Surface Modifications (e.g., Functionalization, Coating, Etc.) Patents (Class 977/847)
-
Publication number: 20130264116Abstract: An apparatus having a conductive body defined by a plurality of nanotubes forming a planar structure. The apparatus further includes a plurality of junctions, formed by adjacent nanotubes, and a plurality of conductive deposits positioned at the junctions to electrically join the adjacent nanotubes at the junctions and reduce electrical resistance between the nanotubes, thereby increasing overall conductivity of the body.Type: ApplicationFiled: April 9, 2013Publication date: October 10, 2013Applicant: Nanocomp Technologies, Inc.Inventors: David S. Lashmore, Paul Jarosz, Joe Johnson
-
Publication number: 20130256123Abstract: An electrocatalyst for the electrochemical conversion of carbon dioxide to hydrocarbons is provided. The electrocatalyst for the electrochemical conversion of carbon dioxide includes copper material supported on carbon nanotubes. The copper material may be pure copper, copper and ruthenium, copper and iron, or copper and palladium supported on the carbon nanotubes. The electrocatalyst is prepared by dissolving copper nitrate trihydrate in deionized water to form a salt solution. Carbon nanotubes are then added to the salt solution to form a suspension, which is then heated. A urea solution is added to the suspension to form the electrocatalyst in solution. The electrocatalyst is then removed from the solution. In addition to dissolving the copper nitrate trihydrate in the deionized water, either iron nitrate monohydrate, ruthenium chloride or palladium chloride may also be dissolved in the deionized water to form the salt solution.Type: ApplicationFiled: April 2, 2012Publication date: October 3, 2013Applicants: KING ABDULAZIZ CITY FOR SCIENCE AND TECHNOLOGY, KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventors: SALEEM UR RAHMAN, SYED MOHAMMED JAVAID ZAIDI, SHAKEEL AHMED, SK SAFDAR HOSSAIN
-
Publication number: 20130248097Abstract: A method for transferring PMMA-coated graphene can transfer graphene to a wide variety of different substrate surfaces. It transfers graphene to different surfaces by using of Poly(methyl methacrylate) (PMMA), polymer such as sponge, and deionized (DI) water. This method comprises easy steps of coating CVD graphene with a layer of PMMA; placing the PMMA-coated CVD graphene onto a polymer to form a PMMA-coated CVD graphene on the surface of a polymer; putting this polymer with PMMA-coated CVD graphene in DI water, and finally scooping up the PMMA-coated CVD graphene with one target substrate. In this way, it transfers the CVD graphene to a target substrate surface.Type: ApplicationFiled: March 21, 2013Publication date: September 26, 2013Inventor: Richard S. PLOSS, JR.
-
Publication number: 20130249147Abstract: Graphene sheets having a plurality of holes in their basal planes are described herein. Methods for making the graphene sheets can involve contacting graphene sheets with an activated gas that has contacted a helium or argon atmospheric pressure plasma. The size and/or number of holes introduced can be altered by changing the contact time, the stand-off distance, the activated gas concentration, and/or the plasma power. Polymer composites containing the perforated graphene sheets are also described.Type: ApplicationFiled: March 12, 2013Publication date: September 26, 2013Applicant: LOCKHEED MARTIN CORPORATIONInventor: Peter V. BEDWORTH
-
Patent number: 8540959Abstract: According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.Type: GrantFiled: May 7, 2007Date of Patent: September 24, 2013Assignee: William Marsh Rice UniversityInventors: Kirk J. Ziegler, Urs Rauwald, Robert H. Hauge, Howard K. Schmidt, W. Carter Kittrell, Zhenning Gu, Irene Morin Marek
-
Publication number: 20130240355Abstract: A method for deionization of a solution, the method comprising functionalizing plural apertures of a graphene sheet to repel first ions in the solution from transiting through the functionalized plural apertures. The non-transiting first ions influence second ions in the solution to not transit through the functionalized plural apertures. The graphene sheet is positioned between a solution flow path input and a solution flow path output. Solution enters the solution flow path input and through the functionalized plural apertures of the graphene sheet, resulting in a deionized solution on the solution flow path output side of the graphene sheet and a second solution containing the first ions and second ions on the solution flow path input side of the graphene sheet.Type: ApplicationFiled: March 16, 2012Publication date: September 19, 2013Applicant: LOCKHEED MARTIN CORPORATIONInventors: Gregory S. Ho, Rex G. Bennett, Peter V. Bedworth, John B. Stetson, JR.
-
Patent number: 8536358Abstract: The present invention relates to substances which can be applied to the technical fields of gas storages, polymerization catalysts and optical isomers, their intermediates, and processes for preparing the same, which is characterized in that 1) possible disintegration of structure of the scaffold material (SM) is impeded, and 2) they are prepared by a simple manufacturing system as compared to the substances conventionally suggested in the application field. Specifically, it relates to scaffold material-transition metal hydride complexes comprised of scaffold material (SM) and transition metal hydride (M1H(n-1)) which is chemically bonded to the functional groups formed on the scaffold material, SM-transition metal halide complex and SM-transition metal ligand complex as the precursors, and a process for preparing the same. The SM-transition metal hydride complex according to the present invention is a substance for hydrogen storage which adsorbs hydrogen via Kubas adsorption.Type: GrantFiled: January 22, 2010Date of Patent: September 17, 2013Assignee: Hanwha Chemical CorporationInventors: Jong Sik Kim, Dong Wook Kim, Dong Ok Kim, Gui Ryong Ahn, Jeasung Park, Hyo Jin Jeon, Jisoon Ihm, Moon-Hyun Cha
-
Publication number: 20130237008Abstract: According to one embodiment, a method is disclosed for manufacturing a nonvolatile memory device. The nonvolatile memory device includes a memory cell connected to a first interconnect and a second interconnect. The method can include forming a first electrode film on the first interconnect. The method can include forming a layer including a plurality of carbon nanotubes dispersed inside an insulator on the first electrode film. At least one carbon nanotube of the plurality of carbon nanotubes is exposed from a surface of the insulator. The method can include forming a second electrode film on the layer. In addition, the method can include forming a second interconnect on the second electrode film.Type: ApplicationFiled: April 25, 2013Publication date: September 12, 2013Applicant: Kabushiki Kaisha ToshibaInventors: Yasuhiro NOJIRI, Hiroyuki FUKUMIZU, Shinichi NAKAO, Kei WATANABE, Kazuhiko YAMAMOTO, Ichiro MIZUSHIMA, Yoshio OZAWA
-
Publication number: 20130236715Abstract: Disclosed is a graphene composite thin film composition composed of nano graphene platelets (NGPs) bonded by a graphene oxide binder, wherein the NGPs contain single-layer graphene or multi-layer graphene sheets having a thickness from 0.335 nm to 100 nm. The NGPs occupy a weight fraction of 1% to 99.9% of the total composite weight. The graphene oxide binder, having an oxygen content of 1-40% (preferably <10%) by weight based on the total graphene oxide weight, is obtained from a graphene oxide gel. The composite forms a thin film with a thickness no greater than 1 mm, but preferably no greater than 100 ?m and no less than 10 ?m. This composition has a combination of exceptional thermal conductivity, electrical conductivity, and mechanical strength unmatched by any thin-film material of comparable thickness range.Type: ApplicationFiled: March 8, 2012Publication date: September 12, 2013Inventors: Aruna Zhamu, Mingchao Wang, Wei Xiong
-
Patent number: 8531029Abstract: A system and method are provided for fabricating a low electric resistance ohmic contact, or interface, between a Carbon Nanotube (CNT) and a desired node on a substrate. In one embodiment, the CNT is a Multiwalled, or Multiwall, Carbon Nanotube (MWCNT), and the interface provides a low electric resistance ohmic contact between all conduction shells, or at least a majority of conduction shells, of the MWCNT and the desired node on the substrate. In one embodiment, a Focused Electron Beam Chemical Vapor Deposition (FEB-CVD) process is used to deposit an interface material near an exposed end of the MWCNT in such a manner that surface diffusion of precursor molecules used in the FEB-CVD process induces lateral spread of the deposited interface material into the exposed end of the MWCNT, thereby providing a contact to all conduction shells, or at least a majority of the conduction shells, of the MWCNT.Type: GrantFiled: May 21, 2012Date of Patent: September 10, 2013Assignee: Georgia Tech Research CorporationInventors: Andrei G. Fedorov, Konrad Rykaczewski
-
Patent number: 8518608Abstract: A process for preparing a durable non-precious metal oxygen reduction electrocatalyst involves heat treatment of a ball-milled mixture of polyaniline and multiwalled carbon nanotubes in the presence of a Fe species. The catalyst is more durable than catalysts that use carbon black supports. Performance degradation was minimal or absent after 500 hours of operation at constant cell voltage of 0.40 V.Type: GrantFiled: May 11, 2011Date of Patent: August 27, 2013Assignee: Los Alamos National Security, LLCInventors: Gang Wu, Piotr Zelenay
-
Publication number: 20130216732Abstract: Methods for dispersing carbon nanoparticles in a media (e.g., an alcohol such as ethanol, a resin such as an epoxy, etc.) are generally provided. The method can include: immersing the carbon nanoparticles into the media, and ultrasonicating the media containing the carbon nanoparticles in the presence of hydrogen gas source. The carbon nanoparticles have dangling bonds on the surface of the carbon nanoparticles, such that the dangling bonds on the surface of adjacent carbon nanoparticles are covelantly bonded to each other. Upon ultrasonicating the media containing the carbon nanoparticles in the presence of hydrogen gas source (e.g., hydrogen gas), the dangling bonds on the surface of the carbon nanoparticles are replaced with carbon-hydrogen bonds.Type: ApplicationFiled: February 20, 2013Publication date: August 22, 2013Applicant: UNIVERSITY OF SOUTH CAROLINAInventor: University of South Carolina
-
Patent number: 8501529Abstract: Provided are a method of doping carbon nanotubes, p-doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes. Particularly, a method of doping carbon nanotubes having improved conductivity by reforming the carbon nanotubes using an oxidizer, doped carbon nanotubes prepared using the method, and an electrode, a display device or a solar cell including the carbon nanotubes are provided.Type: GrantFiled: October 7, 2010Date of Patent: August 6, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Seon-mi Yoon, Seong-jae Choi, Hyeon-jin Shin, Jae-young Choi, Sung-jin Kim, Young-hee Lee
-
Publication number: 20130197256Abstract: A method for the preparation of graphene is provided, which includes: (a) oxidizing a graphite material to form graphite oxide; (b) dispersing graphite oxide into water to form an aqueous suspension of graphite oxide; (c) adding a dispersing agent to the aqueous suspension of graphite oxide; and (d) adding an acidic reducing agent to the aqueous suspension of graphite oxide, wherein graphite oxide is reduced to graphene by the acidic reducing agent, and graphene is further bonded with the dispersing agent to form a graphene dispersion containing a surface-modified graphene. The present invention provides a method for the preparation of graphene using an acidic reducing agent. The obtained graphene can be homogeneously dispersed in water, an acidic solution, a basic solution, or an organic solution.Type: ApplicationFiled: January 26, 2012Publication date: August 1, 2013Inventors: Yi-Shuen WU, Cheng-Yu Hsieh, Cheng-Shu Peng, Jing-Ru Chen, Jun-Meng Lin, Geng-Wei Lin
-
Publication number: 20130189580Abstract: Nanocarbon-based materials are provided in connection with various devices and methods of manufacturing. As consistent with one or more embodiments, an apparatus includes a nanocarbon structure having inorganic particles covalently bonded thereto. The resulting hybrid structure functions as a circuit node such as an electrode terminal. In various embodiments, the hybrid structure includes two or more electrodes, at least one of which including the nanocarbon structure with inorganic particles covalently bonded thereto.Type: ApplicationFiled: February 15, 2013Publication date: July 25, 2013Applicant: The board of Trustees of the Leland Stanford Junior UniversityInventor: The board of Trustees of the Leland Stanford Junior University
-
Patent number: 8491769Abstract: A technique for embedding a nanotube in a nanopore is provided. A membrane separates a reservoir into a first reservoir part and a second reservoir part, and the nanopore is formed through the membrane for connecting the first and second reservoir parts. An ionic fluid fills the nanopore, the first reservoir part, and the second reservoir part. A first electrode is dipped in the first reservoir part, and a second electrode is dipped in the second reservoir part. Driving the nanotube into the nanopore causes an inner surface of the nanopore to form a covalent bond to an outer surface of the nanotube via an organic coating so that the inner surface of the nanotube will be the new nanopore with a super smooth surface for studying bio-molecules while they translocate through the nanotube.Type: GrantFiled: September 12, 2012Date of Patent: July 23, 2013Assignee: International Business Machines CorporationInventors: Ali Afzali-Ardakani, Binquan Luan, Hongbo Peng
-
Publication number: 20130183625Abstract: A method for fabricating patterned graphene structures, which adopts a photolithographic etching process to fabricate patterned graphene structures, comprises steps: providing a substrate; forming a catalytic layer on the substrate; forming a carbon layer on the catalytic layer; heating the carbon layer to a synthesis temperature to form a graphene layer. A photolithographic etching process is performed on the catalytic layer before formation of the carbon layer. Alternatively, a photolithographic etching process is performed on the carbon layer before heating. Alternatively, a photolithographic etching process is performed on the graphene layer after heating. Compared with the laser etching process, the photolithographic etching process is suitable to fabricate large-area patterned graphene structures and has advantages of high productivity and low cost.Type: ApplicationFiled: April 11, 2012Publication date: July 18, 2013Inventors: Chien-Min SUNG, I-Chiao Lin, Hung-Cheng Lin
-
Publication number: 20130171352Abstract: A method for making a carbon nanotube composite film is provided. A PVDF is dissolved into a first solvent to form a PVDF solution. A carbon nanotube film structure is provided and immersed into the PVDF solution. The carbon nanotube film structure is transferred into a second solvent. The carbon nanotube film structure is transferred from the second solvent and dried. A solubility of first solvent in the second solvent is greater than a solubility of PVDF in the second solvent. A boiling point of the second solvent is lower than a boiling point of first solvent.Type: ApplicationFiled: August 7, 2012Publication date: July 4, 2013Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITYInventors: WEI XIONG, JIA-PING WANG, KAI-LI JIANG, SHOU-SHAN FAN
-
Publication number: 20130164612Abstract: A non-aqueous secondary battery which has high charge-discharge capacity, can be charged and discharged at high speed, and has little deterioration in battery characteristics due to charge and discharge is provided. A negative electrode includes a current collector and an active material layer. The current collector includes a plurality of protrusion portions extending in a substantially perpendicular direction and a base portion connected to the plurality of protrusion portions. The protrusion portions and the base portion are formed using the same material containing titanium. Top surfaces and side surfaces of the protrusion portions and a top surface of the base portion are covered with the active material layer. The active material layer includes a plurality of whiskers. The active material layer may be covered with graphene.Type: ApplicationFiled: December 20, 2012Publication date: June 27, 2013Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventor: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.
-
Publication number: 20130150235Abstract: A method for manufacturing a core-shell type supported catalyst, wherein alloy particles having a core-shell structure with a different interior and exterior are supported on a complex carbon support. The method includes: 1) dissolving and dispersing a carbon support in a solvent using a stabilizer; 2) dissolving a core precursor in the solution, and adding a strong reducing agent to reduce and support a transition metal of the core precursor on a surface of the carbon support; 3) filtering and washing the carbon support on which the transition metal is supported; 4) re-dispersing the filtered and washed carbon support in a shell precursor aqueous solution; and 5) adding a weak reducing agent to the solution of step 4) at 60˜80° C. so that metal ions of a shell precursor are selectively reduced and deposited on the transition metal.Type: ApplicationFiled: June 25, 2012Publication date: June 13, 2013Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANYInventor: Bum Wook Roh
-
Publication number: 20130146214Abstract: A method for making a heater is related. A rotator having an axis and a flexible substrate with a plurality of electrodes located on a surface of the flexible substrate are provided. The flexible substrate is fixed on a surface of the rotator and a carbon nanotube film drawn from a carbon nanotube array is adhered on the surface of the flexible substrate. The rotator is rotated about the axis to wrap the carbon nanotube film on the surface of the flexible substrate to form a carbon nanotube layer. The flexible substrate and the carbon nanotube layer are cut along a direction to form the heater.Type: ApplicationFiled: May 4, 2012Publication date: June 13, 2013Applicant: BEIJING FUNATE INNOVATION TECHNOLOGY CO., LTD.Inventors: LI QIAN, YU-QUAN WANG, CHEN FENG, LIANG LIU
-
Patent number: 8461294Abstract: Compounds are attached to carbon nanotubes (CNT) by a process which comprises: subjecting surface treated CNTs which have been treated to induce negatively charged surface groups thereon, to nucleophilic substitution reaction with a compound carrying a functional group capable of reacting with the negatively charged groups on the CNT surface, whereby the compound chemically bonds to the CNT. The surface CNT treatment may be reduction. The compounds which are bonded to the CNT may be epoxy resins, bonded directly or through a spacer group. Bi-functional CNTs, grafted to both epoxy resins and other polymers such as polystyrene, are also made by this process.Type: GrantFiled: February 28, 2008Date of Patent: June 11, 2013Assignee: National Research Council of CanadaInventors: Benoit Simard, Jingwen Guan
-
Publication number: 20130140498Abstract: Methods and systems for improved dispersion and solubility of carbon materials such as carbon nanotubes through novel binary solvent blends, which include in some embodiments, a mixture of a dibasic ester blend and DMSO.Type: ApplicationFiled: November 29, 2012Publication date: June 6, 2013Applicant: RHODIA OPERATIONSInventor: RHODIA OPERATIONS
-
Publication number: 20130144072Abstract: Compounds are attached to carbon nanotubes (CNT) by a process which comprises: subjecting surface treated CNTs which have been treated to induce negatively charged surface groups thereon, to nucleophilic substitution reaction with a compound carrying a functional group capable of reacting with the negatively charged groups on the CNT surface, whereby the compound chemically bonds to the CNT. The surface CNT treatment may be reduction. The compounds which are bonded to the CNT may be epoxy resins, bonded directly or through a spacer group. Bi-functional CNTs, grafted to both epoxy resins and other polymers such as polystyrene, are also made by this process.Type: ApplicationFiled: January 29, 2013Publication date: June 6, 2013Applicant: NATIONAL RESEARCH COUNCIL OF CANADAInventor: NATIONAL RESEARCH COUNCIL OF CANADA
-
Publication number: 20130134384Abstract: Provided is a method of post treating graphene including providing graphene on a metal thin film, providing a carrier on the graphene, hardening the carrier, and removing the metal thin film from the graphene.Type: ApplicationFiled: August 5, 2011Publication date: May 30, 2013Applicant: SAMSUNG TECHWIN CO., LTD.Inventors: Dong-Kwan Won, Seung-Min Cho, Jong-Hyuk Yoon, Doc-Hwa Na
-
Publication number: 20130133925Abstract: Disclosed herein are a method for manufacturing a graphene transparent electrode and a graphene transparent electrode manufactured by the method. The method includes: providing a graphene oxide solution: forming a metal thin film on a glass substrate; coating the graphene oxide solution on the metal thin film, followed by drying; primarily reducing the thus obtained graphene oxide by using a reducing agent, to obtain reduced graphene oxide; secondarily reducing the reduced graphene oxide by heat treatment under the inert atmosphere, to form a reduced layer; compressing a transparent film on the reduced layer; and etching the metal film by an etching solution. The method enables a graphene transparent electrode having economical feasibility and excellent electric conductivity to be manufactured.Type: ApplicationFiled: October 22, 2012Publication date: May 30, 2013Applicant: Samsung Electro-Mechanics Co., Ltd.Inventor: Samsung Electro-Mechanics Co., Ltd.
-
Publication number: 20130130037Abstract: A nanotube-graphene hybrid film and method for forming a cleaned nanotube-graphene hybrid film. The method includes depositing nanotube film over a substrate to produce a layer of nanotube film, removing impurities from a surface of the layer of nanotube film not contacting the substrate to produce a cleaned layer of nanotube film, depositing a layer of graphene over the cleaned layer of nanotube film to produce a nanotube-graphene hybrid film, and removing impurities from a surface of the nanotube-graphene hybrid film to produce a cleaned nanotube-graphene hybrid film, wherein the hybrid film has improved electrical performance. Another method includes depositing nanotube film over a metal foil to produce a layer of nanotube film, placing the metal foil with as-deposited nanotube film in a chemical vapor deposition furnace to grow graphene on the nanotube film to form a nanotube-graphene hybrid film, and transferring the nanotube-graphene hybrid film over a substrate.Type: ApplicationFiled: November 22, 2011Publication date: May 23, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Ageeth A. Bol, Bhupesh Chandra, Amal Kasry, Ahmed Maarouf, Glenn J. Martyna, George S. Tulevski
-
Patent number: 8444950Abstract: A method for forming polymer carbon nanotube composites, the method comprising: contacting carbon nanotubes with ozone to functionalize the sidewalls of the carbon nanotubes with at least one oxygen moiety; and reacting the functionalized carbon nanotubes with at least one monomer or at least one polymer or copolymer to attach polymer chains to the sidewalls of the carbon nanotubes.Type: GrantFiled: November 21, 2008Date of Patent: May 21, 2013Assignees: Nanoledge Inc., Centre National de la Recherche Scientifique (CNRS)Inventors: Kai Schierholz, Patrice Lucas, Bernard Boutevin, François Ganachaud
-
Publication number: 20130112610Abstract: A microsieve includes a patterned forest of vertically grown and aligned carbon nanotubes with a patterned matrix of vertically aligned pores. A conformal coating of substantially uniform thickness coats the nanotubes defining coated nanotubes. An interstitial material infiltrates the carbon nanotube forest and substantially fills interstices between individual coated nanotubes. The interstitial material can be a metal material infiltrated by electroplating.Type: ApplicationFiled: September 21, 2012Publication date: May 9, 2013Applicant: Brigham Young University, a Non-Profit OrganizationInventor: Brigham Young University, a Non-Profit Organization
-
Publication number: 20130108540Abstract: Disclosed is a method for producing graphene functionalized at its edge positions of graphite. Organic material having one or more functional groups is reacted with graphite in reaction medium comprising methanesulfonic acid and phosphorus pentoxide, or in reaction medium comprising trifluoromethanesulfonic acid, to produce graphene having organic material fuctionalized at edges. And then, high purity and large scaled graphene and film can be obtained by dispersing, centrifugal separating the functionalized graphene in a solvent and reducing, in particular heat treating the graphene. According to the present invention graphene can be produced inexpensively in a large amount with a minimum loss of graphite.Type: ApplicationFiled: February 24, 2012Publication date: May 2, 2013Inventors: Jong Beom Baek, Eun Kyoung Choi, In Yup Jeon, Seo Yoon Bae
-
Publication number: 20130102812Abstract: The present invention relates to a water-soluble fluorescent fullerene derivative and a preparation method thereof, and more particularly to a method of preparing a fullerene derivative having excellent fluorescence in a simple manner by mixing fullerene and a ligand containing a terminal hydroxyl group in a first solvent and reacting the mixture in the presence of a catalyst, and to a water-soluble fluorescent fullerene derivative prepared by the method. According to the method of preparing a water-soluble fluorescent fullerene derivative the present invention, a fullerene derivative having strong fluorescence and hydrophilicity is prepared in a simple and easy manner. In addition, the preparation method enables the intensity and wavelength of fluorescence to be easily controlled depending on the amount of fullerene and the kind of catalyst. The prepared fluorescent fullerene derivative contains a biocompatible ligand, and thus is useful as a biological fluorescent dye.Type: ApplicationFiled: April 25, 2011Publication date: April 25, 2013Applicant: Korea Research Institute of Bioscience and Biotech BiotechnologyInventors: Bong Hyun Chung, Jin Young Jeong
-
Publication number: 20130099170Abstract: A method and composition wherein carbonaceous nano-scaled filler material is subjected to atmospheric plasma treatment using carbon monoxide as the active gas. The treatment with carbon monoxide plasma has been found to significantly increase the incorporation of oxygen groups on the surface of the filler material without degrading the surface and thus serves to increase wettability and dispersion throughout the matrix. The composite that incorporates the treated filler material has enhanced mechanical and electrical properties.Type: ApplicationFiled: October 19, 2011Publication date: April 25, 2013Applicant: THE AEROSPACE CORPORATIONInventors: RAFAEL J. ZALDIVAR, James P. Nokes, Hyun I. Kim
-
Patent number: 8425735Abstract: A method of fabricating pillared graphene assembles alternate layers of graphene sheets and fullerenes to form a stable protostructure. Energy is added to the protostructure to break the carbon-carbon bonds at the fullerene-to-graphene attachment points of the protostructure and allow the bonds to reorganize and reform into a stable lower energy unitary pillared graphene nanostructure in which open nanotubes are conjoined between graphene sheets. The attachment points may be functionalized using tether molecules to aid in attachment, and add chemical energy to the system. The arrangement and attachment spacing of the fullerenes may be determined using spacer molecules or an electric potential.Type: GrantFiled: December 21, 2010Date of Patent: April 23, 2013Assignees: Raytheon Company, The Arizona Board of Regents on Behalf of The University of ArizonaInventors: Delmar L. Barker, William R. Owens, John Warren Beck
-
Publication number: 20130089663Abstract: Carbon nanotubes were prepared by coating a substrate with a coating solution including a suitable solvent, a soluble polymer, a metal precursor having a first metal selected from iron, nickel, cobalt, and molybdenum, and optionally a second metal selected from aluminum and magnesium, and also a binding agent that forms a complex with the first metal and a complex with the second metal. The coated substrate was exposed to a reducing atmosphere at elevated temperature, and then to a hydrocarbon in the reducing atmosphere. The result was decomposition of the polymer and formation of carbon nanotubes on the substrate. The carbon nanotubes were often in the form of an array on the substrate.Type: ApplicationFiled: August 20, 2012Publication date: April 11, 2013Applicant: LOS ALAMOS NATIONAL SECURITY, LLCInventors: Hongmei Luo, Qingwen Li, Eve Bauer, Anthony Keiran Burrell, Thomas Mark McCleskey, Quanxi Jia
-
Publication number: 20130078622Abstract: A single molecule sensing device includes a first electrode, a second electrode and a single-walled carbon nanotube (SWNT) connected to the first and second electrodes. At least one linker molecule having first and second functional groups is functionalized with a sidewall of the SWNT, the at least one linker molecule having the first functional group non-covalently functionalized with a sidewall of the single-walled carbon nanotube. A single sensitizing molecule having at least one functional group is functionalized with the second functional group of the at least one linker molecule.Type: ApplicationFiled: September 25, 2012Publication date: March 28, 2013Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventor: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
-
Publication number: 20130079552Abstract: The present invention relates to a novel graphene oxide reducing agent and a method for manufacturing a reduced graphene oxide from graphene oxide using same. More particularly, in the present invention, the reduced graphene oxide is manufactured by reducing a graphene oxide using a reducing agent containing a halogen element, and is applicable as an electric conductor, a semiconductor, and an insulator in various fields.Type: ApplicationFiled: September 1, 2010Publication date: March 28, 2013Inventors: Hyo Young Lee, In Kyu Moon, Jung Hyun Lee
-
Publication number: 20130072669Abstract: The present invention is directed to carbon nanostructures, e.g., carbon nanotubes, methods of covalently functionalizing carbon nanostructures, and methods of separating and isolating covalently functionalized carbon. In some embodiments, carbon nanotubes are reacted with alkylating agents to provide water soluble covalently functionalized carbon nanotubes. In other embodiments, carbon nanotubes are reacted with a thermally-responsive agent and exposed to light in order to separate carbon nanotubes of a specific chirality from a mixture of carbon nanotubes.Type: ApplicationFiled: April 4, 2012Publication date: March 21, 2013Applicant: University of Maryland, College ParkInventors: YuHuang Wang, Alexandra H. Brozena, Shunliu Deng, Yin Zhang
-
Patent number: 8399939Abstract: A photoelectric device, such as a photodetector, can include a semiconductor nanowire electrostatically associated with a J-aggregate. The J-aggregate can facilitate absorption of a desired wavelength of light, and the semiconductor nanowire can facilitate charge transport. The color of light detected by the device can be chosen by selecting a J-aggregate with a corresponding peak absorption wavelength.Type: GrantFiled: December 3, 2010Date of Patent: March 19, 2013Assignee: Massachusetts Institute of TechnologyInventors: Brian J. Walker, August Dorn, Vladimir Bulovic, Moungi G. Bawendi
-
Patent number: 8398876Abstract: A method for chemical modification of graphene includes dry etching graphene to provide an etched graphene; and introducing a functional group at an edge of the etched graphene. Also disclosed is graphene, including an etched edge portion, the etched portion including a functional group.Type: GrantFiled: October 8, 2009Date of Patent: March 19, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Won Mook Choi, Byung Hee Hong, Jaeyoung Choi
-
Publication number: 20130065050Abstract: A method of dispersing a metal or metal oxide within a CNT or CNT array, comprising exposing the CNT or CNT array to a solution containing a metal compound in a non-aqueous liquid; and removing the non-aqueous liquid from the CNT or CNT array. Nanoparticles were homogenously deposited within millimeter-long carbon nanotube array (CNTA). After modified with nanoparticles, CNTA changes from hydrophobic to hydrophilic. The hydrophilic composite electrodes present ideal capacitive behavior with high reversibility. The novel, nano-architectured composite demonstrates strong promise for high-performance thick and compact electrochemical supercapacitors.Type: ApplicationFiled: May 19, 2011Publication date: March 14, 2013Applicant: The Governors of the University of AlbertaInventors: Weixing Chen, Xinwei Cui
-
Publication number: 20130048919Abstract: A method for synthesizing nitrogen-doped carbon tubes involves preparing a solution of cyanamide and a suitable transition metal-containing salt in a solvent, evaporating the solvent to form a solid, and pyrolyzing the solid under an inert atmosphere under conditions suitable for the production of nitrogen-doped carbon tubes from the solid. Pyrolyzing for a shorter period of time followed by rapid cooling resulted in a tubes with a narrower average diameter.Type: ApplicationFiled: August 29, 2011Publication date: February 28, 2013Applicant: Los Alamos National Security, LLCInventors: Hoon Taek Chung, Piotr Zelenay
-
Publication number: 20130045156Abstract: A first precipitate is formed by mixing graphite and an oxidizer containing an alkali metal salt in a solution. Next, a second precipitate is formed by ionizing the oxidizer which is included in the first precipitate, with an acid solution, and removing the oxidizer from the first precipitate. Then, a dispersion liquid in which graphene oxide is dispersed is prepared by mixing the second precipitate and water to form a mixed solution and then applying ultrasonic waves to the mixed solution or mechanically stirring the mixed solution, so that the graphene oxide is separated from graphite oxide that is the graphite which is included in the second precipitate and oxidized. Next, graphene oxide salt is formed by mixing the dispersion liquid, a basic solution, and an organic solvent and reacting the graphene oxide included in the dispersion liquid and a base included in the basic solution to each other.Type: ApplicationFiled: August 9, 2012Publication date: February 21, 2013Applicant: SEMICONDUCTOR ENERGY LABORATORY CO., LTD.Inventors: Kuniharu Nomoto, Nobuhiro Inoue, Mikio Yukawa, Tatsuya Ikenuma
-
Publication number: 20130040439Abstract: Various embodiments relate to a method of modifying the electrical properties of carbon nanotubes. The method may include providing a substrate having carbon nanotubes deposited on a surface of the substrate, and depositing on the carbon nanotubes a coating layer comprising a mixture of nanoparticles, a matrix in which the nanoparticles are dissolved or stabilized, and an ionic liquid. A field-effect transistor including the modified carbon nanotubes is also provided.Type: ApplicationFiled: February 7, 2011Publication date: February 14, 2013Applicant: NANYANG TECHNOLOGICAL UNIVERSITYInventors: Jianwen Zhao, Lain-Jong Li, Peng Chen, Bee Eng Mary Chan
-
Publication number: 20130037758Abstract: Provided is a method of preparing a complex of a transition metal oxide and carbon nanotube. The method includes (a) dispersing carbon nanotube powder in a solvent, (b) mixing the dispersion with a transition metal salt, and (c) synthesizing a complex of transition metal oxide and carbon nanotube by applying microwave to the mixed solution. The method may considerably reduce the time required to synthesize the complex. In the complex of transition metal oxide and carbon nanotube prepared by the method, the transition metal oxide may be stacked on the surface of the carbon nanotube in the size of a nanoparticle, and may enhance charge/discharge characteristics when being applied to a lithium secondary battery as an anode material.Type: ApplicationFiled: April 20, 2011Publication date: February 14, 2013Applicant: INDUSTRY ACADEMIC COOPERATION FOUNDATION, YONSEIInventors: Kwang Bum Kim, Hyun Kyung Kim, Ji Young Kim
-
Publication number: 20130040049Abstract: A “growth from the surface” method for selectively depositing oxidative Liquid Phase Polymerizations (LPPs) onto the carbon nanotube (CNT) surface, said method comprising steps of: a. obtaining Multi-walled Carbon Nanotubes (MWC-NT); b. oxidized said MWCNTs to obtain oxidized COOH-MWCNTs; thereby (a) carboxylative opening oxidation-sensitive end-caps (polyCOOH end cluster); and, (b) introducing defect carboxylic (COOH) groups onto predetermined areas of said oxidized COOH-MWCNTs; c. COOH activating the polyCOOH shell using various COOH activating species; and, d.Type: ApplicationFiled: April 14, 2011Publication date: February 14, 2013Applicant: BAR-ILAN UNIVERSITYInventors: Jean-Paul Lellouche, Diana Goldman
-
Publication number: 20130030217Abstract: Disclosed is a novel method for the selective molecular conversion of raw material carbon nanotubes containing a mixture of metallic carbon nanotubes and semiconductive carbon nanotubes in a manner that is based on the electrical properties or diameter of the carbon nanotubes. The present invention causes a photoreaction of raw material carbon nanotubes containing a mixture of metallic carbon nanotubes and semiconductive carbon nanotubes with a disulfide or a sulfide of the following formula (I) or (II) (wherein R1 and R2 each independently represent a hydrocarbon group that may have a substituent) in an organic solvent that contains the raw material carbon nanotubes and the disulfide of the formula (I) or the sulfide of the formula (II), so as to selectively functionalize the metallic carbon nanotubes, or functionalize the carbon nanotubes diameter selectively.Type: ApplicationFiled: January 28, 2011Publication date: January 31, 2013Inventors: Yutaka Maeda, Takeshi Akasaka
-
Patent number: 8361328Abstract: A nanotube separation method includes depositing a tag on a nanotube in a nanotube mixture. The nanotube has a defect and the tag deposits at the defect where a deposition rate is greater than on another nanotube in the mixture lacking the defect. The method includes removing the tagged nanotube from the mixture by using the tag. As one option, the tag may contain a ferromagnetic material and the removing may include applying a magnetic field. As another option, the tag may contain an ionic material and the removing may include applying an electric field. As a further option, the tag may contain an atom having an atomic mass greater than the atomic mass of carbon and the removing may include applying a centrifugal force to the nanotube mixture. Any two or more of the indicated removal techniques may be combined.Type: GrantFiled: October 18, 2011Date of Patent: January 29, 2013Assignee: Micron Technology, Inc.Inventor: Gurtej S. Sandhu
-
Publication number: 20130015409Abstract: [Means for solving] A graphene oxide sheet which changes to a substance having a graphene structure when reduced, and which is obtainable by dispersing a graphene-containing carbon substance using a dispersant to reduce the size of the aggregate units of the graphene-containing carbon substance, and then oxidizing the graphene-containing carbon substance.Type: ApplicationFiled: December 18, 2009Publication date: January 17, 2013Inventor: Bunshi Fugetsu
-
Publication number: 20130015122Abstract: The nanocomposite membrane includes a composite of carbon nanotubes coated or chemically bonded with metal oxide nanoparticles. This composite is embedded within a polymeric matrix via interfacial polymerization on a polysulfone support. The metal oxide particles are selected to exhibit catalytic activity when filtering pollutants from water in a water treatment system, or for separating a gas from a liquid, or for selectively separating particles or ions from solution for reverse osmosis (e.g., for desalination systems), or other filtration requirements. A method of fabricating the nanocomposite membrane is also included herein.Type: ApplicationFiled: July 11, 2011Publication date: January 17, 2013Applicant: KING FAHD UNIVERSITY OF PETROLEUM AND MINERALSInventor: TAWFIK ABDO SALEH AWADH
-
Publication number: 20130018204Abstract: Disclosed is an edge-functionalized graphitic material manufactured by using a mechanochemical process. The edge-functionalized graphitic material is manufactured by pulverizing graphite in the presence of a variety of atmospheric agents in the form of gas phase, liquid phase, or solid phase. The edge-functionalized graphitic material, which is a precursor applicable into various fields, is expected to replace the prior art oxidized graphite.Type: ApplicationFiled: October 10, 2011Publication date: January 17, 2013Applicant: UNIST Academy-Industry Research CorporationInventors: In Yup JEON, Jong Beom BAEK