Gene Therapy Patents (Class 977/916)
  • Patent number: 9040626
    Abstract: The invention discloses novel morphology shifting micelles and amphiphilic coated metal nanofibers. Methods of using and making the same are also disclosed.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: May 26, 2015
    Assignee: The Regents of the University of California
    Inventors: Miao-Ping Chien, Nathan C. Gianneschi
  • Patent number: 9029604
    Abstract: The instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids with one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
    Type: Grant
    Filed: September 28, 2011
    Date of Patent: May 12, 2015
    Assignee: Sirna Therapeutics, Inc.
    Inventors: John A. Bawiec, III, Zhengwu J. Deng
  • Publication number: 20140335356
    Abstract: Problem. Provided are a method for synthesizing spherical porous titanium oxide nanoparticles, which is easy to operate, does not take a long time for synthesis, and can easily adjust the particle diameter and the pore diameter of the spherical porous titanium oxide nanoparticles in accordance with the application thereof; spherical porous titanium oxide nanoparticles produced by the synthesizing method; and a gene gun carrier consisting of the spherical porous titanium oxide nanoparticles. Solution. A method for synthesizing spherical porous titanium oxide nanoparticles, includes: a step of reacting titanium isopropoxide and carboxylic acid in supercritical fluid, wherein the supercritical fluid is supercritical methanol, and the carboxylic acid is formic acid, acetic acid, benzoic acid, o-phthalic acid, fumaric acid, or maleic acid.
    Type: Application
    Filed: January 27, 2012
    Publication date: November 13, 2014
    Applicant: Kochi University of Technology
    Inventors: Kazuya Kobiro, Pengyu Wang, Takeshi Ohama
  • Patent number: 8785177
    Abstract: Methods for creating a transient nanoscale opening in a cell membrane and methods for transporting a desired species through the nanoscale opening are provided. A nano-sized needle-like tip can be used to mechanically slice the cell membrane to create a transient, localized nanoscale slit. The nanoscale slit may be used for transferring exogenous molecules into a living cell.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: July 22, 2014
    Assignee: The Board of Trustees of the University of Illinois, a body Corporate and Politic of the State of Illinois
    Inventors: Min-Feng Yu, Kyungsuk Yum, Ning Wang
  • Patent number: 8466122
    Abstract: The present invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel cationic lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of a specific target protein at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: June 18, 2013
    Assignee: Protiva Biotherapeutics, Inc.
    Inventors: James Heyes, Mark Wood, Alan Martin
  • Patent number: 8445025
    Abstract: Disclosed are the nanoparticle and the method for the same, and the preparing method includes steps of mixing polyethylenimine (PEI) with the poly(acrylic acid)-bound iron oxide (PAAIO) to form a PEI-PAAIO polyelectrolyte complex (PEC) and mixing the PEI-PAAIO PEC with genetic material such as plasmid DNA to form the PEI-PAAIO/pDNA magnetic nanoparticle. The PEI-PAAIO/pDNA magnetoplex is highly water dispersible and suitable for long term storage, shows superparamagnetism, low cytotoxicity, high stability and nice transfection efficiency, and thus the PEI-PAAIO PEC can replace PEI as a non-viral gene vector.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: May 21, 2013
    Assignee: Kaohsiung Medical University
    Inventors: Li-Fang Wang, Shuo-Li Sun, Yu-Lun Lo
  • Patent number: 8318207
    Abstract: In accordance with certain embodiments of the present disclosure, a method for intracellular delivery of small molecules is provided. The method includes encapsulation of small molecules in a thermally responsive nanocapsule by decreasing the temperature of the nanocapsule to increase the permeability of the nanocapsule and allowing the small molecules to be suck into or diffuse into the nanocapsule. The nanocapsule is delivered into a cell by increasing the temperature of the nanocapsule. The small molecules are released from the nanocapsule into the cell in a controllable manner by cooling and heating treatments.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 27, 2012
    Assignee: University of South Carolina
    Inventor: Xiaoming He
  • Patent number: 8283333
    Abstract: The present invention provides novel, serum-stable lipid particles comprising one or more active agents or therapeutic agents, methods of making the lipid particles, and methods of delivering and/or administering the lipid particles. More particularly, the present invention provides serum-stable nucleic acid-lipid particles (SNALP) comprising a nucleic acid (e.g., one or more interfering RNA molecules), methods of making the SNALP, and methods of delivering and/or administering the SNALP (e.g., for the treatment of cancer). In particular embodiments, the present invention provides tumor-directed lipid particles that preferentially target solid tumors. The tumor-directed formulations of the present invention are capable of preferentially delivering a payload such as a nucleic acid to cells of solid tumors compared to non-cancerous cells.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: October 9, 2012
    Assignee: Protiva Biotherapeutics, Inc.
    Inventors: Ed Yaworski, Stephen Reid, James Heyes, Adam Judge, Ian MacLachlan
  • Publication number: 20120214867
    Abstract: A T4 nanoparticle is a non-infectious, tail-less variant of a T4 bacteriophage. In one embodiment, eukaryotic cells are labeled with dyed T4 nanoparticles, wherein each dyed T4 nanoparticle comprises at least 350 dye molecules covalently bound thereto. In another embodiment, T4 nanoparticles are used to deliver exogenous DNA to eukaryotic cells for protein expression therein. It is contemplated that T4 nanoparticles may be used to deliver other exogenous material to eukaryotic cells.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 23, 2012
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jinny Lin Liu, Kelly L. Robertson, Carissa M. Soto
  • Publication number: 20120076735
    Abstract: Disclosed are drug delivery systems and methods for extravascular administration of drug, vaccine, and/or diagnostic agents, for use in research and medical applications.
    Type: Application
    Filed: March 24, 2011
    Publication date: March 29, 2012
    Applicant: GENESEGUES, INC.
    Inventor: Gretchen Unger
  • Publication number: 20120003278
    Abstract: The present invention includes single-walled carbon nanotube compositions for the delivery of bioactive agents and methods of making such single-walled carbon nanotube compositions.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 5, 2012
    Inventors: D. Lynn Kirkpatrick, Michelle K. Weiss
  • Publication number: 20110305734
    Abstract: The present invention provides nanoparticle compositions including one or more nucleic acids. The present invention achieves delivery (particularly transdermal delivery) of such nucleic acids without the need for nucleic acid modification, or for use of chemical or mechanical abrasion or disruption of skin.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 15, 2011
    Applicant: ANTERIOS, INC.
    Inventors: Jonathan Edelson, Timothy Kotyla, Boke Zhang
  • Publication number: 20110268810
    Abstract: Polymeric microparticles are used to deliver recombinagenic or mutagenic nucleic acid molecules such as donor nucleic acid alone, or in combination with triplex-forming molecules, to induce a site-specific mutation in the target DNA. Target cells endocytose the particles, releasing the nucleic acid molecules inside of the cell, where they induce mutagenesis or recombination at a target site. The examples demonstrate that triplex forming oligonucleotides, preferably PNAs, preferably in combination with a donor nucleotide molecule, can be encapsulated into polymeric microparticles, which are delivered into cells. Results demonstrate significantly greatly levels of uptake and expression, and less cytotoxicity, as compared to direct transfer of the nucleic acid molecules into the cell by nucleofection.
    Type: Application
    Filed: November 2, 2010
    Publication date: November 3, 2011
    Inventors: William Mark Saltzman, Peter M. Glazer, Joanna Chin, Nicole McNeer
  • Patent number: 7981446
    Abstract: The present invention relates to methods of delivering nucleic acids into cells using a nucleic acid binding molecule containing a multimeric or spacer-incorporated protein transduction domain (PTD). The invention also relates to novel compositions that contain a nucleic acid complexed or conjugated with a nucleic acid binding molecule. The nucleic acid binding molecule may contain a multimeric or spacer-incorporated PTD, and may further contain a nucleic acid binding region. The nucleic acid complexes or conjugations of the present invention may be employed to inhibit expression of a target gene, and/or determine the function of a target gene.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: July 19, 2011
    Assignee: ForHumanTech. Co., Ltd.
    Inventors: Sang-Kyou Lee, Seung-Kyou Lee, Ki-Doo Choi
  • Publication number: 20110171276
    Abstract: The present invention provides chitosan-based nanoparticles that can protect nucleic acids and deliver the same into gut mucosal cells. Compositions and methods for the expression of therapeutic nucleic acids in cells of the gut mucosa are provided. Compositions and methods for delivering therapeutic proteins systemically from cells of the gut mucosa are also provided.
    Type: Application
    Filed: March 24, 2011
    Publication date: July 14, 2011
    Applicant: enGene, Inc.
    Inventors: Anthony T. Cheung, Eric C. Hsu
  • Publication number: 20110097389
    Abstract: The present invention relates to the identification of p53 biomarker profiles that predict response in patients with hyperproliferative disease such as cancer to a therapy, and their use in methods of treating such patients with an anti-hyperproliferative disease gene therapy.
    Type: Application
    Filed: January 26, 2009
    Publication date: April 28, 2011
    Applicant: P53
    Inventors: Robert E. Sobol, Kerstin Menander
  • Patent number: 7902441
    Abstract: Tumor suppressor genes play a major role in the pathogenesis of human lung cancer and other cancers. Cytogenetic and allelotyping studies of fresh tumor and tumor-derived cell lines showed that cytogenetic changes and allele loss on the short arm of chromosome 3 (3p) are most frequently involved in about 90% of small cell lung cancers and greater than 50% of non-small cell lung cancers. A group of recessive oncogenes, Fus1, 101F6, Gene 21 (NPRL2), Gene 26 (CACNA2D2), Luca 1 (HYAL1), Luca 2 (HYAL2), PL6, 123F2 (RaSSFI), SEM A3 and Beta* (BLU), as defined by homozygous deletions in lung cancers, have been located and isolated at 3p21.3.
    Type: Grant
    Filed: May 27, 2003
    Date of Patent: March 8, 2011
    Assignees: Board of Regents, The University of Texas, The United States of America as represented by the Department of Health and Human Services
    Inventors: Lin Ji, John Dorrance Minna, Jack Roth, Michael Lerman
  • Publication number: 20110038937
    Abstract: Disclosed herein are formulations of siRNA suitable for delivery by ocular iontophoresis, devices for iontophoretic delivery of siRNA and methods of use thereof.
    Type: Application
    Filed: December 5, 2008
    Publication date: February 17, 2011
    Inventors: William Schubert, Peyman Moslemy, Mike Patane, Phil Isom
  • Publication number: 20100310473
    Abstract: It is disclosed here that nucleic acid-based agents can be delivered to the brain of a human or non-human animal having a leakage in the blood brain barrier by administering the agents through the eye. Brain tissues and cells can be imaged in vivo (e.g., by magnetic resonance imaging) by linking a contrast agent to a targeting nucleic acid that can hybridize to a target nucleic acid located at the brain site to be imaged and administering the contrast agentltargeting nucleic acid conjugate through the eye. Similarly, a nucleic acid based drug (e.g., as an antisense nucleic acid or a therapeutic agent linked to a targeting nucleic acid that can hybridize to a target nucleic located at a disease site in the brain) can be administered through the eye to treat a brain disease.
    Type: Application
    Filed: July 30, 2008
    Publication date: December 9, 2010
    Inventors: Philip K. Liu, Christina H. Liu
  • Patent number: 7138098
    Abstract: A method of manufacturing a nanocrystallite from a M-containing salt forms a nanocrystallite. The nanocrystallite can be a member of a population of nanocrystallites having a narrow size distribution and can include one or more semiconductor materials. Semiconducting nanocrystallites can photoluminesce and can have high emission quantum efficiencies.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: November 21, 2006
    Assignee: Massachusetts Institute of Technology
    Inventors: Moungi Bawendi, Nathan E. Stott