Semiconductor Sample Patents (Class 977/854)
  • Patent number: 8745761
    Abstract: A method of leveling a polymer pen array includes contacting a pen array with a surface and measuring a total force exerted on the surface by the pen array, the pen array being disposed at a first angle with respect to a first axis of the surface and a second angle with respect to a second axis of the surface; tilting one or both of the pen array and the surface to vary the first and second angles of the pen array with respect to the surface; measuring the total force exerted by the tilted pen array on the surface; and repeating the tilting and measuring steps until a global maximum of the total force exerted on the surface by the pen array is measured, thereby determining first and second angles which correspond to a leveled position of the pen array with respect to the surface.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: June 3, 2014
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Xing Liao, Adam B. Braunschweig
  • Publication number: 20130180018
    Abstract: Methods and processes for quantitatively determining the ratio of the metallic to semiconductor tubes in the sample single-wall carbon nanotubes is provided. The single-walled carbon nanotubes can be sonicated to debundle the bulk material. The debundled SWNTs can be coated with a polymer, such as sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SDPS), and the coated SWNTs can be deposited on a substrate. The total number of tubes can be determined by atomic force microscopy (AFM). The semiconducting nanotubes can be determined by photoluminescence spectroscopy. The combination of photoluminescence and AFM measurements provides a quantitative ratio of the metallic to semiconductor tubes in the sample.
    Type: Application
    Filed: July 29, 2010
    Publication date: July 11, 2013
    Applicant: Honda Motor Co., Ltd
    Inventors: Avetik R. Harutyunyan, Oleg Kuznetsov
  • Patent number: 8187673
    Abstract: The invention provides a lithographic method referred to as “dip pen” nanolithography (DPN). DPN utilizes a scanning probe microscope (SPM) tip (e.g., an atomic force microscope (AFM) tip) as a “pen,” a solid-state substrate (e.g., gold) as “paper,” and molecules with a chemical affinity for the solid-state substrate as “ink.” Capillary transport of molecules from the SPM tip to the solid substrate is used in DPN to directly write patterns consisting of a relatively small collection of molecules in submicrometer dimensions, making DPN useful in the fabrication of a variety of microscale and nanoscale devices. The invention also provides substrates patterned by DPN, including submicrometer combinatorial arrays, and kits, devices and software for performing DPN. The invention further provides a method of performing AFM imaging in air.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: May 29, 2012
    Assignee: Northwestern University
    Inventors: Chad A. Mirkin, Richard Piner, Seunghun Hong
  • Patent number: 8027185
    Abstract: Probes are electrically connected to a surface of a tunnel junction film stack comprising a free layer, a tunnel barrier, and a pinned layer. Resistances are determined for a variety of probe spacings and for a number of magnetizations of one of the layers of the stack. The probe spacings are a distance from a length scale, which is related to the Resistance-Area (RA) product of the tunnel junction film stack. Spacings from as small as possible to about 40 times the length scale are used. Beneficially, the smallest spacing between probes used during a resistance measurement is under 100 microns. A measured in-plane MagnetoResistance (MR) curve is determined from the “high” and “low” resistances that occur at the two magnetizations of this layer. The RA product, resistances per square of the free and pinned layers, and perpendicular MR are determined through curve fitting.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: September 27, 2011
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corp.
    Inventors: Daniel Christopher Worledge, Philip Louis Trouilloud, David William Abraham, Joerg Dietrich Schmid
  • Patent number: 7989778
    Abstract: A charged-particle optical system (100) such as an electron microscope has a vacuum chamber (102) with a space (104) for accommodating a specific one (114) of multiple specimens in operational use. The charged-particle optical system has a loader (106) with a part (108) that is moveable into and out of the space. The part is configured for attaching a specimen carrier (110), brought from outside the system, to a first holder (112) or to detach the carrier from the first holder and to remove the carrier from inside the system. The carrier accommodates a first specimen. The system has an interface (116) in a wall of the chamber for removably accommodating the first holder (112) or a second holder (118) with a second specimen (120) mounted thereon.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: August 2, 2011
    Assignee: FEI Company
    Inventors: Johannes Antonius Maria Van Den Oetelaar, Jorn Hermkens, Pleun Dona, Frank Nederlof, Wim Wondergem
  • Patent number: 7429732
    Abstract: The preferred embodiments are directed to a method and apparatus of operating a scanning probe microscope (SPM) to perform sample measurements using a survey scan that is less than five lines, and more preferably two lines, to accurately locate a field of features of a sample. This is accomplished by selecting a step distance between adjacent lines of the survey scan that does not equal the pitch of the features in a direction orthogonal to the direction the survey scan traverses, i.e., does not equal the pitch of the features in the scan direction, XPO. The aspect ratio of the scans can also be modified to further improve sample throughput.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: September 30, 2008
    Assignee: Veeco Instruments Inc.
    Inventors: David A. Kneeburg, Rohit Jain, Jason R. Osborne, Wei Yao, Matthew T. Klonowski, Ingo Schmitz
  • Patent number: 7420106
    Abstract: Characterizing dielectric surfaces by detecting electron tunneling. An apparatus includes an atomic force probe. A mechanical actuator is connected to the atomic force probe. A mechanical modulator is connected to the mechanical actuator. The mechanical modulator modulates the mechanical actuator and the atomic force probe at the resonant frequency of the atomic force probe. An electrical modulator is connected to the atomic force probe. A feedback sensing circuit is connected to the mechanical modulator to detect movement of the atomic force probe and provide information about the movement of the atomic force probe to the mechanical modulator allowing the mechanical modulator to modulate the atomic force probe at the resonant frequency of the atomic force probe as the resonant frequency of the atomic force probe changes. An FM detector is connected to the feedback circuit detects changes in the resonant frequency of the atomic force probe.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: September 2, 2008
    Assignee: The University of Utah Research Foundation
    Inventors: Clayton C. Williams, Ezra B. Bussmann
  • Patent number: 7414250
    Abstract: A cryogenic variable temperature scanning tunneling microscope of novel design and component configuration, for use in conjunction with a variety of low temperature methodologies.
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: August 19, 2008
    Assignee: Northwestern University
    Inventors: Mark C. Hersam, Edward T. Foley
  • Patent number: 7279046
    Abstract: A system and method for aligning prior patterning positions formed by a first SPM tip with a second SPM tip in combination with an SPM system includes identifying first location information that includes a location of the first SPM tip and a sample reference location on an SPM sample and storing the first location information in a storage area. After replacing the first SPM tip with the second SPM tip, second location information, which includes a location of the second SPM tip and the sample reference location on the SPM sample, is identified. Displacement is calculated between the location of the second SPM tip and the first SPM tip based on the first and second location information, and either the second SPM tip or a stage supporting the SPM sample is translated to align the second SPM tip with the location of the first SPM tip in accordance with the calculated displacement.
    Type: Grant
    Filed: February 14, 2003
    Date of Patent: October 9, 2007
    Assignee: NanoInk, Inc.
    Inventors: Raymond K. Eby, Michael Nelson, Igor Touzov