Patents Assigned to Aviat U.S., Inc.
  • Patent number: 9825724
    Abstract: According to some embodiments, a master device sends synchronization packets to one or more slave devices, and does so periodically based on a master clock signal having a master clock frequency. At each of the slave devices, an algorithm estimates the master clock frequency based on the timing of synchronization packet arrivals the slave device. The algorithm may estimate the master clock frequency using both the currently-observed timing of synchronization packet arrivals and the history of previous synchronization packet arrivals (e.g., previously-observed timing of synchronization packet arrivals). Based on the estimated master clock frequency, each of the one or more slave devices can update the frequency of their respective slave clock signal (e.g., using a frequency offset) to match that of the estimated master clock frequency.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: November 21, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Sergio Licardie, Ivana Maric
  • Patent number: 9813198
    Abstract: Various embodiments provide for systems and methods for signal conversion of one modulated signal to another modulated signal using demodulation and then re-modulation. According to some embodiments, a signal receiving system may comprise an I/Q demodulator that demodulates a first modulated signal to an in-phase (ā€œIā€) signal and a quadrature (ā€œQā€) signal, an I/Q signal adjustor that adaptively adjusts the Q signal to increase the signal-to-noise ratio (SNR) of a transitory signal that is based on a second modulated signal, and an I/Q modulator that modulates the I signal and the adjusted Q signal to the second modulated signal. To increase the SNR, the Q signal may be adjusted based on a calculated error determined for the transitory signal during demodulation by a demodulator downstream from the I/Q modulator.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: November 7, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Emerick Vann, Yen-Fang Chao, Youming Qin, Roland Matian
  • Patent number: 9787338
    Abstract: An example system comprises a first antenna and a modem. The first antenna is configured to receive a signal from a transmitting radio frequency unit. The signal includes data and a known sequence. The modem is configured to retrieve the known sequence from the signal, transform the known sequence and the data into a frequency domain, calculate averages of groups of neighboring frequency points in the frequency domain to reduce the effect of nonlinear noise in the signal, the neighboring frequency points corresponding to the preamble in the frequency domain, compare the calculated averages to an expected frequency response in the frequency domain, determine a correction filter to apply to the data based on the comparison, apply the correction filter on the data in the frequency domain to create corrected data, transform the corrected data from the frequency domain to the time domain, and provide the data.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: October 10, 2017
    Assignee: Aviat U.S., Inc.
    Inventor: Sreco Plevel
  • Patent number: 9768854
    Abstract: In some embodiments, a first RF signal is received at a wireless repeater, a signal quality is determined based on the first RF signal, the signal quality is analyzed based on a parameter, an operation mode is auto selected based on analysis of the signal quality, and a second RF signal based on the first RF signal is generated for transmission according to the selected operation mode. Under one mode, a first RAC of the wireless may generate data based on a first IF signal downconverted from a first RF signal. Based on the data, a second RAC of the wireless repeater may generate a second IF signal, which can be used to generate a second RF signal for transmission. Under another mode, the first RAC may provide the IF signal to the second RAC, which provides the IF signal for generation of the second RF signal.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: September 19, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Sergio Licardie, Rishipal Arya, Chun-Hao Chen
  • Patent number: 9712378
    Abstract: Rapid failure detection and recovery in wireless communication networks is needed in order to meet, among other things, carrier class Ethernet transport channel standards. Thus, resilient wireless packet communications is provided using a hardware-assisted rapid transport channel failure detection algorithm and a Gigabit Ethernet data access card with an engine configured accordingly. In networks with various topologies, this is provided in combination with their existing protocols, such as rapid spanning tree and link aggregation protocols, respectively.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: July 18, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Alain Hourtane, Sergio Licardie, Chaoming Zeng
  • Patent number: 9680606
    Abstract: A frame error correction circuit may identify and correct errors in data frames provided to a receiver as part of a diversity communications scheme. The frame error correction circuit may further align the data frames so that the data frames can be compared. The frame error correction circuit may perform a bit-wise comparison of the data frames and identify inconsistent bit positions where bits in the data frames differ from one another. Once inconsistent bit positions have been identified, the frame error correction circuit may access a permutation table of permutations of bits at the inconsistent bit positions. In some implementations, the frame error correction circuit uses the permutation table to reassemble permutations of the data frames. In various implementations, the frame error correction circuit performs a CRC of each permutation of the data frames, and provides a valid permutation to a network.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: June 13, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Sergio Licardie, Rishipal Arya, Robert Brown
  • Patent number: 9660716
    Abstract: According to various embodiments, systems and methods are provided for improving signal quality and signal reliability over wireless communication using polarization diversity. Some embodiments use polarization diversity on a wireless channel to address and compensate for fading conditions such as non-frequency selective fading (also referred to as power fading, attenuation fading, and flat fading) and frequency selective fading (also referred to as multipath fading and dispersive fading). For example, some embodiments utilize a horizontal signal and a vertical signal on the same wireless channel when wirelessly communicating data between a transmitter and a receiver to address a fading condition.
    Type: Grant
    Filed: April 6, 2016
    Date of Patent: May 23, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Youming Qin, Frank Matsumoto
  • Patent number: 9654241
    Abstract: A system may include at least one antenna for receiving a first receive signal having a first signal diversity property and a second receive signal having a second signal diversity property. A first signal path may include a first frequency converter for downconverting the first receive signal to a first intermediate frequency signal having a first intermediate frequency. A second signal path may include a second frequency converter for downconverting the second receive signal to a second intermediate frequency signal having a second intermediate frequency. A transducer module may route the first receive signal to the first signal path, and route the second receive signal to the second signal path. A first N-plexer may select the first intermediate frequency signal or the second intermediate frequency signal for transmission to a cable, and to provide a data signal based on a selected intermediate frequency signal to the cable.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: May 16, 2017
    Assignee: Aviat U.S., Inc.
    Inventor: Paul A. Kennard
  • Publication number: 20170117952
    Abstract: In some embodiments, a first RF signal is received at a wireless repeater, a signal quality is determined based on the first RF signal, the signal quality is analyzed based on a parameter, an operation mode is auto selected based on analysis of the signal quality, and a second RF signal based on the first RF signal is generated for transmission according to the selected operation mode. Under one mode, a first RAC of the wireless may generate data based on a first IF signal downconverted from a first RF signal. Based on the data, a second RAC of the wireless repeater may generate a second IF signal, which can be used to generate a second RF signal for transmission. Under another mode, the first RAC may provide the IF signal to the second RAC, which provides the IF signal for generation of the second RF signal.
    Type: Application
    Filed: January 9, 2017
    Publication date: April 27, 2017
    Applicant: Aviat U.S., Inc.
    Inventors: Sergio Licardie, Rishipal Arya, Chun-Hao Chen
  • Patent number: 9608754
    Abstract: A system may include a transmitting device. The transmitting device may include one or more terminals for receiving a data signal and a first clock signal. A first phase lock loop may lock a phase of an initial periodic signal with a phase of the first clock signal, the first phase lock loop including a divider to generate the initial periodic signal based on the first clock signal. A decimation module may sample the initial periodic signal at a decimated rate of a backplane clock, the backplane clock being asynchronous with a clock that generated the first clock signal. A transmitting data block interface may construct data blocks and provide the data blocks to a receiving device, each of one or more of the data blocks including a portion of the data signal and at least one sample of the initial periodic signal.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: March 28, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Philip Secker, Emerick Vann
  • Patent number: 9609610
    Abstract: In some embodiments, a system comprises a clock, a root node, a radio channel network, and first and second child nodes. The clock may be configured to generate a clock signal. The root node may be configured to generate a first frame including a first payload and a first overhead and generate a second frame including a second payload and a second overhead. The first and second overheads may comprise a synchronization value based on the clock signal. The radio channel network may be in communication with the root node for transmitting the first and second frames. Each first and second child nodes may be configured to perform clock recovery including frequency synchronization using the synchronization value and a respective phase-lock loop.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: March 28, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Philip Secker, Peter Croy
  • Publication number: 20170069946
    Abstract: Various embodiments provide for waveguide assemblies which may be utilized in wireless communication systems. Various embodiments may allow for waveguide assemblies to be assembled using tools and methodologies that are simpler than the conventional alternatives. Some embodiments provide for a waveguide assembly that comprises a straight tubular portion configured to be shortened, using simple techniques and tools, in order to fit into a waveguide assembly. For instance, for some embodiments, the waveguide assembly may be configured such that the straight portion can be shortened, at a cross section of the portion, using a basic cutting tool, such a hacksaw. In some embodiments, the straight portion may be further configured such that regardless of whether the straight tubular portion is shortened, the waveguide assembly remains capable of coupling to flanges, which facilitate coupling the straight tubular portion to connectable assemblies, such as other waveguide assemblies, radio equipment, or antennas.
    Type: Application
    Filed: November 21, 2016
    Publication date: March 9, 2017
    Applicant: Aviat U.S., Inc.
    Inventors: Edwin Nealis, Jayesh Nath
  • Patent number: 9583813
    Abstract: Various embodiments are directed toward systems and method for manufacturing low cost passive waveguide components. For example, various embodiments relate to low cost manufacturing of passive waveguide components, including without limitation, waveguide filters, waveguide diplexers, waveguide multiplexers, waveguide bends, waveguide transitions, waveguide spacers, and antenna adapters. Some embodiments comprise manufacturing a passive waveguide component by creating a non-conductive structure using a low cost fabrication technology, such as injection molding or three-dimensional (3D) printing, and then forming a conductive layer over the non-conductive structure such that the conductive layer creates an electrical feature of the passive waveguide component.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: February 28, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Jayesh Nath, Ying Shen, Edwin Nealis
  • Patent number: 9577865
    Abstract: A receiver may comprise: a symbol receiver configured to receive a first modulated symbol at a first resolution and thereafter a second modulated symbol at a second resolution greater than the first resolution; an output path coupled to the symbol receiver and configured to forward the first modulated symbol; a decision device coupled to the symbol receiver and configured to determine a most probable symbol represented by the first modulated symbol; a phase detector coupled to the decision device and configured to compare the first modulated symbol and the most probable symbol to generate a phase error value; and a phase modifier coupled to the decision device and configured to determine a phase correction value based on the phase error value and to adjust the phase of the second modulated symbol based on the phase correction value.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: February 21, 2017
    Assignee: Aviat U.S., Inc.
    Inventor: Sreco Plevel
  • Publication number: 20170041217
    Abstract: A first layer one link aggregation master comprises a first port coupled to receive customer traffic; a first channel; a second channel; an aggregation engine coupled to the first and second channels; a first switch circuit coupled to the first port and to the first channel, and configured to communicate the customer traffic from the first port over the first channel to the aggregation engine, the aggregation engine including a splitter circuit configured to use layer one information to segment at least a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container using Ethernet standards for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for wireless transmission over a first wireless link of a link aggregation group to the receiver; and a second switch circuit coupled to the
    Type: Application
    Filed: October 18, 2016
    Publication date: February 9, 2017
    Applicant: Aviat U.S., Inc.
    Inventors: Chaoming Zeng, Sergio Licardie
  • Patent number: 9559746
    Abstract: Systems and methods for transceiver communication are discussed herein. A filter module may be configured to filter each carrier signal of a multicarrier transmit signal with a different bandpass filter, each bandpass filter configured to filter a different frequency band. A carrier control module may be configured to control the plurality of bandpass filters of the filter module using a carrier selection signal to enable or disable each bandpass filter, thereby coupling carrier signals of the multicarrier transmit signal to a first set of bandpass filters and decoupling a second set of bandpass filters. Filtering the carrier signals of the multicarrier transmit signal is performed by the first set of bandpass filters while the decoupling of the second set of bandpass filters limits energy in the respective frequency band. An antenna may be configured to transmit the filtered multicarrier transmit signal.
    Type: Grant
    Filed: April 14, 2016
    Date of Patent: January 31, 2017
    Assignee: Aviat U.S., Inc.
    Inventor: Paul A. Kennard
  • Publication number: 20170026854
    Abstract: An exemplary method comprises positioning a first antenna to receive a first signal from a second antenna, the second antenna comprising energy absorbing material that functions to expand beamwidth, receiving the first signal from the second antenna, detecting a plurality of gains based on the first signal, repositioning the first antenna relative to the second antenna to a position associated with an acceptable gain based on the first signal, removing at least some of the energy absorbing material from the second antenna to narrow the beamwidth of the second antenna, receiving, by the first antenna, a second signal from the second antenna, detecting a plurality of gains based on the second signal, and repositioning the first antenna relative to the second antenna to a position associated with an increased gain of the plurality of gains based on the second signal, the increased gain being greater than the acceptable gain.
    Type: Application
    Filed: October 10, 2016
    Publication date: January 26, 2017
    Applicant: Aviat U.S., Inc.
    Inventor: Robert Vilhar
  • Publication number: 20170026975
    Abstract: Various embodiments provide for systems and methods of backhaul optimization. An exemplary system comprises a plurality of low power cells and a connector node. The connector node may be in communication with the plurality of low power cells. The connector node may be configured to receive demands from each of the plurality of low power cells. Each of the demands may indicate a demand at a predetermined time. The connector node may be further configured to determine a rate for each of the plurality of low power cells based on the demands of each of the low power cells and the assigned rate of the other of the plurality of low power cells. The connector node may be further configured to allocate capacity based on the determined rates.
    Type: Application
    Filed: October 10, 2016
    Publication date: January 26, 2017
    Applicant: Aviat U.S., Inc.
    Inventors: Ivana Maric, Bojan Bostjancic, Andrea Goldsmith
  • Publication number: 20170012888
    Abstract: A first layer one link aggregation master comprises a first port coupled to receive customer traffic; a first channel; a second channel; an aggregation engine coupled to the first and second channels; a first switch circuit coupled to the first port and to the first channel, and configured to communicate the customer traffic from the first port over the first channel to the aggregation engine, the aggregation engine including a splitter circuit configured to use layer one information to segment at least a portion of the customer traffic into a first virtual container and a second virtual container, the aggregation engine further including an encapsulation circuit configured to encapsulate the second virtual container using Ethernet standards for transport over the second channel; a radio access card configured to generate an air frame based on the first virtual container for wireless transmission over a first wireless link of a link aggregation group to the receiver; and a second switch circuit coupled to the
    Type: Application
    Filed: June 14, 2016
    Publication date: January 12, 2017
    Applicant: Aviat U.S., Inc.
    Inventors: Chaoming Zeng, Sergio Licardie
  • Patent number: 9544046
    Abstract: In some embodiments, a first RF signal is received at a wireless repeater, a signal quality is determined based on the first RF signal, the signal quality is analyzed based on a parameter, an operation mode is auto selected based on analysis of the signal quality, and a second RF signal based on the first RF signal is generated for transmission according to the selected operation mode. Under one mode, a first RAC of the wireless may generate data based on a first IF signal downconverted from a first RF signal. Based on the data, a second RAC of the wireless repeater may generate a second IF signal, which can be used to generate a second RF signal for transmission. Under another mode, the first RAC may provide the IF signal to the second RAC, which provides the IF signal for generation of the second RF signal.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: January 10, 2017
    Assignee: Aviat U.S., Inc.
    Inventors: Sergio Licardie, Rishipal Arya, Chun-Hao Chen