Patents Assigned to Aptina Imaging Corporation
  • Patent number: 8723975
    Abstract: High-dynamic-range images may be produced by combining multiple integration periods of varying duration, wherein each integration is obtained using a global shutter operation. Charge accumulated during a first integration period may be stored on a first storage node while charge accumulated during a second and third integration time are carried out. Storage of charges accumulated during the second and third integration periods on a second storage node within a pixel while charge is stored on the first storage node allows capture of a global-shutter-based, high-dynamic-range image. A global-shutter-based image capture base on at least three integration time periods may provide enhanced dynamic range.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 13, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Johannes Solhusvik
  • Patent number: 8724002
    Abstract: An imaging system may include imaging pixels. Each imaging pixel may include a reset transistor and a dummy transistor coupled to a floating diffusion storage node. When reset signals control are deasserted, capacitive coupling between the gate terminal of the reset transistor and the source-drain terminals of the reset transistor may lead to reset charge injection. The dummy transistor may have both of its source-drain terminals shorted together and shorted to the floating diffusion region. Dummy control signals, which may be provided by separate dummy control lines or may be provided using row-select signals, may be asserted on the dummy transistors at approximately the same time that the reset signals are deasserted. With arrangements of this type, the dummy control signals may inject an approximately equal and opposite charge onto the floating diffusion region, thereby reducing the reset charge injection caused by deasserting the reset control signals.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: May 13, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Vijay Rajasekaran
  • Patent number: 8723284
    Abstract: The invention describes a solid-state CMOS image sensor array and in particular describes in detail the image sensor array pixels, with global and rolling shutter capabilities, that utilize charge storage gates located on top of a pinned photodiode. The sensor array is illuminated from the back side and the location of the storage gate on top of the pinned photodiode saves valuable pixel area, which does not compromise the Dynamic Range of the image sensor.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: May 13, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Jaroslav Hynecek
  • Patent number: 8724921
    Abstract: Methods, image processors and imaging devices for capturing a high dynamic range (HDR) image. Multiple images of a scene are captured at respectively different exposure settings. A further image of an object placed in the scene is captured at one exposure setting. A first radiance image is formed from the multiple images. A second radiance image is formed from the further image. The first radiance image and the second radiance image are merged to form the HDR image.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: May 13, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Elaine W. Jin
  • Patent number: 8723961
    Abstract: Apparatus and method of forming and displaying high dynamic range (HDR) images for various purposes including the testing of image capture devices, such as cameras. A display device has a display panel carrying a plurality of rendered images formed from image data of a scene. At least one light source is used to illuminate the rendered images on the display panel. When the rendered images are aligned with one another and illuminated by the light source, the rendered images are capable of forming a display image having a dynamic range higher than those of the rendered images.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: May 13, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Elaine W. Jin, Ken Kryda
  • Patent number: 8723095
    Abstract: Electronic devices may be provided with image sensors. Image sensors may be configured to capture images during imaging operations and monitor ambient light levels during non-imaging operations. An image sensor may include image pixels that receive light and dark pixels that are prevented from receiving light. An image sensor may include an ambient light detection circuit. The ambient light detection circuit may include an oscillator, timing and control circuitry, and a counter. The oscillator may be switchably coupled to the image pixels and the dark pixels. The counter may be configured to count up oscillator cycles of the oscillator while the oscillator is coupled to the image pixels and to count down oscillator cycles of the oscillator while the oscillator is coupled to the dark pixels. The counter may provide a count value that depends on a signal from the image pixels and a signal from the dark pixels.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: May 13, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Johannes Solhusvik, Trygve Willassen
  • Publication number: 20140125838
    Abstract: An image sensor may have an array of image sensor pixels arranged in unit pixel cells each having at least one modified clear image pixel. Each modified clear image pixel may include a modified clear color filter element formed from a transparent material such as an oxide material that is modified with a colored pigment or colored dye such as yellow pigment. Each unit pixel cell may include one or more color pixels of other colors such as red pixels, blue pixels, and green pixels. Image signals such as yellow image signals from the modified clear pixels may be processed along with other color image signals such as red image signals and blue image signals to generate standard red, green, and blue image data. Image processing operations may include chroma demosaicing or point filtering of the image signals from the modified clear image pixels.
    Type: Application
    Filed: July 25, 2013
    Publication date: May 8, 2014
    Applicant: Aptina Imaging Corporation
    Inventors: Jeffrey Mackey, Gershon Rosenblum, Alexandre G. Dokoutchaev
  • Patent number: 8717556
    Abstract: A microfluidic system may include an image sensor integrated circuit containing image sensor pixels. A channel containing a fluid with particles such as cells may be formed on top of the image sensor. Flow control components may be mounted to the image sensor integrated circuit for controlling the flow of fluids through the channel. The flow control components may include a chemically powered pump. The chemical pump may include one or more chambers and a valve between the chambers. The valve may be operable to allow chemical reactants stored in the chambers to be mixed to produce gasses for generating pressure in the channel. The pressure in the channel may be used to control the flow of the fluid. As the fluid and particles flow through the channel, the image sensor pixels may be used to capture images of the particles.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: May 6, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Kenneth Edward Salsman
  • Patent number: 8717467
    Abstract: Electronic devices may include camera modules. A camera module may be formed from an array of lenses and corresponding image sensors. The array of image sensors may include three color image sensors for color imaging and a fourth image sensor positioned to improve image depth mapping. Providing a camera module with a fourth image sensor may increase the baseline distance between the two most distant image sensors, allowing parallax and depth information to be determined for objects a greater distance from the camera than in a conventional electronic device. The fourth image sensor may be a second green image sensor positioned at a maximal distance from the green color image sensor used for color imaging. The fourth image sensor may also be a clear image sensor, allowing capture of improved image depth information and enhanced image resolution and low-light performance.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: May 6, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Robert A. Black, Scott Smith, Peng Lin
  • Patent number: 8716823
    Abstract: A backside illumination (BSI) image sensor pixel that includes microlenses with elevated refractive indices is provided. The image sensor pixel may include a photodiode formed in a silicon substrate, a first microlens formed in a back surface of the substrate, a second microlens formed over a front surface of the substrate, a dielectric stack formed on the front surface of the substrate, and a reflective structure formed in the dielectric stack above the second microlens. The first microlens may be fabricated by forming shallow trench isolation structures in the back surface. The second microlens may be fabricated by depositing polysilicon on the front substrate of the substrate. The first microlens may serve to concentrate light towards the photodiode, whereas the second microlens may serve to collimate light that traverses through the substrate so that light exiting the second microlens will reflect off the reflective structure and back into the photodiode.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: May 6, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Victor Lenchenkov
  • Patent number: 8712162
    Abstract: Interest points are markers anchored to a specific position in a digital image of an object. They are mathematically extracted in such a way that, in another image of the object, they will appear in the same position on the object, even though the object may be presented at a different position in the image, a different orientation, a different distance or under different lighting conditions. Methods are disclosed that are susceptible to implementation in hardware and corresponding hardware circuits are described.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: April 29, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Graham Kirsch
  • Patent number: 8711238
    Abstract: An Electronic device may include a master camera module, a slave camera module, and host subsystems. The master camera module may control some of the operations of the slave camera module. The master camera module may transmit data to the slave camera module. The master camera module may interrupt data transmission to the slave camera module, when a delay-sensitive event occurs, to transmit information corresponding to the delay-sensitive event. The slave camera module may respond to the event information with a predetermined fixed delay relative to the occurrence of the event at the master camera module.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: April 29, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Neal Crook, Elaine W. Jin
  • Patent number: 8710420
    Abstract: Image sensor pixels are provided having junction gate photodiodes. A group of pixels may have a shared floating diffusion region and a shared source-follower transistor. The source-follower transistor may be a JFET source-follower with a gate that forms the floating diffusion region. The JFET source-follower may be a vertical or lateral JFET. A reset diode may be forward-biased to reset the floating diffusion region. Each pixel may have a JFET that serves as a charge transfer barrier between the junction gate photodiode and the floating diffusion region. The charge transfer barrier JFET may be a lateral JFET. The image sensor pixels may be formed without any metal-oxide-semiconductor devices.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: April 29, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Jaroslav Hynecek
  • Patent number: 8704943
    Abstract: Systems and methods for multi-exposure imaging are provided. Multiple images may be captured having different exposure times. The multiple images may be processed to produce an output image. Multi-exposure images may be summed prior to linearization. Pixel values in multi-exposure images may be summed to nonlinear pixel values. The nonlinear pixel values may be linearized using one or more knee points. Multi-exposure imaging may be used to motion-intensive application such as automotive applications.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: April 22, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Gabor Mikes
  • Patent number: 8704935
    Abstract: An imaging system may include an array of lenses, each of which is aligned over a respective one of a plurality of imaging pixels. The array of lenses may be formed in two layers. The first layer may include a first set of non-adjacent lenses and centering structures between the first lenses. The centering structures may be aligned with the first set of lenses as part of a mask design with a high level of accuracy. The second layer may include a second set of lenses, each of which is formed on a respective one of the centering structures. Forming the second set of lenses may include a reflow process in which surface tension forces center the second set of lenses on their respective centering structures, thereby aligning the second set of lenses with the first set of lenses with a high level of accuracy.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: April 22, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Ulrich Boettiger
  • Patent number: 8697473
    Abstract: Methods for forming backside illuminated (BSI) image sensors having metal redistribution layers (RDL) and solder bumps for high performance connection to external circuitry are provided. In one embodiment, a BSI image sensor with RDL and solder bumps may be formed using a temporary carrier during manufacture that is removed prior to completion of the BSI image sensor. In another embodiment, a BSI image sensor with RDL and solder bumps may be formed using a permanent carrier during manufacture that partially remains in the completed BSI image sensor. A BSI image sensor may be formed before formation of a redistribution layer on the front side of the BSI image sensor. A redistribution layer may, alternatively, be formed on the front side of an image wafer before formation of BSI components such as microlenses and color filters on the back side of the image wafer.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: April 15, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Swarnal Borthakur, Kevin W. Hutto, Andrew Perkins, Marc Sulfridge
  • Patent number: 8690339
    Abstract: A hologram projecting system includes a coherent light source for emitting a reference beam onto a real object; and an image sensor for receiving the reference beam and a scattered beam reflected from the real object, and recording a Fourier image of the real object. Also included is a modulator for receiving the Fourier image. The reference beam is passed through the modulator, and configured to interact with the Fourier image to form a virtual image of the real object. The image sensor includes an n×m pixel array, where n and m are numbers of rows and columns, respectively. The modulator includes an n×m pixel array corresponding to the n×m pixel array of the image sensor. The pixels in the n×m pixel array of the image sensor control transmissivity of light in corresponding pixels of the n×m pixel array of the modulator.
    Type: Grant
    Filed: June 16, 2011
    Date of Patent: April 8, 2014
    Assignee: Aptina Imaging Corporation
    Inventors: Victor Lenchenkov, Dongqing Cao
  • Publication number: 20140094993
    Abstract: An imaging system may include a pixel array having a plurality of image pixels and a plurality of test pixels. The test pixels may each include a photodiode configured to receive a test voltage. For example, the photodiodes of test pixels may be coupled to a bias voltage supply line or the photodiodes may receive test voltages via a column readout line or a row control line. The test voltage may be output on a column line associated with the column of pixels in which the test pixel is located. Verification circuitry may compare the output test signal with a predetermined reference signal to determine whether the imaging system is functioning properly. If an output test signal does not match the expected output signal, the imaging system may be disabled and/or a warning signal may be presented to a user of the system.
    Type: Application
    Filed: September 23, 2013
    Publication date: April 3, 2014
    Applicant: Aptina Imaging Corporation
    Inventor: Richard Scott Johnson
  • Patent number: 8687085
    Abstract: Imaging systems may be provided with image sensors and verification circuitry. Verification circuitry may be configured to continuously verify proper operation of the image sensor during operation. Verification circuitry may include one or more heating elements formed on a common substrate with image pixels of the image sensor. Verification data may be generated by powering on the heating elements and collecting charges generated in image pixels of the image sensor in response to heat generated by the powered heating element. Heat image charges may be read out using the same readout circuitry that is used to readout imaging data generated in response to incoming light. Heat image data may be used to verify proper operation of all components of an imaging system. Based on a comparison of the verification data with a predetermined standard, an imaging system may continue to operate normally or corrective action may be taken.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: April 1, 2014
    Assignee: Aptina Imaging Corporation
    Inventor: Johannes Solhusvik
  • Publication number: 20140084409
    Abstract: An imaging system may include an image sensor having an array of image pixels formed in a substrate. Each image pixel may include a photodiode directly coupled to an anti-blooming diode. The anti-blooming diode may be connected to a positive voltage supply line and may be configured to drain excess charge from the photodiode when the photodiode is saturated. The anti-blooming drain may be formed from an n-type diffusion region partially surrounded by a p-type doped layer. The p-type doped layer may be interposed between and in contact with the n-type diffusion region of the anti-blooming diode and an n-type doped region of the photodiode. The anti-blooming diode may begin to drain excess charge from the photodiode in response to the photodiode reaching a threshold potential during integration. If desired, multiple pixels may share a common anti-blooming diode.
    Type: Application
    Filed: September 23, 2013
    Publication date: March 27, 2014
    Applicant: Aptina Imaging Corporation
    Inventor: Satyadev Nagaraja