Patents Represented by Attorney, Agent or Law Firm Scott C. Krieger
  • Patent number: 6509260
    Abstract: A method of shallow trench isolation includes preparing a substrate, including forming mesa structures thereon; forming a barrier cap on the mesa structures; forming an oxide multi-layer structure over the mesas and barrier caps, including: depositing a first oxide layer having a conventional polishing rate; depositing a second oxide layer having a low polishing rate; and depositing a third oxide layer having a conventional polishing rate, and polishing the structure to the level of the barrier cap.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: January 21, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: David R. Evans, Sheng Teng Hsu
  • Patent number: 6506637
    Abstract: A thermally stable nickel germanosilicide on SiGe integrated circuit device, and a method of making the same, is disclosed. During fabrication of the device iridium or cobalt is added at the Ni/SiGe interface to decrease the sheet resistance of the device. The device comprising nickel silicide with iridium on SiGe shows thermal stability at temperatures up to 800° C. The device comprising nickel silicide with cobalt on SiGe shows a decrease in the sheet resistance with temperature, i.e., the resistance remains low when annealing temperatures extend up to and beyond 800° C.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: January 14, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jer-shen Maa, Douglas James Tweet, Sheng Teng Hsu
  • Patent number: 6506643
    Abstract: A three-dimensional ferroelectric structure and fabrication method are provided. The ferroelectric capacitor structure permits immediate contact between a noble metal capacitor electrode and a transistor electrode. This direct connection minimizes process steps and electrical resistance between capacitor and transistor. A damascene capacitor electrode formation process makes the task of etching the noble metal less critical. Regardless of whether a noble metal capacitor electrode is used, the damascene formation process permits both larger, and more space efficient, capacitors. Further, the damascene capacitor formation process can be used to simultaneously form electrical interlevel interconnections to the transistor drain. Another variation of the invention provides for a dual damascene version of the ferroelectric capacitor.
    Type: Grant
    Filed: June 11, 1999
    Date of Patent: January 14, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, David Russell Evans
  • Patent number: 6503763
    Abstract: A MFMOS one transistor memory structure for ferroelectric non-volatile memory devices includes a high dielectric constant material such as ZrO2, HfO2, Y2O3, or La2O3, or the like, or mixtures thereof, to reduce the operation voltage and to increase the memory window and reliability of the device.
    Type: Grant
    Filed: March 27, 2001
    Date of Patent: January 7, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Sheng Teng Hsu, Hong Ying, Bruce D. Ulrich, Yanjun Ma
  • Patent number: 6503314
    Abstract: A ferroelectric and dielectric source solution for use in chemical vapor deposition processes includes a ferroelectric/dielectric chemical vapor deposition precursor; and a solvent for carrying the ferroelectric/dielectric chemical vapor deposition precursor taken from the group of solvents consisting essentially of type A solvents, including tetraglyme, triglyme, triethylenetetramine, N,N,N′,N′-tetramethylethylenediamine; N,N,N′,N′,N″,N″-pentamethyldiethylenetriamine; and 2,2′-bipyridine; type B solvents including tetrahydrofuran, butyl ethyl ether, tert-butyl ethyl ether, butyl ether, and pentyl ether; and type C solvents including iso-propanol, 2-butanol, 2-ethyl-1-hexanol, 2-pentanol, toluene, xylene and butyl acetate; and mixtures of solvent types A, B and C.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: January 7, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Wei Wei Zhuang, Sheng Teng Hsu
  • Patent number: 6495378
    Abstract: A Pb3GeO5 phase PGO thin film is provided. This film has ferroelastic properties that make it ideal for many microelectromechanical applications or as decoupling capacitors in high speed multichip modules. This PGO film is uniquely formed in a MOCVD process that permits a thin film, less than 1 mm, of material to be deposited. The process mixes Pd and germanium in a solvent. The solution is heated to form a precursor vapor which is decomposed. The method provides deposition temperatures and pressures. The as-deposited film is also annealed to enhanced the film's ferroelastic characteristics. A ferroelastic capacitor made from the present invention PGO film is also provided.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: December 17, 2002
    Assignee: Sharp Laboratories of America, Inc,
    Inventors: Tingkai Li, Fengyan Zhang, Yoshi Ono, Sheng Teng Hsu
  • Patent number: 6495401
    Abstract: A transistor structure includes a main gate silicon active region having a thickness of less than or equal to 30 nm; and auxiliary gate active regions located on either side of said main gate silicon active region, said auxiliary gate active regions being spaced a distance from said main gate active region of about 200 nm.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: December 17, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Sheng Teng Hsu
  • Patent number: 6495000
    Abstract: A system and method have been provided for an improved oxide deposition process using a DC sputtering magnetron. The invention prolongs the useful life of the anode by providing shielded electron collection surfaces, to minimize the deposition of insulator material on the anode. Specifically, the anode has a fin with a bottom electron collection surface that is shielded from the target material deposition. A small electro-magnet helps deflect the flow of electrons to the bottom surface of the fin. Vias in the fin promote the flow of electrons to the fin top surface, which is also shielded from the deposition material, even if deposition material begins to accumulate on the fin bottom surface.
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: December 17, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: James Mikel Atkinson, Hirohiko Nishiki, Patrick L. Guthrie
  • Patent number: 6496051
    Abstract: A read circuit for a multibit memory cell is provided to convert a multi-level voltage output from the multibit memory cell into the desired number of binary levels. For example, if the multibit memory cell can be programmed to have four resistance levels, which produce four output voltages respectively, the read circuit is provided with two binary outputs. For additional resistance levels, and corresponding voltage levels, additional binary outputs may be provided.
    Type: Grant
    Filed: September 6, 2001
    Date of Patent: December 17, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Sheng Teng Hsu
  • Patent number: 6495377
    Abstract: A method of fabricating a ferroelectric memory transistor includes preparing a substrate, including isolating an active region; forming a gate region; depositing an electrode plug in the gate region; depositing an oxide side wall about the electrode plug; implanting ions to form a source region and a drain region; annealing the structure to diffuse the implanted ions; depositing an intermediate oxide layer over the structure; removing the electrode plug; depositing a bottom electrode in place of the electrode plug; depositing a ferroelectric layer over the bottom electrode; depositing a top electrode over the ferroelectric layer; depositing a protective layer; depositing a passivation oxide layer over the structure; and metallizing the structure.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: December 17, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventor: Sheng Teng Hsu
  • Patent number: 6495405
    Abstract: A method is provided to optimize the channel characteristics of thin film transistors (TFTs) on polysilicon films. The method is well suited to the production of TFTs for use as drivers on liquid crystal display devices. Regions of polycrystalline silicon can be formed with different predominant crystal orientations. These crystal orientations can be selected to match the desired TFT channel orientations for different areas of the device. The crystal orientations are selected by rotating a mask pattern to a different orientation for each desired crystal orientation. The mask is used in connection with lateral crystallization ELA processes to crystallize deposited amorphous silicon films.
    Type: Grant
    Filed: January 29, 2001
    Date of Patent: December 17, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Apostolos Voutsas, John W. Hartzell, Yukihiko Nakata
  • Patent number: 6483137
    Abstract: A ferroelectric Pb5Ge3O11 (PGO) thin film is provided with a metal organic vapor deposition (MOCVD) process and RTP (Rapid Thermal Process) annealing techniques. The PGO film is substantially crystallization with c-axis orientation at temperature between 450 and 650° C. The PGO film has an average grain size of about 0.5 microns, with a deviation in grain size uniformity of less than 10%. Good ferroelectric properties are-obtained for a 150 nm thick film with Ir electrodes. The films also show fatigue-free characteristics: no fatigue was observed up to 1×109 switching cycles. The leakage currents increase with increasing applied voltage, and are about 3.6×10−7 A/cm2 at 100 kV/cm. The dielectric constant shows a behavior similar to most ferroelectric materials, with a maximum dielectric constant of about 45. These high quality MOCVD Pb5Ge3O11 films can be used for high density single transistor ferroelectric memory applications because of the homogeneity of the PGO film grain size.
    Type: Grant
    Filed: August 29, 2001
    Date of Patent: November 19, 2002
    Inventors: Tingkai Li, Fengyan Zhang, Yoshi Ono, Sheng Tang Hsu
  • Patent number: 6479304
    Abstract: An Ir combination film has been provided that is useful in forming an electrode of a ferroelectric capacitor. The combination film includes tantalum and oxygen, as well as iridium. The Ir combination film effectively prevents oxygen diffusion, and is resistant to high temperature annealing in oxygen environments. When used with an underlying Ta or TaN layer, the resulting conductive barrier also suppresses to diffusion of Ir into any underlying Si substrates. As a result, Ir silicide products are not formed, which degrade the electrode interface characteristics. That is, the Ir combination film remains conductive, not peeling or forming hillocks, during high temperature annealing processes, even in oxygen. A method for forming an Ir composite film barrier layer and Ir composite film ferroelectric electrode are also provided.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: November 12, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Jer-shen Maa, Sheng Teng Hsu
  • Patent number: 6475813
    Abstract: A method of fabricating a c-axis ferroelectric thin film includes preparing a substrate; depositing a layer of ferroelectric material by metal organic chemical vapor deposition, including using a precursor solution having a ferroelectric material concentration of about 0.1 M/L at a vaporizer temperature of between about 140° C. to 200° C.; and annealing the substrate and the ferroelectric material at a temperature between about 500° C. to 560° C. for between about 30 minutes to 120 minutes.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: November 5, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Tingkai Li, Wei Pan, Sheng Teng Hsu
  • Patent number: 6472337
    Abstract: A method of making a precursor for a thin film formed by chemical vapor deposition processes, includes mixing ZCl4 with H(tmhd)3 solvent and benzene to form a solution, where Z is an element taken from the group of elements consisting of hafnium and zirconium; refluxing the solution for twelve hours in an argon atmosphere; removing the solvents via vacuum, thereby producing a solid compound; and sublimating the compound at 200° C. in a near vacuum of 0.1 mmHg. A ZOx precursor, for use in a chemical vapor deposition process, includes a Z-containing compound taken from the group of compounds consisting of ZCl(tmhd)3 and ZCl2(tmhd)2.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: October 29, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, David R. Evans
  • Patent number: 6468901
    Abstract: An integrated circuit device, and a method of manufacturing the same, including nickel silicide on a silicon substrate fabricated with an iridium interlayer. In one embodiment the method comprises depositing an iridium (Ir) interface layer between the Ni and Si layers prior to the silicidation reaction. The thermal stability is much improved by adding the thin iridium layer. This is shown by the low junction leakage current of the ultra-shallow junction, and by the low sheet resistance of the silicide, even after annealing at 850° C.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: October 22, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Jer-shen Maa, Yoshi Ono, Fengyan Zhang
  • Patent number: 6462366
    Abstract: A method of fabricating a ferroelectric memory transistor using a lithographic process having an alignment tolerance of &dgr;, includes preparing a silicon substrate for construction of a ferroelectric gate unit; implanting boron ions to form a p-well in the substrate; isolating plural device areas on the substrate; forming a FE gate stack surround structure; etching the FE gate stack surround structure to form an opening having a width of L1 to expose the substrate in a gate region; depositing oxide to a thickness of between about 10 nm to 40 nm over the exposed substrate; forming a FE gate stack over the gate region, wherein the FE gate stack has a width of L2, wherein L2≧L1+2&dgr;; depositing a first insulating layer over the structure; implanting arsenic or phosphorous ions to form a source region and a drain region; annealing the structure; depositing a second insulating layer; and metallizing the structure.
    Type: Grant
    Filed: January 12, 2000
    Date of Patent: October 8, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Jer-shen Maa, Fengyan Zhang, Tingkai Li
  • Patent number: 6457479
    Abstract: A method of cleaning a metal oxide thin film on a silicon wafer, includes dipping the wafer in an organic solvent; drying the wafer in a nitrogen atmosphere; and stripping any photoresist from the wafer in an oxygen atmosphere under partial vacuum at a temperature of about 200° C. The wafer may also be cleaned by dipping in a polar organic solvent and subjecting the wafer to ultrasound while immersed in the solvent.
    Type: Grant
    Filed: September 26, 2001
    Date of Patent: October 1, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Wei-Wei Zhuang, Fengyan Zhang, Sheng Teng Hsu, Tingkai Li
  • Patent number: 6440752
    Abstract: An electrode for use in a ferroelectric device includes a bottom electrode; a ferroelectric layer; and a top electrode formed on the ferroelectric layer and formed of a combination of metals, including a first metal take from the group of metals consisting of platinum and iridium, and a second metal taken from the group of metals consisting of aluminum and titanium; wherein the top electrode acts as a passivation layer and wherein the top electrode remains conductive following high temperature annealing in a hydrogen atmosphere.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: August 27, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Fengyan Zhang, Tingkai Li, Hong Ying, Yoshi Ono, Sheng Teng Hsu
  • Patent number: 6440878
    Abstract: A plasma enhanced chemical vapor deposition (PECVD) process is provided for depositing one or more dielectric material layers on a substrate for use in interconnect structures of integrated circuits. The method comprises the steps of depositing a fluorinated amorphous carbon (a-F:C) layer on a substrate by providing a fluorine containing gas, preferably octafluorocyclobutane, and a carbon containing gas, preferably methane, in ratio of approximately 5.6, so as to deposit a a-F:C layer having an internal compressive stress of approximately 28 MPa After deposition the film is annealed at approximately 400° C. for approximately two hours. An adhesion promoter layer of relatively hydrogen-free hydrogeneated silicon carbide is then deposited on the a-F:C layer using silane (SiH4) and methane (CH4) as the deposition gases.
    Type: Grant
    Filed: April 3, 2000
    Date of Patent: August 27, 2002
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Hongning Yang, Tue Nguyen