Search Patents
  • Publication number: 20220242804
    Abstract: The present invention provides a one-pot process of synthesis of phenyl naphthalene compounds that are employed as heat transfer agents. More particularly, the present invention provides a process of preparation of 1-phenylnaphthalene and 2-methyl-1-phenylnaphthalene using refinery spent catalyst. These molecules are known for application as synthetic heat transfer fluids that deliver outstanding performance and thermal stability at continuously high operating temperatures. The reaction is carried out in aqueous medium using a spent catalyst which is a palladium based charcoal catalyst as obtained from various refinery processes. Further, the present invention provides a heat resistant formulation using the synthesized polyhydrocarbons, wherein the formulation is optimized with a free radical scavenger.
    Type: Application
    Filed: January 28, 2022
    Publication date: August 4, 2022
    Inventors: Tanmay MANDAL, Krishna VANKUDOTH, Manisha SARASWAT, Ajay Kumar ARORA, Vivekanand KAGDIYAL, Deepak SAXENA, Sankara Sri Venkata RAMAKUMAR
  • Patent number: 7820124
    Abstract: A material comprising a plurality of nanoparticles. Each of the plurality of nanoparticles includes at least one of a metal phosphate, a metal silicate, a metal oxide, a metal borate, a metal aluminate, and combinations thereof. The plurality of nanoparticles is substantially monodisperse. Also disclosed is a method of making a plurality of substantially monodisperse nanoparticles. The method includes providing a slurry of at least one metal precursor, maintaining the pH of the slurry at a predetermined value, mechanically milling the slurry, drying the slurry to form a powder; and calcining the powder at a predetermined temperature to form the plurality of nanoparticles.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: October 26, 2010
    Assignee: General Electric Company
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor, Shweta Saraswat
  • Patent number: 11548838
    Abstract: The present invention provides a one-pot process of synthesis of phenyl naphthalene compounds that are employed as heat transfer agents. More particularly, the present invention provides a process of preparation of 1-phenylnaphthalene and 2-methyl-1-phenylnaphthalene using refinery spent catalyst. These molecules are known for application as synthetic heat transfer fluids that deliver outstanding performance and thermal stability at continuously high operating temperatures. The reaction is carried out in aqueous medium using a spent catalyst which is a palladium based charcoal catalyst as obtained from various refinery processes. Further, the present invention provides a heat resistant formulation using the synthesized polyhydrocarbons, wherein the formulation is optimized with a free radical scavenger.
    Type: Grant
    Filed: January 28, 2022
    Date of Patent: January 10, 2023
    Assignee: INDIAN OIL CORPORATION LIMITED
    Inventors: Tanmay Mandal, Krishna Vankudoth, Manisha Saraswat, Ajay Kumar Arora, Vivekanand Kagdiyal, Deepak Saxena, Sankara Sri Venkata Ramakumar
  • Publication number: 20100254875
    Abstract: A material comprising a plurality of nanoparticles. Each of the plurality of nanoparticles includes at least one of a metal phosphate, a metal silicate, a metal oxide, a metal borate, a metal aluminate, and combinations thereof. The plurality of nanoparticles is substantially monodisperse. Also disclosed is a method of making a plurality of substantially monodisperse nanoparticles. The method includes providing a slurry of at least one metal precursor, maintaining the pH of the slurry at a predetermined value, mechanically milling the slurry, drying the slurry to form a powder; and calcining the powder at a predetermined temperature to form the plurality of nanoparticles.
    Type: Application
    Filed: October 5, 2006
    Publication date: October 7, 2010
    Inventors: Kalaga Murali Krishna, Sergio Paulo Martins Loureiro, Mohan Manoharan, Geetha Karavoor, Shweta Saraswat
Narrow Results

Filter by US Classification