Abstract: An array of aligned and dispersed carbon nanotubes includes an elongate drawn body including a plurality of channels extending therethrough from a first end to a second end of the body, where the channels have a number density of at least about 100,000 channels/mm2 over a transverse cross-section of the body. A plurality of carbon nanotubes are disposed in each channel, and the carbon nanotubes are sufficiently dispersed and aligned along a length of the channels for the array to comprise an average resistivity per channel of about 9700 ?m or less.
Type:
Grant
Filed:
May 16, 2012
Date of Patent:
June 11, 2013
Assignee:
UT-Battelle, LLC
Inventors:
Ilia N Ivanov, John T Simpson, Troy R Hendricks
Abstract: Provided is near-field optical probe including: a cantilever arm support portion that is formed of a lower silicon layer of a silicon-on-insulator (SOI) substrate, the cantilever arm support portion having a through hole formed therein at a side of the lower silicon layer; and a cantilever arm forming of a junction oxidation layer pattern and an upper silicon layer pattern on the SOI substrate that are supported on an upper surface of the lower silicon layer and each have a smaller hole than the through hole, a silicon oxidation layer pattern having a tip including an aperture at a vertical end, corresponding with the hole on the upper silicon layer pattern, and an optical transmission prevention layer that is formed on the silicon oxidation layer pattern and does not cover the aperture.
Type:
Grant
Filed:
May 14, 2009
Date of Patent:
January 18, 2011
Assignee:
Electronics and Telecommunications Research Institute
Inventors:
Eunkyoung Kim, Sung Q Lee, Kang Ho Park
Abstract: A simple method for integrating a circuit onto a probe with a handle, a cantilever and a tip is provided. By fabricating a probe whose surface has recessed patterns of the desirable profile, a circuit can be formed on one part of the handle out over the cantilever and back onto a different part of the handle without employing a circuit lithography step. The circuit material constituting the circuit is deposited orthogonally to the probe surface with a line-of-sight technique.
Abstract: The present invention provides a self-sensing tweezer device for micro and nano-scale manipulation, assembly, and surface modification, including: one or more elongated beams disposed in a first configuration; one or more oscillators coupled to the one or more elongated beams, wherein the one or more oscillators are operable for selectively oscillating the one or more elongated beams to form one or more “virtual” probe tips; and an actuator coupled to the one or more elongated beams, wherein the actuator is operable for selectively actuating the one or more elongated beams from the first configuration to a second configuration.
Type:
Grant
Filed:
June 15, 2007
Date of Patent:
June 15, 2010
Assignee:
Insitutec, Inc.
Inventors:
Marcin B. Bauza, Shane C. Woody, Stuart T. Smith
Abstract: Provided is a scanning probe microscope capable of precisely analyzing characteristics of samples having an overhang surface structure. The scanning probe microscope comprises a first probe, a first scanner changing a position of the first probe along a straight line, and a second scanner changing a position of a sample in a plane, wherein the straight line in which the position of the first probe is changed by using the first scanner is non-perpendicular to the plane in which the position of the sample is changed by using the second scanner.
Type:
Grant
Filed:
November 17, 2006
Date of Patent:
January 5, 2010
Assignee:
Park Systems Corp.
Inventors:
Sang-il Park, Yong-Seok Kim, Jitae Kim, Sang Han Chung, Hyun-Seung Shin, Jung-Rok Lee, Euichul Hwang
Abstract: A scanning probe microscope system comprising a hollow probe 3, a tube 4 connected to a rear end 32 of the hollow probe 3, a support table 1 provided under the hollow probe 3, and a substrate 2 and a means 5 for washing the hollow probe 3 that are fixed to the support table 1, a sample S passing through the tube 4 and the hollow probe 3, and the substrate 2 and the washing means 5 being moved by the support table 1 such that each of them opposes the hollow probe 3.
Abstract: A method of manufacturing a carbon nanotube device including an inner electrode, having connecting step, connecting a carbon nanotube to the inner electrode, wherein the connecting step comprises: attaching a conductor to an end or periphery thereof of a needle-shaped or rod-shaped carrying electrode; arranging the carbon nanotube in contact or close to a predetermined connection part of the inner electrode; approaching the end of the carrying electrode on which the conductor is carried to the connection part; and transferring the conductor carried on the carrying electrode to the connection part or periphery thereof to connect the carbon nanotube to the inner electrode.