Patents Assigned to Bruker Biospin GmbH
  • Patent number: 9279868
    Abstract: A method and apparatus for producing a hyperpolarized sample material for use in an NMR investigation provides for a cryogenic region having a target material containing a first hyperpolarizable nuclear species, a second hyperpolarizable nuclear species, and a nuclear spin polarizing agent, wherein the first nuclear species has a higher magnetic moment than the second nuclear species. Microwave energy is used to excite electron spin transitions in the polarizing agent in the presence of a magnetic field. The first hyperpolarizable nuclear species is thereby caused to interact with the electron spin system in the polarizing agent and generate hyperpolarization of at least the first nuclear species of the target material. The target material is then subjected to a lowered magnetic field, wherein the lowered magnetic field facilitates polarization transfer by nuclear thermal mixing between the species to thereby hyperpolarize the second nuclear species.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 8, 2016
    Assignee: Bruker BioSpin GmbH
    Inventors: Joost A B Lohman, Sami Antoine Adrien Jannin, Werner Maas
  • Patent number: 8825132
    Abstract: An NMR experiment on hyperpolarizable magnetic nuclei of substrate molecules in a living human or animal body, involves polarizing the substrate molecules by non-hydrogenating para-hydrogen induced polarization (=NH-PHIP) into a singlet/pseudo singlet state in low magnetic field and injecting the substrate molecules into the living body, the body or a part thereof being previously located inside a magnet at low magnetic field. The magnet is switched on to high magnetic field, and in at least part of the substrate molecules, the singlet state/pseudo singlet state is converted into observable magnetization. An MRI or MRS measurement is carried out with the living body or the part thereof, collecting data from the substrate molecules. The NMR experiment is well applicable on hyperpolarized nuclei within a patient, with reduced losses of magnetization due to relaxation processes.
    Type: Grant
    Filed: July 4, 2012
    Date of Patent: September 2, 2014
    Assignees: Bruker BioSpin GmbH, The University of York
    Inventors: Joost Lohman, Simon Benedict Duckett, Gary George Green, Antonio Giuseppe Gianotti
  • Patent number: 8766631
    Abstract: The invention relates to a device (1, 21, 31, 41, 64) for the preparation and measurement of a nuclear spin resonance (NMR) measurement sample (10), including—a flow-through NMR probehead (2), with a first tube (3) and a second tube (14) each for the supply and removal of a liquid NMR measurement sample (10),—at least one chamber (4, 22, 32) which is connected to one of the tubes (3, 14),—a sample inlet (5) for introducing the liquid measurement sample (10) into the device (1, 21, 31, 41, 64), wherein at least one chamber (4, 22, 32) has at least one connection for increasing (9, 24, 25, 42, 43, 46, 47) and releasing (8, 23, 27, 48a, 48b) the gas pressure, and in which at least one chamber (4, 22, 32) comprises means for mixing the liquid measurement sample (10) contained in the chamber (4, 22, 32) with a gas With the inventive device it is possible to reduce the measurement sample consumption when doing an NMR spectroscopic measurement on liquid measurement samples to which spin order can be catalytically tr
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: July 1, 2014
    Assignees: Bruker BioSpin GmbH, The University of York
    Inventors: Martin Hofmann, Simon Benedict Duckett, Antonio Gianotti, Gary George Reginald Green
  • Patent number: 8633692
    Abstract: A nuclear magnetic resonance (NMR) apparatus (10) comprises a superconducting main field magnet coil system (14) which generates a homogeneous magnetic field of at least 3T, and a gradient coil system (15) which generates a gradient strength of at least 10 mTm?1, with a slew rate of at least 100 Tm?1s?1, wherein the main field magnet coil system (14) is arranged in a cryostat (12) with liquid helium and a refrigerator (16) in the form of a pulse tube cooler or a Gifford-McMahon cooler, and wherein an evaporation line (17a, 27a, 37a) is provided for helium that might evaporate from the cryostat. In all states of operation of the NMR apparatus (10) without gradient switching, the refrigerator provides a cooling capacity which is at least 0.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: January 21, 2014
    Assignee: Bruker BioSpin GmbH
    Inventors: Marco Strobel, Holger Liebel
  • Patent number: 8624599
    Abstract: An analysis system (1) for the analysis of a sample, comprises a gel permeation chromatograph (14) that is coupled with a nuclear magnetic resonance (=NMR) spectrometer. The chromatograph (14) has a gel permeation chromatography (=GPC) separating column system (6a) that is filled with porous particles (21). The NMR spectrometer is configured as a low-field NMR spectrometer (8) with a permanent magnet system (9) for generating a B0 field of the NMR spectrometer. The low-field NMR spectrometer (8) comprises a shim system (10) with which homogeneity of the B0 field of at least 0.5 ppm can be achieved in a right circular cylindrical sample volume (27) having a diameter of at least 5 mm and a length of at least 15 mm. The system permits the quantitative and qualitative chemical analysis of samples containing substances of different molecular size using a less expensive apparatus.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: January 7, 2014
    Assignees: Bruker BioSpin GmbH, PSS Polymer Standards Service GmbH, Karlsruher Institut fuer Technologie
    Inventors: Andreas Kamlowski, Thorsten Hofe, Markus Cudaj, Manfred Wilhelm, Gisela Guthausen
  • Publication number: 20130168576
    Abstract: A method and apparatus for producing a hyperpolarized sample material for use in an NMR investigation provides for a cryogenic region having a target material containing a first hyperpolarizable nuclear species, a second hyperpolarizable nuclear species, and a nuclear spin polarizing agent, wherein the first nuclear species has a higher magnetic moment than the second nuclear species. Microwave energy is used to excite electron spin transitions in the polarizing agent in the presence of a magnetic field. The first hyperpolarizable nuclear species is thereby caused to interact with the electron spin system in the polarizing agent and generate hyperpolarization of at least the first nuclear species of the target material. The target material is then subjected to a lowered magnetic field, wherein the lowered magnetic field facilitates polarization transfer by nuclear thermal mixing between the species to thereby hyperpolarize the second nuclear species.
    Type: Application
    Filed: December 21, 2012
    Publication date: July 4, 2013
    Applicant: BRUKER BIOSPIN GMBH
    Inventor: BRUKER BIOSPIN GMBH
  • Patent number: 8467841
    Abstract: A superconducting high-field magnet coil system comprising several radially nested main coil sections (1, 2, 3, 4, 5) which are connected to each other in series in such a fashion that currents of the same direction flow through them during operation, wherein a first main coil section (EHS) is disposed radially further inward than a second main coil section (ZHS) and at least one intermediate main coil section (ZW) is disposed radially between the first and the second main coil section (EHS, ZHS), and with a superconducting switch (11) via which all main coil sections (1, 2, 3, 4, 5) can be superconductingly short-circuited in series, is characterized in that the first main coil section (EHS) and the second main coil section (ZHS) are directly successively series-connected and the first main coil section (EHS) and the second main coil section (ZHS) are bridged by a common quench protection element, which does not bridge the at least one intermediate main coil section (ZW).
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: June 18, 2013
    Assignee: Bruker BioSpin GmbH
    Inventors: Wolfgang Frantz, Gerald Neuberth, Gerhard Roth
  • Patent number: 8448455
    Abstract: A method for cooling a cryostat configuration (1, 1?) during transport, wherein the cryostat configuration (1) comprises a superconducting magnet coil (2) in a helium tank (8) containing liquid helium (9), which is surrounded by at least one radiation shield (10), wherein the cooling inside the cryostat configuration (1, 1?) in stationary operation is performed entirely without liquid nitrogen by means of a refrigerator, characterized in that during transport, the refrigerator is switched off and instead, liquid nitrogen (6) is conducted from an external nitrogen vessel (4) via a supply tube (7) from the nitrogen vessel (4) to the cryostat configuration (1, 1?) and brought into thermal contact with the radiation shield (10) by means of a thermal contact element (11) in the cryostat configuration (1, 1?). In this way, the consumption of liquid helium during transport can be greatly reduced and the possible transport time of a charged superconducting magnet configuration increased.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: May 28, 2013
    Assignee: Bruker BioSpin GmbH
    Inventor: Marco Strobel
  • Patent number: 8406833
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radically nested solenoid-shaped coil sections (4, 5, 6) and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the magnet coil system is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that heating means are provided which always keep the HTS at an increased temperature TH>TL and TH>2.2 K. The cryostat in accordance with the invention can maintain the HTS section over a long period of time in a reliable manner.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: March 26, 2013
    Assignee: Bruker Biospin GmbH
    Inventors: Gerhard Roth, Axel Lausch
  • Patent number: 8316651
    Abstract: A superconducting magnet system with a superconducting magnet coil system disposed in a cryogenic fluid tank (2) of a cryostat (1), and a refrigerator (6) for cooling the cryogenic fluid that cools the magnet, is characterized in that a radiation shield (5; 21; 31; 41; 51) is provided which separates a refrigerator space (4) from the cryogenic fluid tank (2), wherein the entire cooling region (9) of the refrigerator (6) is disposed in the refrigerator space (4), and wherein the radiation shield (5; 21; 31; 41; 51) has openings (11; 22; 44, 45; 53) for gas or fluid exchange between the refrigerator space (4) and the cryogenic fluid tank (2). Should the refrigerator fail, the thermal input into the cryostat is reduced, and the safety of the maintenance staff is improved in case of a quench.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: November 27, 2012
    Assignee: Bruker Biospin GmbH
    Inventors: Klaus Schlenga, Claus Hanebeck
  • Patent number: 8255023
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the magnet coil system is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL. The apparatus is characterized in that a chamber (11) is provided within which the HTS sections (4) are held having an internal portion with a sufficiently low pressure such that helium located therein at a temperature of TL is gaseous. The cryostat in accordance with the invention can be utilized to maintain HTS coil sections over a long period of time in a reliable fashion.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: August 28, 2012
    Assignees: Bruker Biospin GmbH, Forschungszentrum Karlsruhe GmbH
    Inventors: Klaus Schlenga, Marion Klaeser, Thomas Arndt
  • Patent number: 8255022
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the LTS section (5, 6) is located in a first helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL<4 K. The apparatus is characterized in that the HTS section (4) is disposed radially within the LTS section (5, 6) in a separate helium tank (19) of the cryostat (1) having normal liquid helium and is separated from the LTS section (5, 6) by means of at least one wall disposed between the two helium tanks.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: August 28, 2012
    Assignees: Bruker Biospin GmbH, Forschungszentrum Karlsruhe GmbH
    Inventors: Theo Schneider, Gerhard Roth, Arne Kasten
  • Patent number: 8222985
    Abstract: A superconducting magnet configuration (4; 14) for generating a homogeneous magnetic field B0 in an examination volume (4b), has an interior radial superconducting main field coil (1) which is disposed rotationally symmetrically about an axis (z-axis) and an oppositely driven coaxial radially exterior superconducting shielding coil (2) is characterized in that the magnet configuration (4; 14) consists of the main field coil (1), the shielding coil (2), a ferromagnetic field formation device (3; 18) and a ferromagnetic shielding body (AK), wherein the ferromagnetic field formation device (3; 18) is located at the radially inside of the main field coil (1) and the ferromagnetic shielding device (AK) surrounds the main field coil (1) and the shielding coil (2) in a radial and axial direction, the main field coil (1) consisting of an unstructured solenoid coil or of several radially nested unstructured solenoid coils (15, 16) which are driven in the same direction, the axial extent Labs of the shielding coil (2)
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: July 17, 2012
    Assignee: Bruker BioSpin GmbH
    Inventors: Gerald Neuberth, Michael Westphal
  • Patent number: 8212559
    Abstract: A nuclear magnetic resonance (NMR) magic angle spinning (MAS) probe head (1; 61) for measuring a measuring substance in an MAS rotor (21a-21c), comprises a bottom box (3) and a tube (2) mounted to the bottom box (3) and projecting from the bottom box, wherein, in the area of the end (5) of the tube (2) facing away from the bottom box (3), an MAS stator (7; 62) is disposed within the tube (2) for receiving an MAS rotor (21a-21c), and with a pneumatic sample changing system for supplying and discharging an MAS rotor (21a-21c) to/from the MAS stator (7; 62). A transport conduit (10) is provided for pneumatically transferring an MAS rotor (21a-21c) within the transport conduit (10), wherein the transport conduit (10) extends in the inside of the tube (2) from the bottom box (3) to the MAS stator (7; 62). The probe head realizes fast change between different MAS rotors and facilitates RF shielding and keeping of defined extreme temperature conditions.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: July 3, 2012
    Assignee: Bruker BioSpin GmbH
    Inventors: Martin Armbruster, Benno Knott
  • Patent number: 8154368
    Abstract: An actively shielded superconducting magnet configuration (M1; M2; M3; 14) for generating a homogeneous magnetic field B0 in a volume under investigation (4b) has a radially inner superconducting main field coil (1) which is disposed rotationally symmetrically about an axis (z axis) and a coaxial radially outer superconducting shielding coil (2) which is operated in an opposite direction. The magnet configuration consists of the main field coil, the shielding coil and a ferromagnetic field-shaping device (3; 18), wherein the ferromagnetic field-shaping device is disposed radially inside the main field coil. The main field coil consists of an unstructured solenoid coil or of several radially nested unstructured solenoid coils (15, 16) which are operated in the same direction. An extension Labs of the shielding coil in the axial direction is smaller than the extension Lhaupt of the main field coil in the axial direction.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: April 10, 2012
    Assignee: Bruker BioSpin GmbH
    Inventors: Michael Westphal, Gerald Neuberth
  • Patent number: 8123921
    Abstract: A method and device have an electrode rod (1; 21) for a pH meter. The electrode rod (1; 21) has a measuring end (2; 22) for immersion into a liquid test sample (31), wherein the measuring end (2; 22) has a pH measuring element, and wherein electrical feed lines (5) in the electrode rod (1; 21) extend towards the pH measuring element. A plurality of capillaries (8, 9, 10; 23) for feeding liquids and gas into the test sample (31) extend in the electrode rod (1; 21) and have outlet openings (11, 12, 13; 24) in the area of the measuring end (2; 22). The method and device facilitate and accelerate preparation of liquid test samples and adjustment of a pH value for small amounts of test samples or narrow sample containers in NMR spectroscopy applications.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 28, 2012
    Assignee: Bruker BioSpin GmbH
    Inventors: Gudrun Hofmann, Martin Hofmann
  • Publication number: 20120025821
    Abstract: A nuclear magnetic resonance (NMR) apparatus (10) comprises a superconducting main field magnet coil system (14) which generates a homogeneous magnetic field of at least 3T, and a gradient coil system (15) which generates a gradient strength of at least 10 mTm?1, with a slew rate of at least 100 Tm?1s?1, wherein the main field magnet coil system (14) is arranged in a cryostat (12) with liquid helium and a refrigerator (16) in the form of a pulse tube cooler or a Gifford-McMahon cooler, and wherein an evaporation line (17a, 27a, 37a) is provided for helium that might evaporate from the cryostat. In all states of operation of the NMR apparatus (10) without gradient switching, the refrigerator provides a cooling capacity which is at least 0.
    Type: Application
    Filed: July 27, 2011
    Publication date: February 2, 2012
    Applicant: Bruker BioSpin GmbH
    Inventors: Marco Strobel, Holger Liebel
  • Patent number: 8063640
    Abstract: A method for measuring an sample in an NMR spectrometer uses a coupling configuration (1; 30) comprising a coupling element (3) and a supply capillary (2), wherein the coupling element (3) has a funnel-shaped section (5) which clamps an end (6) of the supply capillary (2). An envelope capillary (10) is provided into which the supply capillary (2) is inserted, wherein the end (6) of the supply capillary (2) projects past an end (11) of the envelope capillary (10), and the end (11) of the envelope capillary (10) is also clamped in the funnel-shaped section (5).
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: November 22, 2011
    Assignee: Bruker BioSpin GmbH
    Inventors: Martin Hofmann, Thorsten Marquardsen
  • Publication number: 20110271694
    Abstract: A cryostat configuration (10), with at least one cryostat (11), which has at least one first chamber (1) with supercooled liquid helium having a temperature of less than 4 K and at least one further chamber (2), which contains liquid helium having a temperature of approximately 4.
    Type: Application
    Filed: May 4, 2011
    Publication date: November 10, 2011
    Applicant: Bruker BioSpin GmbH
    Inventors: Marco Strobel, Gerhard Roth
  • Patent number: 7982566
    Abstract: A cryostat (1) with a magnet coil system including superconductors for the production of a magnet field B0 in a measuring volume (3) within a room temperature bore (2) of the cryostat has a plurality of radially nested solenoid-shaped coil sections (4, 5, 6) which surround the room temperature bore and which are electrically connected in series, at least one of which being an LTS section (5, 6) with a conventional low temperature superconductor (LTS) and at least one of which being an HTS section (4) including a high temperature superconductor (HTS), wherein the LTS section (5, 6) is located in a helium tank (9) of the cryostat (1) along with liquid helium at a helium temperature TL. The apparatus is characterized in that the HTS section (4) is disposed radially within the LTS section (5, 6) in a vacuum portion of the cryostat and is separated from the LTS section (5, 6) by the helium tank (9) wall (9a) facing the room temperature bore.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: July 19, 2011
    Assignee: Bruker BioSpin GmbH
    Inventor: Arne Kasten