Patents Assigned to Bruker Biospin GmbH
  • Patent number: 10241168
    Abstract: A magnet coil system (1) has a first end section (19a) of an HTSL-tape conductor (4) located ahead of a first end (19) of an HTSL-tape conductor (4) and a first end section (20a) of an LTS wire (7) located prior to a first end (20) of the LTS wire (7) which are connected electrically but not in a superconducting way in a connecting section (17) along the length of the connecting section. The LTS wire (7) has a flat shape at least within the connecting section (17) and one side of the flat LTS wire (7) abutting the HTSL-tape conductor (4) and the connecting section (17) has a length of at least 5 m. The magnet coil system has an acceptably small residual ohmic resistance which is achieved by simple means.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: March 26, 2019
    Assignee: Bruker BioSpin GmbH
    Inventors: Gerhard Roth, Arne Kasten
  • Patent number: 10203067
    Abstract: A cryostat has a cooling arm with a first thermal contact surface which can be brought into thermal contact with a second thermal contact surface on an object to be cooled. A hollow volume (2) between the inner side of the neck tube, the cooling arm, and the object is filled with gas and the cooling arm is pressurized by the inner pressure of the gas and also by atmospheric pressure. A contact device brings the first and the second contact surfaces into thermal contact below a threshold gas pressure and moves them away from each other when the threshold pressure has been exceeded such that a gap (13) filled with gas thermally separates the first and second contact surfaces. Operationally safe and fully automatic reduction of the thermal load acting on the object to be cooled is thereby obtained in case the cooling machine fails.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: February 12, 2019
    Assignee: Bruker BioSpin GmbH
    Inventor: Marco Strobel
  • Patent number: 10197653
    Abstract: An NMR probe head with an MAS stator (1) supplied with microwave radiation from a microwave guide (9) through an opening in a coil block (2) has a microwave lens (6) and a microwave mirror (8a) on an inner side of the MAS stator. The MAS rotor (3) is surrounded by a solenoid RF coil (5) and the microwave lens is arranged and embodied in the opening of the coil block on the side facing a sample volume (4) such that the cylinder axis of the MAS rotor lies in the focus of the microwave lens. The microwave mirror is arranged on, or in, the inner wall of the MAS stator that lies opposite the microwave guide and has a cylindrical and concave structure, such that the microwave mirror focuses the microwave radiation incident from the sample volume onto the central axis of the MAS rotor.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: February 5, 2019
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: Armin Purea, Arndt Von Bieren
  • Patent number: 10180473
    Abstract: A magnetic resonance arrangement with a permanent magnet system and having magnet elements, pole piece elements and yoke elements of magnetic material arranged cylinder-symmetrically with respect to the z axis. The yoke elements have a first lid (11?) and a second lid (11?) and also a hollow cylindrical drum (12) arranged axially between the lids. The yoke elements enclose the measuring volume in the axial and radial direction. The magnet elements each include a pair of cylinder-symmetrical axial magnets (13?, 13?) and also radial magnet rings (14?, 14?). The axial magnets are each arranged axially adjoining the lids and are arranged radially within the radial magnet rings and respectively axially further away from the measuring volume than the radial magnet rings. The outer diameter of the axial magnets is less than or equal to the inner diameter of the radial magnet rings.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: January 15, 2019
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: Lukas Haenichen, Rainer Pietig
  • Patent number: 10132881
    Abstract: An MAS stator (7) for an NMR-MAS probe head (1) has a bottom bearing (8) with at least one nozzle and at least one radial bearing (9a, 9b), wherein one substantially circular cylindrical MAS rotor (21c) is provided for receiving a measurement substance. The MAS rotor can be supported by compressed gas in a measurement position within the MAS stator by means of a gas supply device and can be rotated about the cylinder axis of the MAS rotor by means of a pneumatic drive. A suction device (100) is provided in a space below the radial bearing for suctioning-off the gas introduced by the gas supply device, and generates an underpressure in the space below the radial bearing during measurement operation. This provides a stator for NMR-MAS spectroscopy in which the closure at the head end of the stator is omitted.
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: November 20, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: David Osen, Benno Knott, Armin Purea
  • Patent number: 10128030
    Abstract: A superconducting magnet coil system with high resistance to quench events includes a first coil portion (1) with a first superconducting material and a second coil portion (2) with a second superconducting material. The first superconducting material has a higher critical temperature than the second superconducting material. The first and the second coil portions are bridged by a common quench protection element (6) and together with the quench protection element form a first loop. The magnet coil system also includes a third coil portion (3) which is part of a second electrical loop with a second quench protection element (8, 8?, 8?)as well as a heating element (9) which is supplied with a heating voltage in response to a quench of the third coil portion. Among the series connected coil portions (1, 2) only the second coil portion is in thermal contact with the first heating element (9).
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: November 13, 2018
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: Wolfgang Frantz, Patrick Wikus
  • Patent number: 10120044
    Abstract: An NMR DNP-MAS probe head (10) has an MAS stator (2) for receiving an MAS rotor (3) having a sample substance in a sample volume (4), and a hollow microwave waveguide (5)? for feeding microwave radiation through an opening (5a) of the microwave waveguide into the sample volume, an axially expanded rod-shaped microwave coupler (6) located in the opening made of dielectric material, characterized in that the microwave waveguide has a conically tapered hollow transition piece for coupling in an HE 11 mode, into which the microwave coupler projects at an all-round radial distance to the opening of the microwave waveguide. It is thus possible, in a surprisingly simple manner and by means of readily available technical means, to irradiate a considerably higher microwave energy in the HE 11 mode into the NMR measuring sample than by means of the known arrangements.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: November 6, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Armin Purea, Frank Engelke, Alexander Krahn
  • Patent number: 10101420
    Abstract: A cryostat arrangement (1), with a vacuum container (2) and an object (4) to be cooled, is provided, wherein the object (4) to be cooled is arranged inside the vacuum container (2) comprising a neck tube (8) leading to the object (4) to be cooled. A closed cavity (9) is formed around the cooling arm (10) of a cold head (11), wherein the cavity (9) in normal operation is filled at least partly with a first cryogenic fluid (34), and wherein a first thermal coupling component (15) is provided for the thermal coupling of the first cryogenic fluid (34) in the cavity (9) to the object (4) to be cooled. The cryostat arrangement (1) further comprises a pump device (14), to which the cavity (9) is connected, and with which the cavity (9) is configured to be evacuated upon failure of the cooling function of the cold head (11). Various cryostat configurations are provided.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: October 16, 2018
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: Patrick Wikus, Steffen Bonn
  • Patent number: 10060998
    Abstract: An arrangement for setting the spatial profile of a magnetic field in a working volume of a main field magnet (2), in particular a superconducting main field magnet, of a magnetic resonance installation. The main field magnet is arranged in a cryostat (1) and the spatial profile is set by a passive shim apparatus (3) with magnetic field forming elements which are arranged within the cryostat during operation and which have cryogenic temperatures. The magnetic resonance installation contains a room temperature tube (4), in which the sample volume is situated during operation. The passive shim apparatus is introduced into or removed from the cold region of the cryostat via a vacuum lock (5), without needing to ventilate the cold region of the cryostat. This provides a relatively simple, cost effective, and time-efficient method to carry out a stable field homogenization using a passive shim apparatus.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: August 28, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Patrick Wikus, Volker Niemann, Wolfgang Frantz, Michael Dumm, Michael Wagenknecht, Steffen Bonn
  • Patent number: 10042017
    Abstract: An NMR spectrometer (131) with an NMR magnet coil (91) having windings of a conductor with a superconducting structure (1), which have a plurality of band-segments (2, 2a, 7a-7e, 8a-8d, 15) made of band-shaped superconductor. Each band-segment (2, 2a, 7a-7e, 8a-8d, 15) has a flexible substrate (3) and a superconducting layer (4) deposited thereon, wherein the band-segments (2, 2a, 7a-7e, 8a-8d, 15) each have a length of 20 m or more. At least one of the band-segments (2, 2a, 7a-7e, 8a-8d, 15) forms a linked band-segment (2, 2a), and each linked band-segment (2, 2a) is connected to at least two further band-segments (7a-7e) in such a way that the combined further band-segments (7a-7e) overlap with at least 95% of the total length (L) of the linked band-segment (2, 2a). The magnet coil generates particularly high magnetic fields in a sample volume and has a low drift.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: August 7, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Gerhard Roth, Arne Kasten, Klaus Schlenga, Alexander Usoskin
  • Patent number: 10036787
    Abstract: An NMR (nuclear magnetic resonance) probe head has a microwave resonator with at least two elements which are reflective in the microwave range, at least one of which is focusing. The reflective elements at least partly delimit a resonance volume of the microwave resonator. At least one of the reflective elements is a DBR (“Distributed Bragg Reflector”), and the NMR probe head has at least one NMR coil integrated into the DBR. The NMR detection coil can thereby be positioned particularly near to the sample and the distortions of the static field by resonator components are reduced, such that the detection sensitivity and the spectral resolution of the experiment are significantly improved.
    Type: Grant
    Filed: July 9, 2014
    Date of Patent: July 31, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Alexander Krahn, Frank Engelke
  • Patent number: 9995510
    Abstract: A connecting device in a pulse tube cooler system branches such that a first line branch (11) has a first flexible line segment (4a) and a second line branch (12) has a second flexible line segment (4b), the flexible line segments being arranged in parallel with and offset from one another. The flexible line segments each have a front segment end (17, 18) and a rear segment end (19, 20), the front segment end (17) of the first flexible line segment (4a) and the rear segment end (20) of the second flexible line segment (4b) are rigidly connected to one another, the rear segment end (19) of the first flexible line segment (4a) and the front segment end (18) of the second flexible line segment (4b) are rigidly connected to one another, and there is no continuous rigid connection between the control valve and the cold head.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: June 12, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Patrick Wikus, Steffen Bonn, Gerhard Roth
  • Patent number: 9982840
    Abstract: A cooling device (20) has a cryostat (23) and a cold head (1), in particular, the cold head (1) of a pulse tube cooler. The cryostat (23) has a vacuum container (4) with a vacuum container wall (4a), wherein the vacuum container wall (4a) seals off a vacuum inside the vacuum container (4) from the environment. A flexible sealing section (6) connects the vacuum container wall (4a) directly or indirectly to the room temperature part (1a) of the cold head (1). The flexible sealing section (6) seals off the inside of the cryocontainer (2) from the environment. The cooling device further reduces mechanical coupling between the cold head and the cryostat, in particular, in order to enable performance of NMR measurements with fewer disturbances due to external vibrations.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: May 29, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Patrick Wikus, Steffen Bonn, Heinrich Harsch
  • Patent number: 9964611
    Abstract: An NMR spectrometer (1?) has a sample changer (4?) with at least one cylindrical sample holder (7?, 7?) for receiving an elongated NMR sample at a loading position (5) and for transferring the NMR sample into the measurement volume at a transfer position (6). The sample holder is open in an upward direction and the cylinder axis of the cylindrical sample holder is inclined at the loading position by an angle of inclination a of between 30 and 60 degrees with respect to the vertical and it extends vertically at the transfer position. A positioning device is provided, which transfers the NMR sample at or after the transfer position into the measuring position in the measurement volume with a vertically aligned sample axis of the NMR sample. The spectrometer enables a more ergonomically favorable feed of the sample.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: May 8, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Thomas Bocher, Diether Maier, Volker Reiss
  • Patent number: 9778331
    Abstract: An NMR MAS probe head (1) has an MAS stator (7) with a base bearing (8) and a front bearing (75) for receiving a substance to be measured at a measurement position within an MAS rotor. The front bearing has an opening for inserting the MAS rotor into the space between the base bearing and the front bearing. The opening can be closed by a closing device that, in a loading state, opens and, in a measuring state, closes the opening by means of a movement that is transverse with respect to an axis (a) through the centers of the base bearing and the opening of the front bearing of the MAS stator. This enables automated loading and unloading of the MAS rotor in the space between the base bearing and the front bearing inside the MAS stator in a simple way.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: October 3, 2017
    Assignee: BRUKER BIOSPIN GMBH
    Inventors: Andreas Hunkeler, Benno Knott, David Osen
  • Patent number: 9687841
    Abstract: A pipetting device (2) for removing fluid from a sample vessel (52) includes a pipetting needle (4) and an auxiliary cannula (18) for piercing a septum, designed to guide the pipetting needle axially through the auxiliary cannula. The pipetting device has a guide arm (6), on the lower end (10) of which is arranged an end plate (12) that is axially displaceable along the guide arm against a resilient resistance. A centering device (14) inserts into the end plate of the guide arm, and at least three centering fingers (26) with conical bevels (34) are constructed on the radial outside of the centering device, distributed around the circumference thereof, and forming a holding-down device for the sample vessel. The disclosed construction makes possible to reliably pierce the septum of a sample vessel and to easily pull the pipetting needle out of the septum again even with thin pipetting needles.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: June 27, 2017
    Assignee: Bruker BioSpin GmbH
    Inventor: Martin Hofmann
  • Patent number: 9620273
    Abstract: A magnet system generates a highly stable magnetic field at a sample location. The magnet system has a magnet cryostat housing a first superconducting magnet coil and a second magnet coil co-axial to the first magnet coil. The second magnet coil is short-circuited in a superconducting persistent mode during operation of the magnet system. An external power supply during operation supplies current to the first magnet coil via a current lead thereby generating a first magnetic field at the sample location that fluctuates according to the current noise of the power supply, wherein the second magnet coil is positioned and dimensioned in a way that it inductively couples to the first magnet coil such that it generates at the sample location a second magnetic field that compensates the fluctuations of the first magnetic field.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: April 11, 2017
    Assignee: Bruker BioSpin GmbH
    Inventor: Arne Kasten
  • Patent number: 9476848
    Abstract: Monitoring cell (100) for performing an NMR measurement of a reaction fluid. The monitoring cell (100) has a hollow NMR sample probe (110) for receiving the reaction fluid. Inlet and outlet transport capillaries (112, 123) transport the reaction fluid to and from the sample probe (110). A feed line (306) and return line transport a temperature control fluid to and from the monitoring cell (100). An adapter head (108) couples the transport capillaries (112, 123) to the sample probe (110) and removably connects the sample probe (110) to an adapter section (106). The transport capillaries (112, 123) are positioned within the feed line (306) in parallel to one another. The feed and the return lines (306, 358) are attached to the adapter section (106) such that a reversal of the temperature control fluid stream occurs in the adapter section (106).
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: October 25, 2016
    Assignee: Bruker BioSpin GmbH
    Inventor: Martin Hofmann
  • Patent number: 9442086
    Abstract: A method for analyzing wine proposes puncturing the closure (60) of a wine bottle (61) containing wine (62) with a disposable cannula (3) having a lateral cannula opening (32) and a female Luer connection (30), and filling a disposable syringe (4) having a male Luer connection (41) with an inert gas. At least part (69) of the wine sample (65) is transferred into an analytical spectrometer (68) and spectrometric analysis of the wine sample (65) is carried out. An inexpensive method is thereby proposed that is easy to perform for analyzing a wine sample from a sealed wine bottle without impairing the quality or storage stability of the wine remaining in the wine bottle due to withdrawal of a wine sample from the wine bottle, in particular, wherein the volume of the removed wine sample can be easily controlled.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: September 13, 2016
    Assignee: Bruker BioSpin GmbH
    Inventor: Martin Hofmann
  • Publication number: 20160161576
    Abstract: An NMR (nuclear magnetic resonance) probe head has a microwave resonator with at least two elements which are reflective in the microwave range, at least one of which is focusing. The reflective elements at least partly delimit a resonance volume of the microwave resonator. At least one of the reflective elements is a DBR (“Distributed Bragg Reflector”), and the NMR probe head has at least one NMR coil integrated into the DBR. The NMR detection coil can thereby be positioned particularly near to the sample and the distortions of the static field by resonator components are reduced, such that the detection sensitivity and the spectral resolution of the experiment are significantly improved.
    Type: Application
    Filed: July 9, 2014
    Publication date: June 9, 2016
    Applicant: Bruker Biospin GMBH
    Inventors: Alexander Krahn, Frank Engelke