Specified Use Of Nanostructure Patents (Class 977/902)
  • Patent number: 11774425
    Abstract: Disclosed is a flexible hydrogen sensor with ultra-high sensitivity and a wide range and a fabrication method therefor. The sensor includes a conductive electrode layer (4), a sensing layer and a flexible substrate layer (1) in sequence from top to bottom. The sensing layer includes a MOx film (2) and Pd nanoparticles (NPs) (3), and the Pd NPs (3) are covered on the MOx film (2). A traditional metal oxide type hydrogen sensor and a quantum conductance-based hydrogen sensor are combined on a flexible polymer substrate by means of an atomic layer deposition (ALD) technology and a cluster beam deposition (CBD) technology, so as to obtain a flexible hydrogen sensor with ultra-high sensitivity, a wide range and excellent selectivity and lower working temperature.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: October 3, 2023
    Inventors: Aidong Li, Qiang Ren, Jian Chen, Jiabin Fang, Min Han
  • Patent number: 11767466
    Abstract: The present disclosure relates to methods of making nanocomposite coated proppants with a nanocomposite coating, including adding a quantity of precursor nanoparticles comprising carbon nanotubes supported by metal oxide catalyst nanoparticles to an uncured resin. The metal oxide catalyst nanoparticles and the uncured resin are selected such that the metal oxide catalyst nanoparticles are dissolvable in the uncured resin. The metal oxide catalyst nanoparticles are capable of dissolving in the uncured resin such that an amount of carbon nanotubes are dispersed within the uncured resin to form a nanocomposite coating. The method may further include coating proppant particles with the nanocomposite coating to make nanocomposite coated proppants.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: September 26, 2023
    Assignee: Saudi Arabian Oil Company
    Inventors: Ashok Santra, Peter J. Boul
  • Patent number: 11681322
    Abstract: The disclosure describes an adaptive and optimal imaging of individual quantum emitters within a lattice or optical field of view for quantum computing. Advanced image processing techniques are described to identify individual optically active quantum bits (qubits) with an imager. Images of individual and optically-resolved quantum emitters fluorescing as a lattice are decomposed and recognized based on fluorescence. Expected spatial distributions of the quantum emitters guides the processing, which uses adaptive fitting of peak distribution functions to determine the number of quantum emitters in real time. These techniques can be used for the loading process, where atoms or ions enter the trap one-by-one, for the identification of solid-state emitters, and for internal state-detection of the quantum emitters, where each emitter can be fluorescent or dark depending on its internal state.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: June 20, 2023
    Inventors: Christopher Monroe, Jiehang Zhang, David Wong-Campos, Antonios Kyprianidis, Patrick Michael Becker
  • Patent number: 11442039
    Abstract: Provided is a sample support body that includes: a substrate having a first surface and a second surface opposite to each other; and a conductive layer provided on at least the first surface. A plurality of through-holes, which open to the second surface and a third surface of the conductive layer which is located on a side opposite to the substrate, are formed in the substrate and the conductive layer. At least one of the second surface and the third surface is subjected to surface treatment for providing a difference in an affinity with water between a surface close to the second surface and a surface close to the third surface.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: September 13, 2022
    Inventors: Yasuhide Naito, Takayuki Ohmura, Masahiro Kotani
  • Patent number: 9034085
    Abstract: A composition of matter, and method to make same, for a nano-based material including a nanocarbon support to which is attached an aliphatic amine. In particular, the composition of matter is an aliphatic amine-nanocarbon material that includes a nanocarbon (NC) support, such as C60, nano-graphite, graphene, nanocarbon ribbons, graphite intercalation compounds, graphite oxide, nano-coal, nanohorns, and combinations thereof, and further includes an aliphatic amine, such as polyethyleneimine (PEI).
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: May 19, 2015
    Inventors: Andrew R. Barron, Eoghan Dillon
  • Patent number: 9037214
    Abstract: In certain embodiments novel nanoparticles (nanowontons) are provided that are suitable for multimodal imaging and/or therapy. In one embodiment, the nanoparticles include a first biocompatible (e.g., gold) layer, an inner core layer (e.g., a non-biocompatible material), and a biocompatible (e.g., gold) layer. The first gold layer includes a concave surface that forms a first outer surface of the layered nanoparticle. The second gold layer includes a convex surface that forms a second outer surface of the layered nanoparticle. The first and second gold layers encapsulate the inner core material layer. Methods of fabricating such nanoparticles are also provided.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: May 19, 2015
    Assignee: The Regents of the University of California
    Inventors: Fanqing Chen, Louis-Serge Bouchard
  • Patent number: 9024631
    Abstract: An apparatus, method and computer-readable medium configured to transport a constituent of fluid sample that binds to a functionalized magnetic particle. The apparatus includes a substrate connected to an input port, a magnetic nanowire, and either a temporally changing magnetic field generator or a spin-polarized current source. The magnetic nanowire is disposed in a surface of the substrate. The width and thickness of the magnetic nanowire are configured so that a domain wall propagating along the nanowire in response to the temporally changing magnetic field continuously couples to a superparamagnetic particle introduced into the input port.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Geoffrey Stephen Beach, Elizabeth Ashera Rapoport
  • Patent number: 9023308
    Abstract: Methods of ex situ synthesis of graphene, graphene oxide, reduced graphene oxide, other graphene derivative structures and nanoparticles useful as polishing agents are disclosed. Compositions and methods for polishing, hardening, protecting, adding longevity to, and lubricating moving and stationary parts in devices and systems, including, but not limited to, engines, turbos, turbines, tracks, races, wheels, bearings, gear systems, armor, heat shields, and other physical and mechanical systems employing machined interacting hard surfaces through the use of nano-polishing agents formed in situ from lubricating compositions and, in some cases, ex situ and their various uses are also disclosed.
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: May 5, 2015
    Assignee: Peerless Worldwide, LLC
    Inventor: Richard S. Shankman
  • Patent number: 9019060
    Abstract: An electrical conductor provided with an electrical insulation system surrounding the conductor, the insulation includes a first insulation layer surrounding the conductor and a second insulation layer surrounding the first insulation layer. The second insulation layer includes a second polymer and a second filler in the form of chromium oxide (Cr2O3), iron oxide (Fe2O3), or a mixture of chromium oxide and iron oxide, wherein the first insulation layer includes a first polymer and a first filler including dispersed nanoparticles.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: April 28, 2015
    Assignee: ABB Research Ltd.
    Inventors: Anders Bjorklund, Henrik Hillborg, Fredrik Sahlen
  • Patent number: 9013784
    Abstract: A nanoparticle waveguide apparatus, a nanoparticle waveguide photonic system and a method of photonic transmission employ a nearfield-coupled nanoparticle (NCN) waveguide to cooperatively propagate an optical signal. The nanoparticle waveguide apparatus includes a first optical waveguide adjacent to a second optical waveguide, the first optical waveguide comprising an NCN waveguide having a plurality of nanoparticles. The nanoparticle waveguide photonic system further includes a nearfield coupling (NC) modulator. The method includes providing the NCN waveguides and modulating a coupling between one or both of first and second NCN waveguides and adjacent nanoparticles within one or both of the first and second NCN waveguides.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: April 21, 2015
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Lars H. Thylen, Alexandre M. Bratkovski, Petter Holmstrom
  • Patent number: 9011309
    Abstract: An electromagnetic radiation activated device comprises a property changing material and at least one functionalized fullerene that upon irradiation of the functionalized fullerenes with electromagnetic radiation of one or more frequencies a thermally activated chemical or physical transformation occurs in the property changing material. The thermal activated transformation of the property changing material is triggered by the heating or combustion of the functionalized fullerenes upon their irradiation. The device can include a chemical agent that is embedded in the property changing material and is released when the material is heated by the functionalized fullerenes upon irradiation.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: April 21, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Karl Zawoy, Brij M. Moudgil, Benjamin L. Koopman, Nathanael Ian Stevens, Kevin William Powers
  • Patent number: 9006130
    Abstract: The invention relates to a hydrodesulfurization nanocatalyst, use of the hydrodesulfurization nanocatalyst in a hydrodesulfurization process and a process for producing the hydrodesulfurization nanocatalyst. The hydrodesulfurization nanocatalyst can include a nanostructured alumina material, at least one metal selected from group VI B of the periodic table of elements, and at least one metal selected from group VIII B of the periodic table of elements.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: April 14, 2015
    Assignee: Research Institute of Petroleum Industry (RIPI)
    Inventors: Fereshteh Rashidi, Alimorad Rashidi, Kheirollah Jafari Jozani, Ali Nemati Kharat Ghaziani, Morteza Rezapour, Hamidreza Bozorgzadeh
  • Patent number: 9005995
    Abstract: The present invention relates to a nanoscale or microscale particle for encapsulation and delivery of materials or substances, including, but not limited to, cells, drugs, tissue, gels and polymers contained within the particle, with subsequent release of the therapeutic materials in situ, methods of fabricating the particle by folding a 2D precursor into the 3D particle, and the use of the particle in in-vivo or in-vitro applications. The particle can be in any polyhedral shape and its surfaces can have either no perforations or nano/microscale perforations. The particle is coated with a biocompatible metal, e g gold, or polymer e g parvlene, layer and the surfaces and hinges of the particle are made of any metal or polymer combinations.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 14, 2015
    Assignee: The Johns Hopkins University
    Inventors: David H. Gracias, Timothy Gar-Ming Leong, Hongke Ye
  • Publication number: 20150090662
    Abstract: A humidifier is provided that typically includes a water filtration unit and a pump that draws filtered water from the water filtration unit, typically a carbon nanotube filter. The humidifier further includes a nozzle having an outlet orifice, wherein the nozzle is connected to the pump, where the pump forces the filtered water through the nozzle, thereby expelling the filtered water into an atmosphere in the form of a purified vapor or mist.
    Type: Application
    Filed: November 5, 2010
    Publication date: April 2, 2015
    Inventor: Keith E. Boonstra
  • Patent number: 8992879
    Abstract: A method of producing carbon fibers, in which the producing method comprises allowing a supported type catalyst and a carbon atom-containing compound to come in contact with each other in a heating zone, wherein the supported type catalyst is prepared by a method comprising impregnation of a powdery carrier with colloid containing catalyst to support particles of the catalyst on the powdery carrier having a specifically developed crystal plane such as a powdery carrier being 4 or more in the ratio (I1/I2) of the intensity I1 of the strongest peak to the intensity I2 of the second strongest peak observed in X-ray diffraction, or a powdery carrier having the ratio (I1/I2) of the intensity I1 of the strongest peak to the intensity I2 of the second strongest peak observed in X-ray diffraction of 1.5 times or more the ratio (I1s/I2s) of the intensity I1s of the strongest peak to the intensity I2s of the second strongest peak described in JCPDS.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: March 31, 2015
    Assignee: Showa Denko K.K.
    Inventors: Daisuke Miyamoto, Eiji Kambara
  • Patent number: 8986999
    Abstract: Methods and apparatuses for encapsulating inorganic micro- or nanostructures within polymeric microgels are described. In various embodiments, viruses are encapsulated with microgels during microgel formation. The viruses can provide a template for in situ synthesis of the inorganic structures within the microgel. The inorganic structures can be distributed substantially homogeneously throughout the microgel, or can be distributed non-uniformly within the microgel. The inventive microgel compositions can be used for a variety of applications including electronic devices, biotechnological devices, fuel cells, display devices and optical devices.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: March 24, 2015
    Assignees: Massachusetts Institute of Technology, President and Fellows of Harvard University
    Inventors: Yoon Sung Nam, Angela Belcher, Andrew Parsons Magyar, Daeyeon Lee, Jin-Woong Kim, David Weitz
  • Publication number: 20150068908
    Abstract: A galvanic bath for the electrolytic deposition of a composite material based on gold, copper and cadmium, including gold, copper and cadmium as cyanide, has a pH higher than 7, and further includes carbon nanotubes, and does not contain any surfactant used to disperse the carbon nanotubes. A method for the galvanic deposition of a composite material on a substrate, includes the steps of preparing such a bath and ultrasound treatment of the bath, and does not include any step of thermal pre-treatment of the bath.
    Type: Application
    Filed: April 2, 2013
    Publication date: March 12, 2015
    Applicant: HAUTE ECOLE ARC
    Inventor: Pierre-Antoine Gay
  • Publication number: 20150068980
    Abstract: The nanocomposite for removing selenium from water is multi-walled carbon nanotubes impregnated with iron. The nanocomposite is made by dissolving iron nitrate in ethanol, adding the carbon nanotubes, heating the mixture to evaporate the ethanol, and calcining the resulting nanocomposite. The carbon nanotubes preferably have a length and a diameter between 10 nm and 30 nm, and the iron is homogenously distributed in the nanotubes as nanoparticles of 1-2 nm diameter. The nanocomposite adsorbs selenium from aqueous solution. The pH of the aqueous solution may be adjusted to between 1 and 4, adsorption being most efficient at a pH of 1.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 12, 2015
  • Patent number: 8974862
    Abstract: Disclosed herein is a method of manufacturing a composite carbon sheet, including the steps of: mixing 70 parts by weight of a first solution as a dispersant with 30 parts by weight of a second solution as a binder to prepare a third solution; mixing 80˜97 parts by weight of the third solution with 3˜20 parts by weight of any one selected from the group consisting of single-wall carbon nanotubes, double-wall carbon nanotubes, multi-wall carbon nanotubes, carbon nanofibers, carbon nanoparticles, graphene and fullerene to prepare a fourth solution; dispersing the fourth solution to prepare a mixed dispersion solution; and coating an expanded graphite sheet with the mixed dispersion solution. The method is advantageous in that the thermal conductivity of the composite carbon sheet manufactured by this method can be improved, the physical properties thereof can be enhanced, the exfoliation thereof can be prevented, and the tensile strength and tear strength thereof can be improved.
    Type: Grant
    Filed: November 3, 2010
    Date of Patent: March 10, 2015
    Inventor: Jong-Sam Yu
  • Patent number: 8974644
    Abstract: Electromagnetic irradiation of functionalized fullerenes in an oxygen-free environment induces conversion of the functionalized fullerenes to carbon nanotubes, carbon nanohorns, carbon onions, diamonds and/or carbon schwarzites. The carbon nanotubes can be multi-wall carbon nanotubes. Advantageously, the subject invention can be used for in-situ synthesis of carbon nanostructures within a matrix to form a carbon nanostructure composite, where positioning of the carbon nanostructures is controlled by the manner of dispersion of the functionalized fullerenes in the matrix. Carbon nanotube comprising features, such as electrical connects, can be formed on a surface by irradiating a portion of a functionalized fullerene coating with a laser beam.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: March 10, 2015
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Vijay Krishna, Brij M. Moudgil, Benjamin L. Koopman
  • Patent number: 8974216
    Abstract: A solution for texturing silicon wafers configured to constitute photovoltaic (PV) cells. Silicon wafers can be produced, the surface of which include uniformly engraved patterns having a depth of between 5 and 50 ?m.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: March 10, 2015
    Assignee: Commissariat a l' énergie atomique et aux énergies alternatives
    Inventors: Jean-Paul Garandet, Jacky Bancillon, Luc Federzoni, Marc Pirot
  • Publication number: 20150064439
    Abstract: Provided is the following sample fixing member for a nano indenter. The member can stably fix a sample, the plastic deformation of the member is alleviated, and the member enables accurate nano indenter measurement. A sample fixing member for a nano indenter of the present invention includes a fibrous columnar structure including a plurality of fibrous columnar objects each having a length of 200 ?m or more.
    Type: Application
    Filed: January 29, 2013
    Publication date: March 5, 2015
    Inventor: Youhei Maeno
  • Publication number: 20150062686
    Abstract: An apparatus is described that selectively absorbs electromagnetic radiation. The apparatus includes a conducting surface, a dielectric layer formed on the conducting surface, and a plurality of conducting particles distributed on the dielectric layer. The dielectric layer can be formed from a material and a thickness selected to yield a specific absorption spectrum. Alternatively, the thickness or dielectric value of the material can change in response to an external stimulus, thereby changing the absorption spectrum.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 5, 2015
    Applicant: Duke University
    Inventors: David R. Smith, Antoine Moreau, Cristian Ciraci, Jack J. Mock
  • Patent number: 8962090
    Abstract: A method for making a variable-density carbon nanotube film is provided. A drawn carbon nanotube film, including a number of carbon nanotubes aligned along an aligned direction, is prepared. A number of thin regions are formed in the drawn carbon nanotube film along the aligned direction by reducing density of carbon nanotubes in each of the plurality of thin regions. A variable-density carbon nanotube film is provided and includes a number of thin regions and at least one normal region having a density of carbon nanotubes greater than that of the thin regions. The at least one normal region includes a number of carbon nanotubes substantially aligned along an aligned direction. The thin regions are arranged in the form of at least one row extending along the aligned direction.
    Type: Grant
    Filed: September 17, 2010
    Date of Patent: February 24, 2015
    Assignee: Beijing FUNATE Innovation Technology Co., Ltd.
    Inventors: Liang Liu, Chen Feng
  • Publication number: 20150050494
    Abstract: A multi-walled titanium-based nanotube array containing metal or non-metal dopants is formed, in which the dopants are in the form of ions, compounds, clusters and particles located on at least one of a surface, inter-wall space and core of the nanotube. The structure can include multiple dopants, in the form of metal or non-metal ions, compounds, clusters or particles. The dopants can be located on one or more of on the surface of the nanotube, the inter-wall space (interlayer) of the nanotube and the core of the nanotube. The nanotubes may be formed by providing a titanium precursor, converting the titanium precursor into titanium-based layered materials to form titanium-based nanosheets, and transforming the titanium-based nanosheets to multi-walled titanium-based nanotubes.
    Type: Application
    Filed: March 19, 2013
    Publication date: February 19, 2015
    Applicant: The Hong Kong University of Science and Technology
    Inventors: King Lun Yeung, Shammi Akter Ferdousi, Wei Han
  • Patent number: 8955968
    Abstract: An imaging lens unit is presented, comprising an imaging lens having a lens region defining an effective aperture, and a phase coder. The phase coder may be incorporated with or located close to the lens region. The phase coder defines a surface relief along the lens region formed by at least three phase patterns extending along the lens region. Each of the phase patterns differently affecting light components of one of at least three different wavelength ranges while substantially not affecting propagation of light components of other of said at least three wavelength ranges. The surface relief affects light propagation through the lens region to extend a depth of focus for at least one of said at least three wavelength ranges.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: February 17, 2015
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Shai Ben-Yaish, Ofer Limon, Ido Raveh
  • Patent number: 8940244
    Abstract: The present invention relates to hierarchical structured nanotubes, to a method for preparing the same and to an application for the same, wherein the nanotubes include a plurality of connecting nanotubes for constituting a three-dimensional multi-dendrite morphology; and the method includes the following steps: (A) providing a polymer template including a plurality of organic nanowires; (B) forming an inorganic layer on the surface of the organic nanowires in the polymer template; and (C) performing a heat treatment on the polymer template having the inorganic layer on the surface so that partial atoms of the organic nanowires enter the inorganic layer.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: January 27, 2015
    Assignee: National Tsing Hua University
    Inventors: Hsueh-Shih Chen, Po-Hsun Chen, Jeng Liang Kuo, Tsong-Pyng Perng
  • Patent number: 8932485
    Abstract: The present invention provides fluorescent nanoparticle composites themselves, the process of preparing such composites, to systems for rapid diagnosis (as “kits”) containing such composites, and to the use of such composites. In a preferential embodiment, the composites of the present invention have an affinity for biological molecules, such as DNA. The present invention also comprises the preparation of probes containing biological material, upon which are added fluorescent nanoparticle composites, making viable a rapid and economic biological diagnosis of, for example, diseases and genetic traits, notably in the medical and veterinarian fields.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: January 13, 2015
    Assignee: Universidade Federal de Pernambuco-UFPE
    Inventors: Celso Pinto De Melo, César Augusto Souza De Andrade, Clécio Gomes Dos Santos
  • Patent number: 8931950
    Abstract: In one aspect, provided herein is a single crystal silicon microcalorimeter, for example useful for high temperature operation and long-term stability of calorimetric measurements. Microcalorimeters described herein include microcalorimeter embodiments having a suspended structure and comprising single crystal silicon. Also provided herein are methods for making calorimetric measurements, for example, on small quantities of materials or for determining the energy content of combustible material having an unknown composition.
    Type: Grant
    Filed: August 20, 2009
    Date of Patent: January 13, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: William P. King, Jungchul Lee
  • Patent number: 8920682
    Abstract: The disclosure generally relates to a dispersion of nanoparticles in a liquid medium. The liquid medium is suitably water-based and further includes an ionic liquid-based stabilizer in the liquid medium to stabilize the dispersion of nanoparticles therein. The stabilizer can be polymeric or monomeric and generally includes a moiety with at least one quaternary ammonium cation from a corresponding ionic liquid. The dispersion suitably can be formed by shearing or otherwise mixing a mixture/combination of its components. The dispersions can be used to form nanoparticle composite films upon drying or otherwise removing the liquid medium carrier, with the stabilizer providing a nanoparticle binder in the composite film. The films can be formed on essentially any desired substrate and can impart improved electrical conductivity and/or thermal conductivity properties to the substrate.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: December 30, 2014
    Assignee: Eastern Michigan University
    Inventor: John Texter
  • Patent number: 8913331
    Abstract: An optical processor is presented for applying optical processing to a light field passing through a predetermined imaging lens unit. The optical processor comprises a pattern in the form of spaced apart regions of different optical properties. The pattern is configured to define a phase coder, and a dispersion profile coder. The phase coder affects profiles of Through Focus Modulation Transfer Function (TFMTF) for different wavelength components of the light field in accordance with a predetermined profile of an extended depth of focusing to be obtained by the imaging lens unit. The dispersion profile coder is configured in accordance with the imaging lens unit and the predetermined profile of the extended depth of focusing to provide a predetermined overlapping between said TFMTF profiles within said predetermined profile of the extended depth of focusing.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: December 16, 2014
    Assignee: Brien Holden Vision Institute
    Inventors: Zeev Zalevsky, Alex Zlotnik, Ido Raveh
  • Patent number: 8901247
    Abstract: This disclosure discloses novel responsive polymers that comprise a rod segment and (or) a coil segment. This disclosure also discloses nanomaterial-polymer composite comprising the responsive polymers that are covalently linked with nanomaterials. Also disclosed are polymeric transducer materials and sensor systems that comprise the nanomaterial-polymer composite.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: December 2, 2014
    Assignee: The Regents of the University of California
    Inventors: Jennifer Lu, Shuhuai Xiang
  • Patent number: 8900867
    Abstract: A method for forming a culture medium includes the following steps. A carbon nanotube structure is provided. A hydrophilic layer is formed on a surface of the carbon nanotube structure. The hydrophilic layer is polarized to form a polar surface on the hydrophilic layer. A number of neurons are formed on the polar surface of the hydrophilic layer.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: December 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chen Feng, Li Fan, Wen-Mei Zhao
  • Patent number: 8900517
    Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: December 2, 2014
    Assignee: Nanomix, Inc.
    Inventors: Jean-Christophe P. Gabriel, Philip G. Collins, George Gruner, Keith Bradley
  • Patent number: 8888249
    Abstract: The present invention provides a droplet jetting apparatus which jets fluid in a droplet shape. The apparatus includes a main body (100), which has a chamber (110) for containing fluid. The main body further has at least one nozzle (120) which communicates with the chamber and jets a droplet onto a printable matter, and a first electrode (130) which is formed on the inner surface of at least one selected from between the nozzle and the chamber by patterning treatment to make electrical contact with the fluid. The apparatus further includes a second electrode (140), which is provided between the nozzle and the printable matter and has a through hole, through which the droplet is jetted from the nozzle onto the printable matter, a power supply (200) which supplies a voltage applied between the first electrode and the second electrode, and a control unit (300) which controls the power supply.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: November 18, 2014
    Assignee: Enjet Co., Ltd.
    Inventors: Do Young Byun, Ji Hoon Kim, Si Bui Quang Tran
  • Patent number: 8887815
    Abstract: Inhibiting gas hydrate formation while transporting hydrocarbon fluids may include providing a kinetic gas hydrate inhibitor, adding the kinetic gas hydrate inhibitor to a fluid capable of producing gas hydrates, and transporting the fluid that comprises the kinetic gas hydrate inhibitor. Generally a kinetic gas hydrate inhibitor may include a heterocyclic compound comprising nitrogen, e.g., poly(vinyl pyrrolidone).
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: November 18, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Alexandra Clare Morrison
  • Publication number: 20140336295
    Abstract: A porous body consists essentially of a plurality of ceramic particles having an average size ranging from 8 to 100 nm. The ceramic particles are bonded to adjacent ceramic particles with a strength sufficient to render the porous body self-supporting. The porosity ranges from 30 to 70 vol. % and the average pore size ranges from 5 to 50 nm. The porous body may be manufactured by preparing a dispersion comprising the ceramic particles and a polymer matrix material in a solvent, removing the solvent by heating and/or evaporation, forming a preform of the dried material, and firing the preform to remove the polymer matrix material and bond the ceramic particles to each other. The porous body is useful as a filter element in a system adapted to remove nanoscale particles from a fluid stream.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 13, 2014
  • Patent number: 8883256
    Abstract: A coating method for the internal coating of a hollow body which includes producing a plasma jet from a working gas, supplying at least one precursor material to the working gas and/or to the plasma jet, introducing the plasma jet through a first opening into an interior of the hollow body and depositing at least one reaction product of at least one precursor on an inner surface of the hollow body and/or on at least one layer arranged on the inner surface. The method is carried out at atmospheric pressure. Furthermore, the first internal coating takes place without an activation process directly after a production process of the hollow body, in which the hollow body is formed with the supply of heat.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: November 11, 2014
    Assignee: Innovent E.V.
    Inventors: Andreas Pfuch, Michael Droessler, Kerstin Horn, Andreas Heft
  • Patent number: 8883043
    Abstract: Poly(anilineboronic acid)/phosphate nanoparticle dispersions are produced in high yields using the reactivity of the boronic acid moiety with phosphate in the presence of fluoride. The poly(anilineboronic acid)/phosphate dispersions have been characterized using spectroscopic, microscopic and electrochemical techniques. According to 11B NMR studies, the formation of anionic tetrahedral boronate group in phosphoric acid in the presence of fluoride forms the basis of self-doped, stabilized PABA nanoparticle dispersion. Transmission electron microscope images show that 25-50 nm diameter PABA nanoparticles are formed under these conditions. UV-vis, FT-IR-ATR spectroscopic and cyclic voltammetric results confirm the formation of the conducting form of PABA.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 11, 2014
    Assignee: University of Manitoba
    Inventors: Michael S. Freund, Bhavana A. Deore
  • Publication number: 20140329089
    Abstract: A method of preparing a metal nanorod. The method includes seeding a metal nanoparticle within the lumen of a nanotube, and growing a metal nanorod from the seeded metal nanoparticle to form a metal nanorod-nanotube composite. In some cases, the nanotube includes metal binding ligands attached to the inner surface. Growing of the metal nanorod includes incubating the seeded nanotube in a solution that includes: a metal source for the metal in the metal nanorod, the metal source including an ion of the metal; a coordinating ligand that forms a stable complex with the metal ion; a reducing agent for reducing the metal ion, and a capping agent that stabilizes atomic monomers of the metal. Compositions derived from the method are also provided.
    Type: Application
    Filed: November 15, 2012
    Publication date: November 6, 2014
    Applicant: The Regents of the University of California
    Inventors: Yadong Yin, Chuanbo Gao
  • Patent number: 8877505
    Abstract: Embodiments of a composition for stabilizing fluorescent signal of nanoparticles and methods for its use are disclosed. In some embodiments, the composition has a pH from 7 to 10 and includes borate, protein and/or protein hydrolysate, an amine, a preservative, and a nonionic surfactant. In particular embodiments, the amine is an N-ethanol substituted amine, such as ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N,N-dimethylethanolamine, or a combination thereof. In some embodiments, a fluorescent particle solution, such as a quantum dot solution or quantum dot conjugate solution, is diluted in the composition and stored at 4° C. In certain embodiments, the fluorescence intensity of the diluted fluorescent particle remains substantially the same when stored at 4° C. for at least one month or at least three months. In particular embodiments, a diluted quantum dot conjugate is used to detect a hybridized probe or a protein antigen.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: November 4, 2014
    Assignee: Ventana Medical Systems, Inc.
    Inventors: Eric May, Alexandra Nagy, Jerome Kosmeder
  • Publication number: 20140318990
    Abstract: A system for measuring pH includes a substrate and a sensor medium on the substrate. The sensor medium includes at least one oxidized carbon nanostructure and optionally at least one composition immobilized on the at least one oxidized carbon nanostructure. The at least one composition has at least one property that depends on pH. The system further includes at least one measurement system to measure a property of the sensor medium.
    Type: Application
    Filed: July 11, 2012
    Publication date: October 30, 2014
    Inventor: Alexander Star
  • Patent number: 8865501
    Abstract: The object of the present invention is to provide a method of fabricating a thermoelectric material and a thermoelectric material fabricated thereby. According to the present invention, since carbon nanotubes with no surface treatment are dispersed in the alloy, electrical resistivity decreases and electrical conductivity increases in comparison to surface-treated carbon nanotubes and an amount of thermal conductivity decreased is the same as that in the case of using surface-treated carbon nanotubes, and thus, a ZT value, a thermoelectric figure of merit, is improved. A separate reducing agent is not used and an organic solvent having reducing powder is used to improve economic factors related to material costs and process steps, and carbon nanotubes may be dispersed in the thermoelectric material without mechanical milling.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: October 21, 2014
    Assignee: Korea Institute of Machinery and Materials
    Inventor: Kyung Tae Kim
  • Patent number: 8859002
    Abstract: The invention relates to a method for the dispersion of synthetic or natural nanoparticles and nanocomposite materials and to the use thereof in different sectors including those of ceramics, coatings, polymers, construction, paints, catalysis, pharmaceuticals and powdered materials in general.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: October 14, 2014
    Assignee: Consejo Superior De Investigaciones Cientificas
    Inventors: José Francisco Fernándezlozano, Israel Lorite Villalba, Fernando Rubio Marcos, Juan José Romero Fanego, Miguel Ángel García García-Tuñon, Adrian Quesada Michelena, Maria Soledad Martin González, José Luis Costa Kramer
  • Publication number: 20140298762
    Abstract: A class of devices using nanotubes and nano-shapes which can partially organize molecules in random motion to move either some selectively or all of them, to create pressure differences and hence motive forces, or cause air flow into pressurized area. Because Air is a cloud of particles separated by vacuum, the device in air can be used to create motive force pushing any form of vehicle, lifting force for any form of air vehicle, air compression, power source for any form of machine, conveyor or generator, using the solar energy stored in the air in the form of heat, 24 hours a day, worldwide.
    Type: Application
    Filed: April 3, 2013
    Publication date: October 9, 2014
    Inventor: William A Kelley
  • Patent number: 8853917
    Abstract: An carbon nanotube based electrostrictive element includes two electrostrictive layers spaced with each other, an electrical connector, and two electrodes. The two electrostrictive layers are electrically connected to each other at a first side, and spaced and insulated from each other at a second side via the electrical connector. The two electrodes are located at the second side and electrically connected respectively to the two electrostrictive layers.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 7, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chang-Hong Liu, Lu-Zhuo Chen, Shou-Shan Fan
  • Patent number: 8846175
    Abstract: A manufacturing method of a light transmissive film includes the following steps. A film is provided, and the film includes a plurality of nano-units and has a reference direction. In addition, a plurality of first stripes parallel to each other is formed on the film by an energy beam, and the first stripes are neither perpendicular nor parallel to the reference direction.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: September 30, 2014
    Assignee: Innolux Corporation
    Inventor: Yu-Ju Hsu
  • Patent number: 8841231
    Abstract: The invention concerns a novel process for the preparation of supported metallic catalysts in which the metallic phase is deposited in the form of agglomerates of nanoparticles of metallic oxide and forms a layer of fine thickness at the surface of the support. The process for the preparation of a catalyst comprises preparing in aqueous phase a colloidal suspension of agglomerates of nanoparticles of metallic oxide, then depositing that suspension on a porous support, drying the catalyst precursor obtained, and optionally calcining and reducing the precursor by means of any reducing compound. The invention also concerns the catalysts obtained by said process and their uses in reactions for the transformation of unsaturated organic compounds. The invention is applied to the refining field and more particularly to the treatment of gasolines obtained by steam cracking and/or obtained by catalytic cracking.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: September 23, 2014
    Assignee: IFP Energies Nouvelles
    Inventor: Antoine Fecant
  • Patent number: 8834618
    Abstract: Presently described are methods of inhibiting water vapor adsorption of a powder and methods of storing a powder at increased humidity level. The methods comprise providing adding discrete hydrophobic nanoparticles to a plurality of particles.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: September 16, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Jimmie R. Baran, Jr., Roxanne A. Boehmer
  • Patent number: 8835000
    Abstract: The present invention relates to modular sterically enhanced emission dye (SEED) clusters, wherein multiple SEED molecules are appended to a single polymeric chain.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: September 16, 2014
    Assignee: General Electric Company
    Inventors: Arunkumar Natarajan, Andrew Arthur Paul Burns, Sumeet Jain, Patrick Joseph McCloskey