Search Patents
  • Patent number: 11664504
    Abstract: A method of producing electrical power includes: a cathode having a porphyrin precursor attached to a substrate, and having a first enzyme, wherein the first enzyme reduces oxygen; an anode having a first region of an anode substrate and having a gold nanoparticle composition located thereon, and having a second region of the anode substrate having an enzyme composition located thereon, wherein the enzyme composition includes a second enzyme, wherein the first region and second region are separate regions; and a neutral fuel liquid in contact with the anode and cathode, the neutral fuel liquid having a neutral pH and a fuel reagent; and operating the fuel cell to produce electrical power with the neutral fuel liquid having the neutral pH and the fuel reagent.
    Type: Grant
    Filed: August 19, 2021
    Date of Patent: May 30, 2023
    Assignee: CFD Research Corporation
    Inventors: Mary Arugula, Erica Wagner Pinchon, Sameer Singhal, Yevgenia Ulyanova
  • Patent number: 8246720
    Abstract: An electrostatic aerosol concentrator includes an airflow chamber with alternately energized and grounded electrode elements that work in concert to impart radial inward motion to charged aerosol particles and focusing them toward an enriched aerosol outlet. Aerosol particles entering the airflow chamber may carry a positive or negative charge naturally, or a charge may be induced on the particles using a charging section located upstream of the aerosol inlet. Natural or induced charges on the aerosol particles may be used to selectively concentrate subpopulations of aerosol particles from a mixture of particles. For example, bacterial spores or aerosolized viruses may be selectively enriched without concentrating other aerosol particles.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: August 21, 2012
    Assignee: CFD Research Corporation
    Inventors: Kapil Pant, Shivshankar Sundaram, Yi Wang
  • Patent number: 9291614
    Abstract: A method of assaying wound healing can include: growing cells on the matrix in the first flow channel; introducing an agent that removes the matrix from the junction; introducing a matrix material into the second flow channel so as to form the second matrix in the second flow channel and junction; and detecting cellular migration into the junction onto the second matrix. The agent that removes the matrix can include a biomolecule or chemical agent. The method can include removing cells in the matrix in the junction before introducing the matrix material into the second flow channel. A bioactive agent can be introduced into the junction to determine if it modulates cellular migration and/or clot formation into the intersection openings of tissue and vascular channels.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: March 22, 2016
    Assignee: CFD RESEARCH CORPORATION
    Inventors: Balabhaskar Prabhakarpandian, Kapil Pant
  • Patent number: 9784727
    Abstract: A method of assaying wound healing can include: growing cells on the matrix in the first flow channel; introducing an agent that removes the matrix from the junction; introducing a matrix material into the second flow channel so as to form the second matrix in the second flow channel and junction; and detecting cellular migration into the junction onto the second matrix. The agent that removes the matrix can include a biomolecule or chemical agent. The method can include removing cells in the matrix in the junction before introducing the matrix material into the second flow channel. A bioactive agent can be introduced into the junction to determine if it modulates cellular migration and/or clot formation into the intersection openings of tissue and vascular channels.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: October 10, 2017
    Assignee: CFD Research Corporation
    Inventors: Balabhaskar Prabhakarpandian, Kapil Pant
  • Publication number: 20140255961
    Abstract: A method of assaying wound healing can include: growing cells on the matrix in the first flow channel; introducing an agent that removes the matrix from the junction; introducing a matrix material into the second flow channel so as to form the second matrix in the second flow channel and junction; and detecting cellular migration into the junction onto the second matrix. The agent that removes the matrix can include a biomolecule or chemical agent. The method can include removing cells in the matrix in the junction before introducing the matrix material into the second flow channel. A bioactive agent can be introduced into the junction to determine if it modulates cellular migration and/or clot formation into the intersection openings of tissue and vascular channels.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Applicant: CFD Research Corporation
    Inventors: Balabhaskar Prabhakarpandian, Kapil Pant
  • Patent number: 7842006
    Abstract: The present invention is an ultrasonic thrombectomy catheter that produces physical forces (shear rates) strong enough to emulsify obstructions such as thrombi and emboli without causing damage to arterial walls. This is accomplished by properly arranging piezoelectric transducers within a catheter and a tubular catheter head separated by a gap to generate acoustic streaming that simultaneously emulsifies the obstruction and sweeps resulting debris into a catheter lumen for removal. The open gap may be formed by supporting struts that connect the catheter to the catheter head. The design of the catheter tip allows the fabrication of catheters capable of removing partial or complete blockages from arteries and other vessels having diameters as small as 2 mm.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: November 30, 2010
    Assignee: CFD Research Corporation
    Inventors: Guiren Wang, Shivshankar Sundaram, Kapil Pant, Jianjun Feng, Peter Storm
  • Patent number: 8158409
    Abstract: A microfluidically-controlled transmission mode nanoscal surface plasmonics sensor device comprises one or more arrays of aligned nanochannels in fluid communication with inflowing and outflowing fluid handling manifolds that control the flow of fluid through the array(s). Fluid comprising a sample for analysis is moved from an inlet manifold, through the nanochannel array, and out through an exit manifold. The fluid may also contain a reagent used to modify the interior surfaces of the nanochannels, and/or a reagent required for the detection of an analyte.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: April 17, 2012
    Assignees: CFD Research Corporation, University of Pittsburgh
    Inventors: Jianjun Wei, Sameer Singhal, David Hennessey Waldeck, Matthew Joseph Kofke
  • Publication number: 20140251813
    Abstract: An analyte selection device can include: a body defining a fluid channel having a channel inlet and channel outlet; a bipolar electrode (BPE) between the inlet and outlet; one of an anode or cathode electrically coupled with the BPE on a channel inlet side of the BPE and the other of the anode or cathode electrically coupled with the BPE on a channel outlet side of the BPE; and an electronic system operably coupled with the anode and cathode so as to polarize the BPE. The fluid channel can have any shape or dimension. The channel inlet and channel outlet can be longitudinal or lateral with respect to the longitudinal axis of the channel. The BPE can be any metallic member, such as a flat plate on a wall or mesh as a barrier BPE. The anode and cathode can be located at a position that polarizes the BPE.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Applicant: CFD Research Corporation
    Inventors: Yi Wang, Hongjun Song, Kapil Pant
  • Patent number: 7998328
    Abstract: Methods and apparatus for the micro-scale, dielectrophoretic separation of particles are provided. Fluid suspensions of particles are sorted and separated by dielectrophoretic separation chambers that have at least two consecutive, electrically coupled planar electrodes separated by a gap in a fluid flow channel. The gap distance as well as applied potential can be used to control the dielectrophoretic forces generated. Using consecutive, electrically coupled electrodes rather than electrically coupled opposing electrodes facilitates higher flow volumes and rates. The methods and apparatus can be used, for example, to sort living, damaged, diseased, and/or dead cells and functionalized or ligand-bound polymer beads for subsequent identification and/or analysis.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: August 16, 2011
    Assignee: CFD Research Corporation
    Inventors: Jianjun Feng, Guiren Wang, Sivaramakrishnan Krishnamoorthy, Kapil Pant, Shivshankar Sundaram
  • Patent number: 11497944
    Abstract: A door breach device can include: an elongate shaft having a first end and an opposite second end; a pivot mechanism at the first end of the shaft; a spearhead rotatably coupled with the pivot mechanism and having a tip on a tip-side of the pivot mechanism and having a shaft cavity on a shaft-side, where the shaft cavity is adapted to receive the shaft therein; a restraint slidably received on the shaft-side of the spearhead and on the shaft; a handle protruding from the shaft; and a hitch at the second end of the shaft. A method of breaching a door can include: forcing the spearhead through a door until the restraint releases the spearhead and the spearhead rotates by the pivot mechanism so as to form an angle with the shaft; and pulling the spearhead against the door until the door is breached.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: November 15, 2022
    Assignee: CFD Research Corporation
    Inventors: Zachary William Wright, William Christopher Krolick, Wyatt Gilbert Ramos
  • Patent number: 8940494
    Abstract: Methods of assaying the leukocyte adhesion cascade (LAC) and monitoring leukocyte rolling, adhesion, and/or migration can be implemented with an apparatus that includes an idealized microvascular network (IMN) of one or more interconnected idealized flow channels in fluid communication through a porous wall with a tissue space (e.g., idealized tissue space). The methods of assaying the LAC can be implemented with means for quantifying modulation of the leukocyte adhesion cascade. Methods of assaying the LAC can be implemented with the device and one or more active agents to monitor leukocyte rolling, adhesion, and/or migration in the presence of absence of the active agent. Migration can be through the idealized flow channels, through the porous wall, and/or into the tissue space.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: January 27, 2015
    Assignee: CFD Research Corporation
    Inventors: Balabhaskar Prabhakarpandian, Kapil Pant
  • Patent number: 7428848
    Abstract: The present invention is an electrostatic collector for low cost, high throughput, high efficiency sampling and concentration of bioaerosols. The device is small enough to be portable and can be contained within or placed on the wall of a typical office or hospital building. The collector comprises one or more collector modules, each having an ionizing electrode, a conical outer electrode, a wet collection electrode, and a liquid collection system. Airflow through a collector module may be partially blocked to enhance the collection of smaller particles and the collection electrode may comprise multiple, programmable electrodes to focus particle deposition onto a smaller area. Particles are collected into a small volume of liquid to facilitate subsequent analysis by an attached analyzer or at a remote site.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: September 30, 2008
    Assignee: CFD Research Corporation
    Inventors: Kapil Pant, Guiren Wang, Jianjun Feng, Shankar Sundaram
  • Patent number: 10012640
    Abstract: A cell culture assay device can include: a substrate having a plurality of discrete microfluidic networks and a plurality of wells over the discrete microfluidic networks, each discrete microfluidic network having one or more wells fluidly coupled thereto, the wells extending upward from the discrete microfluidic networks; and a manifold body coupled with the substrate and having at least one fluid conduit pair for each microfluidic network and/or each well, each fluid conduit pair including a fluid inlet conduit and a fluid outlet conduit fluidly coupled to a corresponding microfluidic network and/or well. The substrate can be formed from a substrate base having the microfluidic networks coupled to a well plate having the wells associated with the microfluidic networks.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: July 3, 2018
    Assignee: CFD RESEARCH CORPORATION
    Inventors: Kapil Pant, Balabhaskar Prabhakarpandian
  • Patent number: 9784710
    Abstract: An analyte selection device can include: a body defining a fluid channel having a channel inlet and channel outlet; a bipolar electrode (BPE) between the inlet and outlet; one of an anode or cathode electrically coupled with the BPE on a channel inlet side of the BPE and the other of the anode or cathode electrically coupled with the BPE on a channel outlet side of the BPE; and an electronic system operably coupled with the anode and cathode so as to polarize the BPE. The fluid channel can have any shape or dimension. The channel inlet and channel outlet can be longitudinal or lateral with respect to the longitudinal axis of the channel. The BPE can be any metallic member, such as a flat plate on a wall or mesh as a barrier BPE. The anode and cathode can be located at a position that polarizes the BPE.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: October 10, 2017
    Assignee: CFD Research Corporation
    Inventors: Yi Wang, Hongjun Song, Kapil Pant
  • Patent number: 9878090
    Abstract: A micropump that pumps liquid using electrothermally-induced flow is described, along with a corresponding self-regulating pump and infusion pump. The micropump has applications in microfluidic systems, such as biochips. The self-regulating infusion pump is useful for administration of large and small volumes of liquids such as drugs to patients and can be designed for a wide range of flow rates by combining multiple micropumps in one infusion pump system. The micropump uses electrode sequences on opposing surfaces of a flow chamber that are staggered with respect to each other. The opposing surfaces include staggered electrodes that have the same phase and same electrode sequence. As such electrodes with the same phase are staggered and not eclipsed.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: January 30, 2018
    Assignee: CFD Research Corporation
    Inventors: Sivaramakrishnan Krishnamoorthy, Guiren Wang, Jianjun Feng, Yi Wang
  • Patent number: 11782051
    Abstract: A method of creating a reperfusion injury can include: providing a cell culture device having an internal chamber with at least one port coupled to a perfusion modulating system capable of modulating perfusion in the internal chamber, wherein the internal chamber includes a cell culture; perfusing a fluid through the internal chamber with the perfusion modulating system, wherein the perfusion modulating system includes at least one pump; reducing fluid flow through the internal chamber; reperfusing fluid flow through the internal chamber; and creating a reperfusion injury in the cell culture by the reperfusion of the fluid flow through the internal chamber. The cell culture includes at least one type of tissue cell. The cell culture can include a tissue construct formed of hydrogel and/or extracellular matrix.
    Type: Grant
    Filed: August 17, 2020
    Date of Patent: October 10, 2023
    Assignee: CFD RESEARCH CORPORATION
    Inventors: Balabhaskar Prabhakarpandian, Kapil Pant, Kevin Daniel Roehm, Ketan Harendrakumar Bhatt
  • Patent number: 7107987
    Abstract: A spacer for delivering a medication spray from an inhaler includes a first conical body joined to a second conical body, forming a continuous spray conduit through first and second internal chambers of the respective first and second conical bodies. A mouthpiece is formed in the proximal end of the first conical body. A spray inlet for attachment to the inhaler is formed at the distal end of the second conical body. A plurality of air inlets are placed downstream of the medication inlet proximate to, or in, the large diameter distal end surface of the first conical body. Recirculation zones are created in the first and second chambers, to force the medication spray into a central airflow path through the spray conduit, minimizing particle deposition by contract with the walls of the spacer.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: September 19, 2006
    Assignee: CFD Research Corporation
    Inventors: Shivshankar Sundaram, Balabhaskar Prabhakarpandian, Vinod Makhijani, Andrzej Przekwas
  • Publication number: 20080213631
    Abstract: The present invention is a flexible hybrid biofuel cell power strip for use in low power applications (less than one Watt) such as trickle charging to extend the charge of conventional batteries or to power devices such as microsensors, micropumps and miniaturized medial devices. The power strip anode comprises carbon nanotubes (CNTs) that transfer electrons directly from the active center of an oxidation-reduction (redox) enzyme to a flexible, conductive anode substrate. This allows the building of surface architectures with pore structures customized for specific applications and enzyme substrate-containing media. The cathode comprises a catalytic layer of transition metal nanoparticle catalyst in contact with air or other source of oxygen. The flexibility of the power strip allows it to be shaped into a wide variety of conformations and applications, including attachment to or implantation within living organisms.
    Type: Application
    Filed: October 5, 2007
    Publication date: September 4, 2008
    Applicant: CFD RESEARCH CORPORATION
    Inventors: Sivaramakrishnan Krishnamoorthy, Aditya Bedekar, Jianjun Wei
  • Patent number: 10564148
    Abstract: Disclosed herein are media for culture of cells, tissues, and/or organs. The media formulations disclosed herein can be used to support growth, viability, and/or function of one or more than one cell type, tissue, or organ. In some embodiments, one or more cell types, tissues, organ devices, and/or organs are contacted with a disclosed culture medium under conditions sufficient to support growth, viability, and/or function of the cell types, tissues, and/or organs. The disclosed media can be used in methods of culturing multiple cell types, and in some examples, is used in a platform device including one or more organ devices, for example, by circulating the medium through the one or more organ devices in the platform.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: February 18, 2020
    Assignees: Triad National Security, LLC, CFD Research Corporation
    Inventors: Rashi Iyer, Jennifer F. Harris, Jen-Huang Huang, Pulak Nath, Andrzej Przekwas
  • Patent number: 11094945
    Abstract: An electrolyte composition can be capable of becoming molten when heated sufficiently. The electrolyte can include at least one lithium halide salt; and at least one lithium non-halide salt combined with the at least one lithium halide salt so as to form an electrolyte composition capable of becoming molten when above a melting point about 350° C. A lithium halide salt includes a halide selected from F and Cl. A first lithium non-halide salt can be selected from the group consisting of LiVO3, Li2SO4, LiNO3, and Li2MoO4. A thermal battery can include the electrolyte composition, such as in the cathode, anode, and/or separator region therebetween. The battery can discharge electricity by having the electrolyte composition at a temperature so as to be a molten electrolyte.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: August 17, 2021
    Assignee: CFD Research Corporation
    Inventors: Pyoungho Choi, Sameer Singhal
Narrow Results

Filter by US Classification