Tube End Modifications (e.g., Capping, Joining, Splicing, Etc.) Patents (Class 977/848)
  • Patent number: 8926933
    Abstract: The present invention is directed to methods of making nanofiber yarns. In some embodiments, the nanotube yarns comprise carbon nanotubes. Particularly, such carbon nanotube yarns of the present invention provide unique properties and property combinations such as extreme toughness, resistance to failure at knots, high electrical and thermal conductivities, high absorption of energy that occurs reversibly, up to 13% strain-to-failure compared with the few percent strain-to-failure of other fibers with similar toughness, very high resistance to creep, retention of strength even when heated in air at 450° C. for one hour, and very high radiation and UV resistance, even when irradiated in air.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: January 6, 2015
    Assignee: The Board of Regents of The University of Texas System
    Inventors: Mei Zhang, Ray H. Baughman, Kenneth Ross Atkinson
  • Publication number: 20140302322
    Abstract: Disclosed are methods for decapping single wall carbon nanotubes and purifying the decapped single wall carbon nanotubes. The disclosed methods include the steps of oxidizing the single wall carbon nanotubes to remove the terminal end cap and subsequently acid washing the single wall carbon nanotubes to remove the catalyst particles. The resulting carbon nanotubes have improved BET surface area and pore volume.
    Type: Application
    Filed: August 28, 2012
    Publication date: October 9, 2014
    Inventors: Ricardo Prada Silvy, Yongqiang Tan
  • Patent number: 8727299
    Abstract: The assembly for an aircraft comprises: at least one device; a part such as a support; and at least one damper via which the device bears against the part, the damper comprising carbon nanotubes covered at at least one of their ends by a layer having a diamond type crystal structure.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 20, 2014
    Assignee: Airbus (S.A.S.)
    Inventor: Philippe Tatry
  • Patent number: 8591990
    Abstract: An arrangement of elongated nanowires that include titanium silicide or tungsten silicide may be grown on the exterior surfaces of many individual electrically conductive microfibers of much larger diameter. Each of the nanowires is structurally defined by an elongated, centralized titanium silicide or tungsten silicide nanocore that terminates in a distally spaced gold particle and which is co-axially surrounded by a removable amorphous nanoshell. A gold-directed catalytic growth mechanism initiated during a low pressure chemical vapor deposition process is used to grow the nanowires uniformly along the entire length and circumference of the electrically conductive microfibers where growth is intended. The titanium silicide- or tungsten silicide-based nanowires can be used in a variety electrical, electrochemical, and semiconductor applications.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: November 26, 2013
    Assignees: GM Global Technology Operations LLC, The University of Western Ontario
    Inventors: Mei Cai, Xueliang Sun, Yong Zhang, Mohammad Norouzi Banis, Ruying Li
  • Patent number: 8562935
    Abstract: The present invention is directed towards methods (processes) of providing large quantities of carbon nanotubes (CNTs) of defined diameter and chirality (i.e., precise populations). In such processes, CNT seeds of a pre-selected diameter and chirality are grown to many (e.g., hundreds) times their original length. This is optionally followed by cycling some of the newly grown material back as seed material for regrowth. Thus, the present invention provides for the large-scale production of precise populations of CNTs, the precise composition of such populations capable of being optimized for a particular application (e.g., hydrogen storage). The present invention is also directed to complexes of CNTs and transition metal catalyst precurors, such complexes typically being formed en route to forming CNT seeds.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: October 22, 2013
    Assignee: William Marsh Rice University
    Inventors: Robert H. Hauge, Andrew R. Barron, James M. Tour, Howard K. Schmidt, W. Edward Billups, Christopher A. Dyke, Valerie C. Moore, Elizabeth Whitsitt, Robin E. Anderson, Ramon Colorado, Jr., Michael P. Stewart, Douglas C. Ogrin, Irene M. Marek
  • Patent number: 8545792
    Abstract: A method for making a carbon nanotube structure is introduced. The method includes the following steps. A carbon nanotube precursor including a number of carbon nanotubes is provided. The carbon nanotube precursor is placed in a chamber with low oxygen environment. The carbon nanotube precursor is heated in the chamber.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: October 1, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Kai Liu, Kai-Li Jiang, Ying-Hui Sun, Shou-Shan Fan
  • Publication number: 20130129594
    Abstract: A method for manufacturing a nanoscale cage of a material suitable for forming a molecular layer, including a step of shaping and packaging an object in the general shape of a revolving cylinder, the shaping and packaging step being adapted according to the position of the value of the diameter of the revolving cylinder relative to a threshold below which a folding of the ends of the cylinder is promoted.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 23, 2013
    Inventors: Luigi Genovese, Pascal Pochet
  • Publication number: 20130095241
    Abstract: Fabrication methods for selective membranes that include aligned nanotubes can advantageously include a mechanical polishing step. The nanotubes have their ends closed off during the step of infiltrating a polymer precursor around the nanotubes. This prevents polymer precursor from flowing into the nanotubes. The polishing step is performed after the polymer matrix is formed, and can open up the ends of the nanotubes.
    Type: Application
    Filed: October 17, 2012
    Publication date: April 18, 2013
    Inventor: Porifera, Inc.
  • Patent number: 8361853
    Abstract: The present disclosure provides a semiconductor structure including a nanoribbon-containing layer of alternating graphene nanoribbons separated by alternating insulating ribbons. The alternating graphene nanoribbons are parallel to a surface of an underlying substrate and, in some embodiments, might be oriented along crystallographic directions of the substrate. The alternating insulating ribbons may comprise hydrogenated graphene, i.e., graphane, fluorinated graphene, or fluorographene. The semiconductor structure mentioned above can be formed by selectively converting portions of an initial graphene layer into alternating insulating ribbons, while the non-converted portions of the initial graphene form the alternating graphene nanoribbons. Semiconductor devices such as, for example, field effect transistors, can be formed atop the semiconductor structure provided in the present disclosure.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Guy Cohen, Christos D. Dimitrakopoulos, Alfred Grill, Robert L. Wisnieff
  • Patent number: 8343581
    Abstract: An improved method of synthesizing nanotubes that avoids the slow process and the impurities or defects that are usually encountered with regard to as-grown carbon nanotubes. In a preferred embodiment, nanotubes are synthesized from nanotubes providing a novel catalyst-free growth method for direct growth of single- or multi-walled, metallic or semiconducting nanotubes.
    Type: Grant
    Filed: April 30, 2007
    Date of Patent: January 1, 2013
    Assignee: Regents of the University of California
    Inventors: Peter J. Burke, Zhen Yu
  • Patent number: 8333948
    Abstract: Provided are aligned carbon nanotubes for a fuel cell having a large surface area, a nanocomposite that includes the aligned carbon nanotubes loaded with highly dispersed nanoparticles of a metallic catalyst, methods of producing the carbon nanotubes and the nanocomposite, and a fuel cell including the nanocomposite. In the nanocomposite, nanoparticles of the metallic catalyst are uniformly distributed on external walls of the nanotubes. A fuel cell including the nanocomposite exhibits better performance.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: December 18, 2012
    Assignee: The Regents of the University of California
    Inventors: Chan-Ho Pak, Hyuk Chang, Sungho Jin, Xiang-Rong Ye, Li-Han Chen
  • Patent number: 8313724
    Abstract: In some embodiments, the present invention relates to new processes to simultaneously shorten and functionalize raw or purified carbon nanotubes to improve their dispersity and processibility, and the short functionalized nanotubes that may be made by the processes. This present invention also relates to new compositions of matter using short functionalized carbon nanotubes with thermoset, thermoplastic polymers, high temperature polymers, and other materials; the processes for making such composite materials; and the products of said processes.
    Type: Grant
    Filed: February 22, 2007
    Date of Patent: November 20, 2012
    Assignee: William Marsh Rice University
    Inventors: Wen-Fang Hwang, Zheyl Chen, James M. Tour
  • Publication number: 20120267582
    Abstract: The present disclosure provides a method for making carbon nanotube slurry. The method includes the following steps. First, a carbon nanotube array is provided on a substrate, the carbon nanotube array comprises a number of carbon nanotubes. Second, the carbon nanotube array is trimmed by a laser to obtain a trimmed carbon nanotube array comprising a plurality of trimmed carbon nanotubes having uniform lengths. Third, the trimmed carbon nanotube array is removed from the substrate to obtain the trimmed carbon nanotubes. Fourth, the trimmed carbon nanotubes are mixed with an inorganic binder and an organic carrier to obtain the carbon nanotube slurry.
    Type: Application
    Filed: August 16, 2011
    Publication date: October 25, 2012
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: QI CAI, DUAN-LIANG ZHOU, PENG LIU, SHOU-SHAN FAN
  • Patent number: 8246886
    Abstract: A method and system for aligning nanotubes within an extensible structure such as a yarn or non-woven sheet. The method includes providing an extensible structure having non-aligned nanotubes, adding a chemical mixture to the extensible structure so as to wet the extensible structure, and stretching the extensible structure so as to substantially align the nanotubes within the extensible structure. The system can include opposing rollers around which an extensible structure may be wrapped, mechanisms to rotate the rollers independently or away from one another as they rotate to stretch the extensible structure, and a reservoir from which a chemical mixture may be dispensed to wet the extensible structure to help in the stretching process.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: August 21, 2012
    Assignee: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Robert Braden, Anastasios John Hart, John Welch
  • Patent number: 8236626
    Abstract: Disclosed is a method for making graphene nanoribbons (GNRs) by controlled unzipping of structures such as carbon nanotubes (CNTs) by etching (e.g., argon plasma etching) of nanotubes partly embedded in a polymer film. The GNRs have smooth edges and a narrow width distribution (2-20 nm). Raman spectroscopy and electrical transport measurements reveal the high quality of the GNRs. Such a method of unzipping CNTs with well-defined structures in an array will allow the production of GNRs with controlled widths, edge structures, placement and alignment in a scalable fashion for device integration. GNRs may be formed from nanostructures in a controlled array to form arrays of parallel or overlapping structures. Also disclosed is a method in which the CNTs are in a predetermined pattern that is carried over and transferred to a substrate for forming into a semiconductor device.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: August 7, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hongie Dai, Liying Jiao
  • Patent number: 8183648
    Abstract: The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: May 22, 2012
    Assignee: UT-Battelle, LLC
    Inventors: Predrag S. Krstic, Vincent Meunier
  • Publication number: 20120071610
    Abstract: The present invention is generally directed toward a method to create an enhanced carbon nanotube spaceframe network. The spaceframe network contains an assembly of regiofunctional carbon nanotube beams by crown-to-crown connection into nodes to form a networked lattice configuration. The inventive method includes selecting crown materials and applying appropriate processing conditions which result in the production of secondary forms. The crown materials include polymers with unsaturated sites, polymeric crowns, silicon boron, poly(hydridocarbyne). The processing conditions include radical initiation, vulcanization, pyrolysis, hydroboration at unsaturation sites, using silicon bearing polymers in the Rf-CNB crowns, dissolution of silicon containing organics into the nodes and poly(hydridocarbyne). The secondary forms include cross-linked polymers, carbonized, graphitized, ceramic, diamond-like along with tailored functionalization.
    Type: Application
    Filed: March 10, 2011
    Publication date: March 22, 2012
    Inventor: Nolan Walker Nicholas
  • Publication number: 20120041153
    Abstract: The present invention is generally directed toward a regiofunctional carbon nanotube beam structures and a method the same. The regiofunctional carbon nanotube beam structures contain chemical moieties attached selectively to the ends and/or the sidewalls of the nanotube which differentiate the physico-chemical properties of the nanotube ends from the physico-chemical of the sidewalls to enable directed self-assembly. The method comprises the steps including opening carbon nanotube ends, protecting those ends from sidewall functionalization chemistry by chemically differentiating the open carbon nanotube ends from the nanotube sidewall, functionalizing the sidewalls, functionalizing the ends of the carbon nanotube and attaching crown to ends.
    Type: Application
    Filed: August 11, 2010
    Publication date: February 16, 2012
    Inventor: Nolan Walker Nicholas
  • Patent number: 8093174
    Abstract: A carbon nanohorn (CNH) is oxidized to make an opening in the side of the CNH. A substance to be included, e.g., a metal, is introduced through the opening. The inclusion substance is moved to a tip part of the carbon nanohorn through heat treatment in vacuum or an inert gas. The CNH is further heat treated in an atmosphere containing oxygen in a low concentration to remove the carbon layer in the tip through catalysis of the inclusion substance. This exposes the inclusion substance. If the inclusion substance is a metal which is not moved to a tip part by the heat treatment in vacuum or an inert gas, the carbon part surrounding the fine catalyst particle is specifically burned by a heat treatment in an low oxygen concentration atmosphere, while utilizing the catalysis. Thus, the fine catalyst particle is fixed to the tip part of the CNH.
    Type: Grant
    Filed: January 16, 2008
    Date of Patent: January 10, 2012
    Assignee: NEC Corporation
    Inventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
  • Publication number: 20110318258
    Abstract: A method for making a carbon nanotube structure is introduced. The method includes the following steps. A carbon nanotube precursor including a number of carbon nanotubes is provided. The carbon nanotube precursor is placed in a chamber with low oxygen environment. The carbon nanotube precursor is heated in the chamber.
    Type: Application
    Filed: December 6, 2010
    Publication date: December 29, 2011
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: KAI LIU, KAI-LI JIANG, YING-HUI SUN, SHOU-SHAN FAN
  • Publication number: 20110186516
    Abstract: This invention provides a process for producing a carbon nanotube fragment. In particular, this invention provides a method of producing a carbon nanotube fragment by the steps of 1) dispersing a carbon nanotube in a mixed acid of sulfuric acid and nitric acid, and 2) subjecting the dispersed carbon nanotube to an oxidation treatment to obtain a dispersion of carbon nanotube fragment in the mixed acid. Preferably, in the oxidation treatment the dispersed carbon nanotube is oxidized with a hydrogen peroxide added in the mixed acid.
    Type: Application
    Filed: February 23, 2011
    Publication date: August 4, 2011
    Applicant: BIOSENSOR INCORPORATED
    Inventors: Seiji TAKEDA, Koichi MUKASA, Atsushi ISHII
  • Publication number: 20110177307
    Abstract: A carbon nanotube device includes a flexible substrate and a patterned carbon nanotube layer. The flexible substrate defines a plurality of recesses. The patterned carbon nanotube layer is formed on the flexible substrate. The carbon nanotube layer includes a plurality of carbon nanotube arrays. Each carbon nanotube array is fixedly attached in the corresponding recess.
    Type: Application
    Filed: June 23, 2010
    Publication date: July 21, 2011
    Applicant: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: SHAO-KAI PEI
  • Patent number: 7939136
    Abstract: The formation of arrays of fullerene nanotubes is described. A microscopic molecular array of fullerene nanotubes is formed by assembling subarrays of up to 106 fullerene nanotubes into a composite array.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: May 10, 2011
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7785472
    Abstract: A method of separating, concentrating or purifying uniform carbon nanotubes with desired properties (diameter, chiral vector, etc) in a highly sensitive manner by the use of structure-sensitive properties peculiar to carbon nanotubes; and an apparatus therefor. There is provided a method of separating, concentrating, or purifying carbon nanotubes with the desired properties contained in a sample, comprising the steps of (a) irradiating a sample containing carbon nanotubes with light; and (b) selecting carbon nanotubes with desired properties. In a preferred embodiment, the light irradiation of the step (a) can be carried out in the presence of a metal so as to cause specified carbon nanotubes to selectively induce a photocatalytic reaction, resulting in metal deposition. Further, in a preferred embodiment, a given magnetic filed can be applied in the steps (b) so as to attain accumulation or concentration or carbon nanotubes with metal deposited.
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: August 31, 2010
    Assignee: Japan Science and Technology Agency
    Inventor: Kei Murakoshi
  • Patent number: 7737414
    Abstract: A method for preparing an iridium tip with atomic sharpness. The method includes tapering an iridium wire to a needle shape and heating the iridium needle in an oxygen atmosphere. Also disclosed is an iridium needle having a pyramidal structure which terminates with a small number of atoms prepared by the methods.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: June 15, 2010
    Assignee: Academia Sinica
    Inventors: Hong-Shi Kuo, Ing-Shouh Hwang, Tien T. Tsong, Tsu-Yi Fu
  • Publication number: 20100137541
    Abstract: A method for joining nanotubes end-to-end, includes contacting the nanotubes with a joining fluid. The joining fluid has at least one property that is different from at least one property associated with ends of the nanotubes. In one embodiment, the method further includes contacting the nanotubes with a first, treating fluid and removing the bulk first fluid before the nanotubes are contacted with the joining fluid. The joining fluid is immiscible in the treating fluid to effect end-to-end joining of the nanotubes.
    Type: Application
    Filed: April 27, 2007
    Publication date: June 3, 2010
    Inventors: Alan J. Russell, Sang B. Lee
  • Patent number: 7727504
    Abstract: The present invention is directed to fibers of epitaxially grown single-wall carbon nanotubes (SWNTs) and methods of making same. Such methods generally comprise the steps of: (a) providing a spun SWNT fiber; (b) cutting the fiber substantially perpendicular to the fiber axis to yield a cut fiber; (c) etching the cut fiber at its end with a plasma to yield an etched cut fiber; (d) depositing metal catalyst on the etched cut fiber end to form a continuous SWNT fiber precursor; and (e) introducing feedstock gases under SWNT growth conditions to grow the continuous SWNT fiber precursor into a continuous SWNT fiber.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: June 1, 2010
    Assignee: William Marsh Rice University
    Inventors: W. Carter Kittrell, Yuhuang Wang, Myung Jong Kim, Robert H. Hauge, Richard E. Smalley, Irene Morin Marek, legal representative
  • Patent number: 7727814
    Abstract: A method of interconnecting and an interconnect is provided to connect a first component and a second component of an integrated circuit. The interconnect includes a plurality of Carbon Nanotubes (CNTs), which provide a conducting path between the first component and the second component. The interconnect further includes a passivation layer to fill the gaps between adjacent CNTs. A method of producing Anisotropic Conductive Film (ACF) and an ACF is provided. The ACF includes a plurality of CNTs, which provide a conducting path between a first side of the ACF and a second side of the ACF. The sides of the ACF can also include a conductive curable adhesive layer. In an embodiment, the conductive curable adhesive layer can incorporate a B-stage cross-linkable polymer and silver particles.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: June 1, 2010
    Assignee: Intel Corporation
    Inventors: Daewoong Suh, Amram Eitan, Yongki Min
  • Patent number: 7709103
    Abstract: The present invention provides a nano particle phosphor with superior luminous characteristic formed using nitride semiconductor material, a method of manufacturing the phosphor with high production yield, and a light emitting device using the phosphor. The phosphor is formed of a columnar crystal having a diameter of at most 3 nm, a light emitting region and a light absorbing region are defined in the columnar crystal, and the light emitting region and the light absorbing region are adjacent to each other along a longitudinal direction of the columnar crystal.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: May 4, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Hajime Saito
  • Patent number: 7682213
    Abstract: An electron emission device is provided which has sufficient on/off characteristics and is capable of efficiently emitting electrons with a low voltage. An electron emission device includes a substrate, a cathode electrode, a gate electrode, which are arranged on the substrate, an insulation layer covering the surface of the cathode electrode, and a dipole layer formed by terminating the surface of the insulation layer with hydrogen.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: March 23, 2010
    Assignee: Canon Kabushiki Kaisha
    Inventors: Ryoji Fujiwara, Yoji Teramoto
  • Patent number: 7553471
    Abstract: There is provided a method of manufacturing hydrophilic carbon nanotubes, which is capable of imparting hydrophilicity without damaging the surface of the carbon nanotubes. By irradiating carbon nanotubes 4 with ultraviolet ray 3, hydrophilic functional group(s) are introduced into the surface of carbon nanotubes 4. Hydrophilicity is imparted to the carbon nanotubes to such an extent that a contact angle of water is in the range of less than 130°. Ultraviolet ray 3 is a far ultraviolet ray having a wavelength ranging from 1 to 190 nm. The irradiation with ultraviolet ray 3 is conducted in the presence of oxygen and hydrogen or in the presence of ozone and hydrogen. The end part(s) of carbon nanotubes 4 is opened by the irradiation with ultraviolet ray 3.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: June 30, 2009
    Assignees: Honda Motor Co., Ltd., Ushiodenki Kabushiki Kaisha
    Inventors: Toshiyuki Ohashi, Hiroshi Sugahara, Mitsuaki Mitama
  • Publication number: 20090068461
    Abstract: A hierarchical structure that has at least one carbon nanotube extending radially from a nanofiber substrate and related methods of use and manufacture.
    Type: Application
    Filed: October 18, 2004
    Publication date: March 12, 2009
    Applicant: THE UNIVERSITY OF AKRON
    Inventors: Darrell H. Reneker, Haoqing Hou
  • Patent number: 7419650
    Abstract: The present invention is related to a method for producing functionalised short carbon nanotubes with at least one open tip by mechanical treatment of long carbon nanotubes, wherein said long nanotubes are submitted to mechanical milling forces in the presence of a reactant able to chemically react with the nanotubes so that short carbon nanotubes comprising at least one specific chemical group are obtained.
    Type: Grant
    Filed: August 21, 2001
    Date of Patent: September 2, 2008
    Assignee: Facultes Universitaries Notre-Dame De La Paix
    Inventors: Nathalie Pierard, Antonio Fonseca, Zoltan Konya, Narasimaiah Nagaraju, Isabelle Willems, Silvio Tollis, Geoffroy Bister, Janos B. Nagy, Dorina Popa
  • Patent number: 7390767
    Abstract: This invention relates generally to a method for producing fullerene nanotube catalyst supports and compositions thereof. In one embodiment, fullerene nanotubes or fullerene nanotube structures can be employed as the support material. A transition metal catalyst is added to the fullerene nanotubes. In a preferred embodiment, the catalyst metal cluster is deposited on the open nanotube end by a docking process that insures optimum location for the subsequent growth reaction. The metal atoms may be subjected to reductive conditions.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: June 24, 2008
    Assignee: William Marsh Rice University
    Inventors: Richard E. Smalley, Daniel T. Colbert, Hongjie Dai, Jie Liu, Andrew G. Rinzler, Jason H. Hafner, Ken Smith, Ting Guo, Pavel Nikolaev, Andreas Thess
  • Patent number: 7253442
    Abstract: A thermal interface material (40) includes a macromolecular material (32), and a plurality of carbon nanotubes (22) embedded in the macromolecular material uniformly. The thermal interface material includes a first surface (42) and an opposite second surface (44). Each carbon nanotube is open at both ends thereof, and extends from the first surface to the second surface of the thermal interface material. A method for manufacturing the thermal interface material includes the steps of: (a) forming an array of carbon nanotubes on a substrate; (b) submerging the carbon nanotubes in a liquid macromolecular material; (c) solidifying the liquid macromolecular material; and (d) cutting the solidified liquid macromolecular material to obtain the thermal interface material with the carbon nanotubes secured therein.
    Type: Grant
    Filed: December 29, 2004
    Date of Patent: August 7, 2007
    Assignees: Tsing Hua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Hua Huang, Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 7150840
    Abstract: A graphitized fine carbon fiber comprising a hollow space extending along its center axis, and a plurality of graphene sheets, wherein the fiber has an end surface comprising a portion of discontinuity in which ends of graphene sheets are not bonded to one another and at least one portion of continuity comprised of at least one group of graphene sheets in which one graphene sheet is bonded to another graphene sheet adjacent thereto.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: December 19, 2006
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Yamamoto, Akinori Sudoh
  • Patent number: 7147894
    Abstract: A method for the self assembly of a macroscopic structure with a pre-formed nano object is provided. The method includes processing a nano object to a desired aspect ratio and chemical functionality and mixing the processed nano object with a solvent to form a suspension. Upon formation of the suspension, a substrate is inserted into the suspension. By either evaporation of the solvent, changing the pH value of the suspension, or changing the temperature of the suspension, the nano objects within the suspension deposit onto the substrate in an orientational order. In addition, a seed crystal may be used in place of the substrate thereby forming single-crystals and free-standing membranes of the nano-objects.
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: December 12, 2006
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Otto Z. Zhou, Hideo Shimoda, Soojin Oh
  • Patent number: 7101761
    Abstract: A method is described for providing a nanostructure suspended above a substrate surface. The method includes providing a nanostructure encased in an oxide shell on a substrate and depositing a sacrificial material and a support material over the oxide encased nanostructure. Then, the sacrificial material is removed to expose the oxide encased nanostructure. Once the oxide encased nanostructure has been exposed, the oxide shell is removed from the oxide encased nanostructure such that the nanostructure is suspended above the substrate surface.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: September 5, 2006
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Scott A. Hareland, Justin K. Brask, Matthew V. Metz