrystals and methods of making and using the same
Patent number: 7811470Abstract: A water based colorant that includes a polymer emulsion and semiconductor crystals capable of emitting light. The colorants include paints, inks and/or dyes can be applied to various substrates.Type: GrantFiled: October 4, 2007Date of Patent: October 12, 2010Assignee: Evident TechnologiesInventors: James Hayes, Luis Sanchez -
Patent number: 7807265Abstract: A partially passivating core shell particle includes a luminescent nanocrystal core, and a partially passivating semiconducting core shell on a surface of the nanocrystal. The shell allows selected analytes to alter a luminescent response of the core shell particle. A quantum dot-based sensing system includes at least one partially passivating core shell particle, a light source for irradiating the partially passivating core shell particle, and a light detector for receiving emissions from the particle, wherein emissions from the core shell particle change in response to the presence of at least one analyte.Type: GrantFiled: May 14, 2007Date of Patent: October 5, 2010Assignee: University of Central Florida Research Foundation, Inc.Inventors: Swadeshmukul Santra, Subir Kumar Sabui, Paul H. Holloway, Heesun Yang
-
Patent number: 7758843Abstract: The present disclosure provides systems and methods for crystal growth of cadmium zinc tellurium (CZT) and cadmium tellurium (CdTe) crystals with an inverted growth reactor chamber. The inverted growth reactor chamber enables growth of single, large, high purity CZT and CdTe crystals that can be used, for example, in X-ray and gamma detection, substrates for infrared detectors, or the like. The inverted growth reactor chamber enables reductions in the presence of Te inclusions, which are recognized as an important limiting factor in using CZT or CdTe as radiation detectors. The inverted growth reactor chamber can be utilized with existing crystal growth techniques such as the Bridgman crystal growth mechanism and the like. In an exemplary embodiment, the inverted growth reactor chamber is a U-shaped ampoule.Type: GrantFiled: April 1, 2009Date of Patent: July 20, 2010Assignee: U.S. Department of EnergyInventors: Aleskey E. Bolotnikov, Ralph B. James
-
Patent number: 7745001Abstract: Negatively charged luminescent CdSe—ZnS quantum dots (QDs) were successfully incorporated into novel luminescent glyconanospheres averaging around 190 nm in diameter through electrostatic interactions with carboxymethyldextran (CM-dextran) and polylysine. The glyconanospheres preferably contain as well carboxyl-modified iron oxide nanocrystals. In addition to electrostatic attraction between the negatively charged dextran, the negatively charged CdSe—ZnS QDs (and negatively charged iron oxide nanocrystals, if present), and the positively charged polylysine, covalent amide bonds were introduced to cross link the QDs (and negatively charged iron oxide nanocrystals, if present) with the polysaccharide matrix to further stabilize the glyconanospheres. The dextran residues on the surface of the nanospheres show high affinity toward the glucose binding protein-Concanavalin A (Con A).Type: GrantFiled: March 23, 2005Date of Patent: June 29, 2010Assignee: University of New Orleans Research and Technology Foundation, Inc.Inventors: Zeev Rosenzweig, Yongfen Chen, Desheng Wang
-
Patent number: 7731932Abstract: Methods of processing nanocrystals to remove excess free and bound organic material and particularly surfactants used during the synthesis process, and resulting nanocrystal compositions, devices and systems that are physically, electrically and chemically integratable into an end application.Type: GrantFiled: August 4, 2008Date of Patent: June 8, 2010Assignee: Nanosys, Inc.Inventors: Erik C. Scher, Mihai A. Buretea, Jeffery A. Whiteford, Andreas P. Meisel
-
Preparation of stable, bright luminescent nanoparticles having compositionally engineered properties
Patent number: 7695642Abstract: A method is provided for preparing luminescent semiconductor nanoparticles composed of a first component X, a second component A, and a third component B, wherein X, A, and B are different, by combining B with X and A in an amount such that the molar ratio B:(A+B) is in the range of approximately 0.001 to 0.20 and the molar ratio X:(A+B) is in the range of approximately 0.5:1.0 to 2:1. The characteristics of the thus-prepared nanoparticles can be substantially similar to those of nanoparticles containing only X and B while maintaining many useful properties characteristic of nanoparticles containing only X and A. The nanoparticles so prepared can additionally exhibit emergent properties such as a peak emission energy less than that characteristic of a particle composed of XA or XB alone; this method is particularly applicable to the preparation of stable, bright nanoparticles that emit in the red to infrared regions of the electromagnetic spectrum.Type: GrantFiled: December 13, 2004Date of Patent: April 13, 2010Assignee: Life Technologies CorporationInventors: Marc D. Schrier, Donald A. Zehnder, Joseph A. Treadway, Joseph A. Bartel -
Patent number: 7670584Abstract: Methods for forming colloidal metal chalcogenide nanoparticles generally include forming soluble inorganic metal chalcogen cluster precursors, which are then mixed with a surfactant and heated to form the colloidal metal chalcogenide nanoparticles. The soluble inorganic metal chalcogen cluster precursors are generally formed using a hydrazine-based solvent. The methods can be used with main group and transition metals.Type: GrantFiled: June 1, 2007Date of Patent: March 2, 2010Assignees: International Business Machines Corporation, The Board of Trustees of the Leland Stanford Junior UniversityInventors: Marissa A. Caldwell, Delia J. Milliron
-
Patent number: 7648689Abstract: The invention is to provide a process for industrially advantageously producing InP fine particles having a nano-meter size efficiently in a short period of time and an InP fine particle dispersion, and there are provided a process for the production of InP fine particles by reacting an In raw material containing two or more In compounds with a P raw material containing at least one P compound in a solvent wherein the process uses, as said two or more In compounds, at least one first In compound having a group that reacts with a functional group of P compound having a P atom adjacent to an In atom to be eliminated with the functional group in the formation of an In-P bond and at least one second In compound having a lower electron density of In atom in the compound than said first In compound and Lewis base solvent as said solvent, and InP fine particles obtained by the process.Type: GrantFiled: March 10, 2006Date of Patent: January 19, 2010Assignee: Hoya CorporationInventor: Shuzo Tokumitsu
-
Publication number: 20090220756Abstract: Semiconductor nano-particles, due to their specific physical properties, can be used as reversible photo-bleachable materials for a wide spectrum, from far infrared to deep UV. Applications include, reversible contrast enhancement layer (R-CEL) in optical lithography, lithography mask inspection and writing and optical storage technologies.Type: ApplicationFiled: March 16, 2009Publication date: September 3, 2009Applicant: PIXELLIGENT TECHNOLOGIES LLCInventors: Zhiyun Chen, Erin F. Fleet, Serpil Gonen, Gregory D. Cooper
-
Patent number: 7566435Abstract: A method for preparing nanowires is disclosed, which comprises the following steps: (a) providing a first precursor solution containing IIB group elements, and a second precursor solution containing VIA group elements; (b) mixing and heating the first precursor solution and the second precursor solution to form a mixed solution; and (c) cooling the mixed solution and filtering the mixed solution to obtain nanowires. The first precursor solution includes compounds of IIB group elements and a surfactant. The second precursor solution includes compounds of VIA group elements. Besides, the surfactant is an organic acid having an aromatic group or a salt thereof.Type: GrantFiled: August 22, 2006Date of Patent: July 28, 2009Assignee: Industrial Technology Research InstituteInventors: Hsueh-Shih Chen, Shu-Ru Chung, Gwo-Yang Chang, Shih-Jung Tsai