Abstract: The present invention generally relates, in some aspects, to nanoscale wire devices and methods for use in determining analytes suspected to be present in a sample. Certain embodiments of the invention provide a nanoscale wire that has improved sensitivity, as the carrier concentration in the wire is controlled by an external gate voltage, such that the nanoscale wire has a Debye screening length that is greater than the average cross-sectional dimension of the nanoscale wire when the nanoscale wire is exposed to a solution suspected of containing an analyte. This Debye screening length (lambda) associated with the carrier concentration (p) inside nanoscale wire is adjusted, in some cases, by adjusting the gate voltage applied to an FET structure, such that the carriers in the nanoscale wire are depleted.
Type:
Grant
Filed:
November 19, 2007
Date of Patent:
November 5, 2013
Assignee:
President and Fellows of Harvard College
Inventors:
Charles M. Lieber, Xuan Gao, Gengfeng Zheng
Abstract: The present invention generally relates to nanoscale wires, including to nanoscale wires used as sensors. In some cases, the nanoscale wires may be used to directly determine analytes, even within relatively complicated environments such as blood, unlike many prior art techniques. In some aspects, the nanoscale wire form at least a portion of the gate of a field-effect transistor, and in certain aspects, different periodically-varying voltages or other electrical signals may be applied to the field-effect transistor. For example, in one set of embodiments, sinusoidally—varying voltages of different frequencies may be applied to the nanoscale wire and the source electrode of the field-effect transistor. The electrical conductance or other properties of the nanoscale wire in response to the periodically-varying voltages may then be determined and used to determine binding of the species.
Type:
Application
Filed:
September 12, 2013
Publication date:
July 30, 2015
Applicant:
President and Fellows of Harvard College
Inventors:
Charles M. Lieber, Hwan Sung, Xueliang Liu
Abstract: To sense the translocation of a molecule through a nanopore, there is directed to an inlet of the nanopore, having a nanopore fluidic resistance, RP, a molecule disposed in a cis fluidic ionic solution having a cis fluidic access resistance, RC. The molecule is caused to translocate through the nanopore from the inlet of the nanopore to an outlet of the nanopore and to a trans fluidic ionic solution having a trans fluidic access resistance, RT. The trans fluidic access resistance, RT, is of the same order of magnitude as the nanopore fluidic resistance, RP, and both RT and RP are at least an order of magnitude greater than the cis fluidic access resistance, RC. An indication of local electrical potential is produced at a site within the nanopore sensor that is on the trans fluidic ionic solution-side of the nanopore, to sense translocation of the molecule through the nanopore.
Type:
Application
Filed:
April 29, 2022
Publication date:
August 18, 2022
Applicant:
President and Fellows of Harvard College
Abstract: The present invention generally relates to nanoscale wires, including anisotropic deposition in nanoscale wires. In one set of embodiments, material may be deposited on certain portions of a nanoscale wire, e.g., anisotropically. For example, material may be deposited on a first facet of a crystalline nanoscale wire but not on a second facet. In some cases, additional materials may be deposited thereon, and/or the portions of the nanoscale wire may be removed, e.g., to produce vacant regions within the nanoscale wire, which may contain gas or other species. Other embodiments of the invention may be directed to articles made thereby, devices containing such nanoscale wires, kits involving such nanoscale wires, or the like.
Type:
Grant
Filed:
February 4, 2014
Date of Patent:
August 14, 2018
Assignees:
President and Fellows of Harvard College, Korea University
Inventors:
Charles M. Lieber, Sun-Kyung Kim, Robert Day, Hong-Gyu Park, Thomas J. Kempa
Abstract: A solid state molecular sensor having an aperture extending through a thickness of a sensing material is configured with a continuous electrically-conducting path extending in the sensing material around the aperture. A supply reservoir is connected to provide a molecular species, having a molecular length, from the supply reservoir to an input port of the aperture. A collection reservoir is connected to collect the molecular species from an output port of the aperture after translocation of the molecular species from the supply reservoir through the sensing aperture. The sensing aperture has a length between the input and output ports, in the sensing material, that is substantially no greater than the molecular length of the molecular species from the supply reservoir. An electrical connection to the sensing material measures a change in an electrical characteristic of the sensing material during the molecular species translocation through the aperture.
Type:
Application
Filed:
February 21, 2014
Publication date:
June 19, 2014
Applicant:
President and Fellows of Harvard College
Inventors:
Charles M. Lieber, Qihua Xiong, Ping Xie, Ying Fang
Abstract: A nitride material comprises C.sub.2 N. A method of forming a covalent carbon material includes forming an atomic nitrogen source, forming an elemental reagent source and combining the atomic nitrogen, elemental reagent to form the covalent carbon material and annealing the covalent carbon material. The elemental reagent is reactive with the atomic nitrogen of the atomic nitrogen source to form the covalent carbon material. Annealing the covalent carbon material produces the C.sub.2 N. In one embodiment, essentially all carbon nitride chemical bonds are single or double bonds.
Type:
Grant
Filed:
June 7, 1995
Date of Patent:
November 24, 1998
Assignee:
President and Fellows of Harvard College
Inventors:
Charles M. Lieber, Z. John Zhang, Chunming Niu
Abstract: A method for making a superconducting fullerine composition, includes reacting a fullerine with an alloy, and particularly reacting C.sub.60 with a binary alloy including an alkali metal or a tertiary alloy including two alkali metals in the vapor phase. Also, a Cesium-doped fullerine high T.sub.c superconducting composition has the formula Cs.sub.x C.sub.60, and particularly Cs.sub.3 C.sub.60. Also, a homogeneous bulk single phase high T.sub.c superconducting composition has the formula (Rb.sub.x K.sub.1-x).sub.3 C.sub.60.
Type:
Grant
Filed:
July 16, 1991
Date of Patent:
March 23, 1993
Assignee:
The President and Fellows of Harvard College
Abstract: In a method for fabricating a graphene structure, there is formed on a fabrication substrate a pattern of a plurality of distinct graphene catalyst materials. In one graphene synthesis step, different numbers of graphene layers are formed on the catalyst materials in the formed pattern. In a method for fabricating a graphene transistor, on a fabrication substrate at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor channel and at least one graphene catalyst material is provided at a substrate region specified for synthesizing a graphene transistor source, and at a substrate region specified for synthesizing a graphene transistor drain. Then in one graphene synthesis step, at least one layer of graphene is formed at the substrate region for the graphene transistor channel, and at the regions for the transistor source and drain there are formed a plurality of layers of graphene.
Type:
Application
Filed:
September 8, 2011
Publication date:
August 22, 2013
Applicant:
PRESIDENT AND FELLOWS OF HARVARD COLLEGE
Inventors:
Jang-Ung Park, SungWoo Nam, Charles M. Lieber
Abstract: An atomic force microscope (AFM) has been used to machine complex patterns and to form free structural objects in thin layers of MoO.sub.3 grown on the surface of MoS.sub.2. The AFM tip can pattern lines with .ltoreq.10 nm resolution and then image the resulting structure without perturbation by controlling the applied load. Distinct MoO.sub.3 structures can also be defined by AFM machining, and furthermore, these objects can be manipulated on the MoS.sub.2 substrate surface using the AFM tip. These results suggest application to nanometer scale diffraction gratings, high-resolution lithography masks, and possibly the assembly of nanostructures with novel properties.
Type:
Grant
Filed:
July 17, 1992
Date of Patent:
October 12, 1993
Assignee:
President and Trustees of Harvard College
Abstract: One aspect of the invention provides a nanoscale wire that has improved sensitivity, for example, as the carrier concentration in the wire is controlled by an external gate voltage. In one set of embodiments, the nanoscale wire has a Debye screening length that is greater than the average cross-sectional dimension of the nanoscale wire when the nanoscale wire is exposed to a solution suspected of containing an analyte. In certain instances, the Debye screening length associated with the carriers inside nanoscale wire may be adjusted by adjusting the voltage, for example, a gate voltage applied to an FET structure. In some cases, the nanoscale wire can be operated under conditions where the carriers in the nanoscale wire are depleted and the nanoscale wire has a conductance that is not linearly proportional to the voltage applied to the nanoscale wire sensor device, for example, via a gate electrode.
Type:
Application
Filed:
September 18, 2013
Publication date:
March 20, 2014
Applicant:
President and Fellows of Harvard College
Inventors:
Charles M. Lieber, Xuan Gao, Gengfeng Zheng
Abstract: A solid state molecular sensor having an aperture extending through a thickness of a sensing material is configured with a continuous electrically-conducting path extending in the sensing material around the aperture. A supply reservoir is connected to provide a molecular species, having a molecular length, from the supply reservoir to an input port of the aperture. A collection reservoir is connected to collect the molecular species from an output port of the aperture after translocation of the molecular species from the supply reservoir through the sensing aperture. The sensing aperture has a length between the input and output ports, in the sensing material, that is substantially no greater than the molecular length of the molecular species from the supply reservoir. An electrical connection to the sensing material measures a change in an electrical characteristic of the sensing material during the molecular species translocation through the aperture.
Type:
Grant
Filed:
February 21, 2014
Date of Patent:
November 6, 2018
Assignee:
President and Fellows of Harvard College
Inventors:
Charles M. Lieber, Qihua Xiong, Ping Xie, Ying Fang
Abstract: There is provided a nanopore sensor including cis and trans fluidic reservoirs. A nanopore is provided in a support structure separating the cis and trans reservoirs. The nanopore has an inlet in fluidic connection with the cis fluidic reservoir and an outlet in fluidic connection with the trans fluidic reservoir. The cis fluidic reservoir has a fluidic access resistance, RC, the trans fluidic reservoir has a fluidic access resistance, RT, and the nanopore has a fluidic resistance, RP. RP is of the same order of magnitude as RT and both RP and RT are at least an order of magnitude greater than RC. An electrical transduction element is disposed at a nanopore sensor site that exposes the transduction element to the trans reservoir. An electrical circuit is connected to the electrical transduction element for producing an electrical signal indicative of changes in electrical potential local to the trans reservoir.
Type:
Application
Filed:
June 14, 2021
Publication date:
October 7, 2021
Applicant:
President and Fellows of Harvard College
Abstract: The present invention generally relates to nanoscale wires and other nanomaterials, including nanoscale wires used as sensors, including nanoscale wires comprising semiconductor nanowires, carbon nanotubes, graphene, or metal oxide nanomaterials. Certain aspects of the invention are generally directed to polymer coating on nanoscale wires that can be used to increase sensitivity to analytes, for example, in physiologically relevant conditions. For example, the polymer may have an average pore size comparable in size to an analyte. Accordingly, in some cases, the nanoscale wires can be used as sensors, even in ionic solutions, e.g., under physiologically relevant conditions. Other aspects of the invention include assays, sensors, kits, and/or other devices that include such nanoscale wires, methods of making and/or using such nanoscale wires, or the like.
Type:
Application
Filed:
April 1, 2016
Publication date:
March 29, 2018
Inventors:
Charles M. Lieber, Ning Gao, Wei Zhou, Xiaocheng Jiang, Teng Gao, Xiao Yang
Abstract: There is provided a nanopore sensor including cis and trans fluidic reservoirs. A nanopore is provided in a support structure separating the cis and trans reservoirs. The nanopore has an inlet in fluidic connection with the cis fluidic reservoir and an outlet in fluidic connection with the trans fluidic reservoir. The cis fluidic reservoir has a fluidic access resistance, RC, the trans fluidic reservoir has a fluidic access resistance, RT, and the nanopore has a fluidic resistance, RP. RP is of the same order of magnitude as RT and both RP and RT are at least an order of magnitude greater than RC. An electrical transduction element is disposed at a nanopore sensor site that exposes the transduction element to the trans reservoir. An electrical circuit is connected to the electrical transduction element for producing an electrical signal indicative of changes in electrical potential local to the trans reservoir.
Type:
Grant
Filed:
June 14, 2021
Date of Patent:
May 9, 2023
Assignee:
President and Fellows of Harvard College
Abstract: One aspect of the invention provides a nanoscale wire that has improved sensitivity, for example, as the carrier concentration in the wire is controlled by an external gate voltage. In one set of embodiments, the nanoscale wire has a Debye screening length that is greater than the average cross-sectional dimension of the nanoscale wire when the nanoscale wire is exposed to a solution suspected of containing an analyte. In certain instances, the Debye screening length associated with the carriers inside nanoscale wire may be adjusted by adjusting the voltage, for example, a gate voltage applied to an FET structure. In some cases, the nanoscale wire can be operated under conditions where the carriers in the nanoscale wire are depleted and the nanoscale wire has a conductance that is not linearly proportional to the voltage applied to the nanoscale wire sensor device, for example, via a gate electrode.
Type:
Grant
Filed:
September 18, 2013
Date of Patent:
January 3, 2017
Assignee:
President and Fellows of Harvard College
Inventors:
Charles M. Lieber, Xuan Gao, Gengfeng Zheng
Abstract: The present invention generally relates to nanoscale wires and tissue engineering. Systems and methods are provided in various embodiments for preparing cell scaffolds that can be used for growing cells or tissues, where the cell scaffolds comprise nanoscale wires. In some cases, the nanoscale wires can be connected to electronic circuits extending externally of the cell scaffold. Such cell scaffolds can be used to grow cells or tissues which can be determined and/or controlled at very high resolutions, due to the presence of the nanoscale wires, and such cell scaffolds will find use in a wide variety of novel applications, including applications in tissue engineering, prosthetics, pacemakers, implants, or the like. This approach thus allows for the creation of fundamentally new types of functionalized cells and tissues, due to the high degree of electronic control offered by the nanoscale wires and electronic circuits.
Type:
Application
Filed:
September 4, 2013
Publication date:
March 13, 2014
Applicant:
President and Fellows of Harvard College
Abstract: The present invention generally relates to nanoscale wire devices and methods for use in determining nucleic acids or other analytes suspected to be present in a sample. For example, a nanoscale wire device can be used to detect single base mismatches within a nucleic acid (e.g., by determining association and/or dissociation rates). In one aspect, dynamical information such as a binding constant, an association rate, and/or a dissociation rate, can be determined between an analyte and a binding partner immobilized relative to a nanoscale wire. In some cases, the nanoscale wire includes a first portion comprising a metal-semiconductor compound, and a second portion that does not include a metal-semiconductor compound. The binding partner, in some embodiments, is immobilized relative to at least the second portion of the nanoscale wire, and the size of the second portion of the nanoscale wire may be minimized and/or controlled in some instances.
Type:
Grant
Filed:
June 11, 2007
Date of Patent:
August 11, 2015
Assignee:
President and Fellows of Harvard College
Inventors:
Charles M. Lieber, Ying Fang, Fernando Patolsky
Abstract: A system and method for manipulating and processing nanowires in solution with arrays of holographic optical traps. The system and method of the present invention is capable of creating hundreds of individually controlled optical traps with the ability to manipulate objects in three dimensions. Individual nanowires with cross-sections as small as 20 nm and lengths exceeding 20 ?m are capable of being isolated, translated, rotated and deposited onto a substrate with holographic optical trap arrays under conditions where single traps have no discernible influence. Spatially localized photothermal and photochemical processes induced by the well-focused traps can also be used to melt localized domains on individual nanowires and to fuse nanowire junctions.
Type:
Grant
Filed:
January 11, 2006
Date of Patent:
August 10, 2010
Assignees:
New York University, Harvard University
Inventors:
David G. Grier, Ritesh Agarwal, Guihua Yu, Charles M. Lieber, Kosta Ladavac, Yael Roichman
Abstract: The present invention generally relates to nanoscale wires and tissue engineering. Systems and methods are provided in various embodiments for preparing cell scaffolds that can be used for growing cells or tissues, where the cell scaffolds comprise nanoscale wires. In some cases, the nanoscale wires can be connected to electronic circuits extending externally of the cell scaffold. Such cell scaffolds can be used to grow cells or tissues which can be determined and/or controlled at very high resolutions, due to the presence of the nanoscale wires, and such cell scaffolds will find use in a wide variety of novel applications, including applications in tissue engineering, prosthetics, pacemakers, implants, or the like. This approach thus allows for the creation of fundamentally new types of functionalized cells and tissues, due to the high degree of electronic control offered by the nanoscale wires and electronic circuits.
Abstract: The present invention generally relates to nanoscale wires and, in particular, to nanoscale wires with heterojunctions, such as tip-localized homo- or heterojunctions. In one aspect, the nanoscale wire may include a core, an inner shell surrounding the core, and an outer shell surrounding the inner shell. The outer shell may also contact the core, e.g., at an end portion of the nanoscale wire. In some cases, such nanoscale wires may be used as electrical devices. For example a p-n junction may be created where the inner shell is electrically insulating, and the core and the outer shell are p-doped and n-doped. Other aspects of the present invention generally relate to methods of making or using such nanoscale wires, devices, or kits including such nanoscale wires, or the like.
Type:
Application
Filed:
October 29, 2015
Publication date:
December 7, 2017
Inventors:
Charles M. Lieber, Ruixuan Gao, Max Nathan Mankin, Robert Day, Hong-Gyu Park, You-Shin No