Patents Represented by Attorney George Sai-Halasz
  • Patent number: 7935588
    Abstract: NFET and PFET devices with separately strained channel regions, and methods of their fabrication is disclosed. A stressing layer overlays the device in a manner that the stressing layer is non-conformal with respect the gate. The non-conformality of the stressing layer increases the amount of stress that is imparted onto the channel of the device, in comparison to stressing layers which are conformal. The method for overlaying in a non-conformal manner includes non-conformal deposition techniques, as well as, conformal depositions where subsequently the layer is turned into a non-conformal one by etching.
    Type: Grant
    Filed: March 6, 2007
    Date of Patent: May 3, 2011
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Xiao Hu Liu
  • Patent number: 7928875
    Abstract: A superconducting Analog-to-Digital Converter (ADC) employing rapid-single-flux-quantum (RSFQ) logic is disclosed. The ADC has only superconductor active components, and is characterized as being an Nth-order bandpass sigma-delta ADC, with the order “N” being at least 2. The ADC includes a sequence of stages, which stages include feedback loops and resonators. The ADC further includes active superconducting components which directionally couple resonator pairs of adjacent stages. The active superconducting components electrically shield the higher order resonator from the lower order resonator. These active superconductor components include a superconducting quantum interference device (SQUID) amplifier, which is inductively coupled to the higher order resonator, and may include a Josephson transmission line (JTL), which is configured to electrically connect the SQUID amplifier to the lower order resonator. The first stage of ADC may employ an implicit feedback loop.
    Type: Grant
    Filed: August 26, 2009
    Date of Patent: April 19, 2011
    Assignee: Hypres, Inc.
    Inventor: Dmitri Kirichenko
  • Patent number: 7880243
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators and metal containing gates. The metal layers of the gates in both the NFET and PFET devices have been fabricated from a single common metal layer. Due to the single common metal, device fabrication is simplified, requiring a reduced number of masks. Also, as a further consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted to each other in direct physical contact. Device thresholds are adjusted by the choice of the common metal material and oxygen exposure of the high-k dielectric. Threshold values are aimed for low power consumption device operation.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: February 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7867866
    Abstract: An SOI FET device with improved floating body is proposed. Control of the body potential is accomplished by having a body doping concentration next to the source electrode higher than the body doping concentration next to the drain electrode. The high source-side dopant concentration leads to elevated forward leakage current between the source electrode and the body, which leakage current effectively locks the body potential to the source electrode potential. Furthermore, having the source-to-body junction capacitance larger than the drain-to-body junction capacitance has additional advantages in device operation. The device has no structure fabricated for the purpose of electrically connecting the body potential to other elements of the device.
    Type: Grant
    Filed: January 4, 2010
    Date of Patent: January 11, 2011
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Tak Hung Ning
  • Patent number: 7863126
    Abstract: A method for fabricating a CMOS structure is disclosed. The method includes the blanket disposition of a high-k gate insulator layer in an NFET device and in a PFET device, and the implementation of a gate metal layer over the NFET device. This is followed by a blanket disposition of an Al layer over both the NFET device and the PFET device. The method further involves a blanket disposition of a shared gate metal layer over the Al layer. When the PFET device is exposed to a thermal annealing, the high-k dielectric oxidizes the Al layer, thereby turning the Al layer into a PFET interfacial control layer, while in the NFET device the Al becomes a region of the metal gate.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: January 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Michael P. Chudzik, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7807525
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators, metal containing gates, and threshold adjusting cap layers. The NFET gate stack and the PFET gate stack each has a portion which is identical in the NFET device and in the PFET device. This identical portion contains at least a gate metal layer and a cap layer. Due to the identical portion, device fabrication is simplified, requiring a reduced number of masks. Furthermore, as a consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted with each other in direct physical contact. Device thresholds are further adjusted by oxygen exposure of the high-k dielectric. Threshold values are aimed for low power consumption device operation.
    Type: Grant
    Filed: August 10, 2009
    Date of Patent: October 5, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7790566
    Abstract: A method is disclosed for preparing a surface of a Group III-Group V compound semiconductor for epitaxial deposition. The III-V semiconductor surface is treated with boron (B) at a temperature of between about 250° C. and about 350° C. A suitable form for supplying B for the surface treatment is diborane. The B treatment can be followed by epitaxial growth, for instance by a Group IV semiconductor, at temperatures similar to those of the B treatment. The method yields high quality heterojunction, suitable for fabricating a large variety of device structures.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Deborah Ann Neumayer
  • Patent number: 7790538
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Grant
    Filed: May 10, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Huiling Shang, Meikei Ieong, Jack Oon Chu, Kathryn W. Guarini
  • Patent number: 7741181
    Abstract: A method for fabricating metal gate and polysilicon gate FET devices on the same chip is disclosed. The method avoids the use of two separate masks during gate stack fabrication of the differing gates. By using a single mask, tighter NFET to PFET distances can be achieved, and the fabrication process is simplified. After blanket disposing layers for the fabrication of the metal gate stack, a covering protective material layer is formed, again in blanket fashion. A block level mask is used to clear the surface for the gate insulator formation in the poly gate device regions. During oxidation, which forms the gate dielectric for the poly gate devices, the protective material prevents damage of the metal gate device regions. Following oxidation, a single common polysilicon cover is disposed in blanket manner for continuing the fabrication of the gate stacks. The protective material is selected in such a way to be either easily removable upon oxidation, or to be conductive upon oxidation.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: June 22, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Charlotte DeWan Adams, Naim Moumen, Ying Zhang
  • Patent number: 7741165
    Abstract: A structure and method of fabrication for MOSFET devices with a polycrystalline SiGe junction is disclosed. Ge is selectively grown on Si while Si is selectively grown on Ge. Alternating depositions of Ge and Si layers yield the SiGe junction. The deposited layers are doped, and subsequently the dopants outdiffused into the device body. A thin porous oxide layer between the polycrystalline Ge and Si layers enhances the isotropy of the SiGe junctions.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: June 22, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kevin Kok Chan, Robert J. Miller, Erin C. Jones, Atul Ajmera
  • Patent number: 7733253
    Abstract: A superconductor multi-level quantizer is disclosed, which quantizer includes a number N of Josephson junction (JJ) comparators connected in parallel to a common input node. The quantizer further includes at least one flux bias device. Each flux bias device is capable to adjust the flux threshold for at least one of the JJ comparators. The quantizer is so configured a feedback current from the output is capable to shift the flux threshold for each of the JJ comparators.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: June 8, 2010
    Assignee: HYPRES, Inc.
    Inventor: Dmitri Kirichenko
  • Patent number: 7728748
    Abstract: A superconducting bandpass sigma-delta Analog-to-Digital Converter (ADC) is disclosed. The ADC is characterized as being an Nth-order, having N resonators, with N being at least 2. The ADC also may have N?1 amplifiers, where the amplifiers directionally couple sequential pairs of the resonators. The ADC further includes a Josephson Junction (JJ) comparator. All N resonators connect in parallel to the JJ comparator, and the JJ comparator is providing an implicit feedback for all N resonators. A method for implementing the sigma-delta ADC without any explicit feedback loops is also disclosed.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 1, 2010
    Assignee: HYPRES, Inc.
    Inventor: Dmitri Kirichenko
  • Patent number: 7723798
    Abstract: FET device structures are disclosed with the PFET and NFET devices having high-k dielectric gate insulators, metal containing gates, and threshold adjusting cap layers. The NFET gate stack and the PFET gate stack each has a portion which is identical in the NFET device and in the PFET device. This identical portion contains at least a gate metal layer and a cap layer. Due to the identical portion, device fabrication is simplified, requiring a reduced number of masks. Furthermore, as a consequence of using a single layer of metal for the gates of both type of devices, the terminal electrodes of NFETs and PFETs can be butted with each other in direct physical contact. Device thresholds are further adjusted by oxygen exposure of the high-k dielectric. Threshold values are aimed for low power consumption device operation.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: May 25, 2010
    Assignee: International Business Machines Corporation
    Inventors: Bruce B. Doris, Eduard Albert Cartier, Barry Paul Linder, Vijay Narayanan, Vamsi Paruchuri
  • Patent number: 7714725
    Abstract: A method and system for locating a dependent by a guardian entity at a locality using RFID technology is disclosed. A RFID tag is situated with the dependent and a plurality of RFID reader devices capable of communicating with the RFID tag are distributed about the locality. A processor is directing communications between the RFID tag and the plurality of RFID reader devices, and is tracking the RFID tag. An authenticating system, which uniquely associates the RFID tag with the guardian entity, validates commands pertaining to the tracking of the RFID tag. The processor upon receiving a validated command generates a response, which includes location information regarding the dependent.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: May 11, 2010
    Inventors: Ildiko Medve, George Sai-Halasz
  • Patent number: 7696539
    Abstract: A method of fabrication and a field effect device structure are presented that reduce source/drain capacitance and allow for device body contact. A Si based material pedestal is produced, the top surface and the sidewalls of which are oriented in a way to be substantially parallel with selected crystallographic planes of the pedestal and of a supporting member. The pedestal is wet etched with an anisotropic solution containing ammonium hydroxide. The sidewalls of the pedestal become faceted forming a segment in the pedestal with a reduced cross section. The dopant concentration in the reduced cross section segment is chosen to be sufficiently high for it to provide for electrical continuity through the pedestal.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Yujun Li, Kenneth T. Settlemyer, Jr., Jochen Beintner
  • Patent number: 7678638
    Abstract: MOSFET devices suitable for operation at gate lengths less than about 40 nm, and methods of their fabrication is being presented. The MOSFET devices include a ground plane formed of a monocrystalline Si based material. A Si based body layer is epitaxially disposed over the ground plane. The body layer is doped with impurities of opposite type than the ground plane. The gate has a metal with a mid-gap workfunction directly contacting a gate insulator layer. The gate is patterned to a length of less than about 40 nm, and possibly less than 20 nm. The source and the drain of the MOSFET are doped with the same type of dopant as the body layer. In CMOS embodiments of the invention the metal in the gate of the NMOS and the PMOS devices may be the same metal.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: March 16, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Bruce B. Doris, Meikei Ieong, Jing Wang
  • Patent number: 7666741
    Abstract: A method is presented for fabricating a non-planar field effect device. The method includes the production of a Si based material Fin structure that has a top surface substantially in parallel with a {111} crystallographic plane of the Si Fin structure, and the etching of the Si Fin structure with a solution which contains ammonium hydroxide (NH4OH). In this manner, due to differing etch rates in ammonium hydroxide of various Si based material crystallographic planes, the corners on the Fin structure become clipped, and angles between the horizontal and vertical planes of the Fin structure increase. A FinFET device with clipped, or rounded, corners is then fabricated to completion. In a typical embodiment the FinFET device is selected to be a silicon-on-insulator (SOI) device.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Yujun Li, Kenneth T. Settlemyer, Jr., Jochen Beintner
  • Patent number: 7659153
    Abstract: A field effect device is disclosed which has a body formed of a crystalline semiconductor material and has at least one vertically oriented section and at least one horizontally oriented section. The device is produced in SOI technology by fabricating first a formation of the device in masking insulators, and then transferring this formation through several etching steps into the SOI layer. The segmented field effect device combines FinFET, or fully depleted silicon-on-insulator FETs, type devices with fully depleted planar devices. This combination allows device width control with FinFET type devices. The segmented field effect device gives high current drive for a given layout area. The segmented field effect devices allow for the fabrication of high performance processors.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Ying Zhang, Bruce B. Doris, Thomas Safron Kanarsky, Meikei Ieong, Jakub Tadeusz Kedzierski
  • Patent number: 7655983
    Abstract: An SOI FET device with improved floating body is proposed. Control of the body potential is accomplished by having a body doping concentration next to the source electrode higher than the body doping concentration next to the drain electrode. The high source-side dopant concentration leads to elevated forward leakage current between the source electrode and the body, which leakage current effectively locks the body potential to the source electrode potential. Furthermore, having the source-to-body junction capacitance larger than the drain-to-body junction capacitance has additional advantages in device operation. The device has no structure fabricated for the purpose of electrically connecting the body potential to other elements of the device.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: February 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Tak Hung Ning
  • Patent number: 7598897
    Abstract: A superconducting Analog-to-Digital Converter (ADC) employing rapid-single-flux-quantum (RSFQ) logic is disclosed. The ADC has only superconductor active components, and is characterized as being an Nth-order bandpass sigma-delta ADC, with the order “N” being at least 2. The ADC includes a sequence of stages, which stages include feedback loops and resonators. The ADC further includes active superconducting components which directionally couple resonator pairs of adjacent stages. The active superconducting components electrically shield the higher order resonator from the lower order resonator. These active superconductor components include a superconducting quantum interference device (SQUID) amplifier, which is inductively coupled to the higher order resonator, and may include a Josephson transmission line (JTL), which is configured to electrically connect the SQUID amplifier to the lower order resonator. The first stage of ADC may employ an implicit feedback loop.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: October 6, 2009
    Assignee: HYPRES, Inc.
    Inventor: Dmitri Kirichenko