Search Patents
  • Patent number: 7956427
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: June 7, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Publication number: 20120267604
    Abstract: Kinked nanowires are used for measuring electrical potentials inside simple cells. An improved intracellular entrance is achieved by modifying the kinked nanowires with phospholipids.
    Type: Application
    Filed: September 24, 2010
    Publication date: October 25, 2012
    Inventors: Bozhi Tian, Ping Xie, Thomas J. Kempa, Charles M. Lieber, Itzhaq Cohen-Karni, Quan Qing, Xiaojie Duan
  • Patent number: 8399339
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized Nanodetector devices are described.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: March 19, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 9297796
    Abstract: Kinked nanowires are used for measuring electrical potentials inside simple cells. An improved intracellular entrance is achieved by modifying the kinked nanowires with phospholipids.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 29, 2016
    Assignee: President and Fellows of Harvard College
    Inventors: Bozhi Tian, Ping Xie, Thomas J. Kempa, Charles M. Lieber, Itzhaq Cohen-Karni, Quan Qing, Xiaojie Duan
  • Patent number: 7619290
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: November 17, 2009
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7385267
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: June 10, 2008
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenji Liang
  • Patent number: 7256466
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: August 14, 2007
    Assignee: President & Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 7911009
    Abstract: Electrical devices comprised of nanowires are described, along with methods of their manufacture and use. The nanowires can be nanotubes and nanowires. The surface of the nanowires may be selectively functionalized. Nanodetector devices are described.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: March 22, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongkun Park, Qingqiao Wei, Yi Cui, Wenjie Liang
  • Patent number: 5897945
    Abstract: Metal oxide nanorods and composite materials containing such nanorods. The metal oxide nanorods have diameters between 1 and 200 nm and aspect ratios between 5 and 2000.
    Type: Grant
    Filed: February 26, 1996
    Date of Patent: April 27, 1999
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Peidong Yang
  • Publication number: 20020146714
    Abstract: A method is described for multiplexed detection of polymorphic sites and direct determination of haplotypes in DNA fragments, DNA, and genomic DNA, using single-walled carbon nanotube (SWNT) atomic force microscopy (AFM) probes. This technique has applications for haplotyping in population-based genetic disease studies and other genomic screening.
    Type: Application
    Filed: September 12, 2001
    Publication date: October 10, 2002
    Inventors: Charles M. Lieber, Adam T. Woolley, Jong-In Hahm, David Housman
  • Patent number: 6190634
    Abstract: A nanoscale carbide article consisting essentially of covalently bounded elements M1, M2, and C having the molar ratio M1:M2:C::1:y:x, wherein the article has an aspect ratio of between 10 and 1000 and has a shorter axis of between 1 and 40 nanometers.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: February 20, 2001
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Hongjie Dai
  • Publication number: 20060175601
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Application
    Filed: June 30, 2005
    Publication date: August 10, 2006
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David Smith, Deli Wang, Zhaohui Zhong
  • Publication number: 20070281156
    Abstract: The present invention relates generally to sub-microelectronic circuitry, and more particularly to nanometer-scale articles, including nanoscale wires which can be selectively doped at various locations and at various levels. In some cases, the articles may be single crystals. The nanoscale wires can be doped, for example, differentially along their length, or radially, and either in terms of identity of dopant, concentration of dopant, or both. This may be used to provide both n-type and p-type conductivity in a single item, or in different items in close proximity to each other, such as in a crossbar array. The fabrication and growth of such articles is described, and the arrangement of such articles to fabricate electronic, optoelectronic, or spintronic devices and components.
    Type: Application
    Filed: March 21, 2006
    Publication date: December 6, 2007
    Applicant: President and Fellows of Harvard College
    Inventors: Charles Lieber, Xiangfeng Duan, Yi Cui, Yu Huang, Mark Gudiksen, Lincoln Lauhon, Jianfang Wang, Hongkun Park, Qingqiao Wei, Wenjie Liang, David Smith, Deli Wang, Zhaohui Zhong
  • Patent number: 6716409
    Abstract: A method of fabricating SWNT probes for use in atomic force microscopy is disclosed. In one embodiment, the SWNT's are fabricated using a metallic salt solution. In another embodiment, the SWNT's are fabricated using metallic colloids.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: April 6, 2004
    Assignee: President and Fellows of the Harvard College
    Inventors: Jason H. Hafner, Chin Li Cheung, Charles M. Lieber
  • Publication number: 20030200521
    Abstract: An architecture for nanoscale electronics is disclosed. The architecture comprises arrays of crossed nanoscale wires having selectively programmable crosspoints. Nanoscale wires of one array are shared by other arrays, thus providing signal propagation between the arrays. Nanoscale signal restoration elements are also provided, allowing an output of a first array to be used as an input to a second array. Signal restoration occurs without routing of the signal to non-nanoscale wires.
    Type: Application
    Filed: January 17, 2003
    Publication date: October 23, 2003
    Applicants: CALIFORNIA INSTITUTE OF TECHNOLOGY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Andre DeHon, Charles M. Lieber
  • Patent number: 7918935
    Abstract: Nanowires are disclosed which comprise transition metal oxides. The transition metal oxides may include oxides of group II, group III, group IV and lanthanide metals. Also disclosed are methods for making nanowires which comprise injecting decomposition agents into a solution comprising solvents and metallic alkoxide or metallic salt precursors.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: April 5, 2011
    Assignee: President and Fellows of Harvard College
    Inventors: Hongkun Park, Charles M. Lieber, Jeffrey J. Urban, Qian Gu, Wan Soo Yun
  • Publication number: 20040113139
    Abstract: A memory array comprising nanoscale wires is disclosed. The nanoscale wires are addressed by means of controllable regions axially and/or radially distributed along the nanoscale wires. In a one-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires and microscale wires. In a two-dimensional embodiment, memory locations are defined by crossing points between perpendicular nanoscale wires. In a three-dimensional embodiment, memory locations are defined by crossing points between nanoscale wires located in different vertical layers.
    Type: Application
    Filed: July 24, 2003
    Publication date: June 17, 2004
    Inventors: Andre DeHon, Charles M. Lieber, Patrick D. Lincoln, John E. Savage
  • Patent number: 7500213
    Abstract: An architecture for nanoscale electronics is disclosed. The architecture comprises arrays of crossed nanoscale wires having selectively programmable crosspoints. Nanoscale wires of one array are shared by other arrays, thus providing signal propagation between the arrays. Nanoscale signal restoration elements are also provided, allowing an output of a first array to be used as an input to a second array. Signal restoration occurs without routing of the signal to non-nanoscale wires.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: March 3, 2009
    Assignees: California Institute of Technology, President and Fellows of Harvard College
    Inventors: André DeHon, Charles M. Lieber
  • Patent number: 7073157
    Abstract: An architecture for nanoscale electronics is disclosed. The architecture comprises arrays of crossed nanoscale wires having selectively programmable crosspoints. Nanoscale wires of one array are shared by other arrays, thus providing signal propagation between the arrays. Nanoscale signal restoration elements are also provided, allowing an output of a first array to be used as an input to a second array. Signal restoration occurs without routing of the signal to non-nanoscale wires.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: July 4, 2006
    Assignees: California Institute of Technology, President and Fellows of Harvard College
    Inventors: André DeHon, Charles M. Lieber
  • Publication number: 20020130353
    Abstract: Electrical devices comprised of nanoscopic wires are described, along with methods of their manufacture and use. The nanoscopic wires can be nanotubes, preferably single-walled carbon nanotubes. They can be arranged in crossbar arrays using chemically patterned surfaces for direction, via chemical vapor deposition. Chemical vapor deposition also can be used to form nanotubes in arrays in the presence of directing electric fields, optionally in combination with self-assembled monolayer patterns. Bistable devices are described.
    Type: Application
    Filed: October 24, 2001
    Publication date: September 19, 2002
    Inventors: Charles M. Lieber, Thomas Rueckes, Ernesto Joselevich, Kevin Kim
Narrow Results

Filter by US Classification